$\newcommand{\ones}{\mathbf 1}$
Convex sets
Define the square (in $\mathbf{R}^2$) $S = \{ x \in \mathbf{R}^2 \mid 0 \leq x_i \leq 1,~i=1,2 \}$, and the disk $D = \{ x \in \mathbf{R}^2 \mid \|x\|_2 \leq 1 \}$.
$S \cap D$ is convex.
True.
Correct!
Intersection of convex sets is convex.
False.
Incorrect.
$S \cup D$ is convex.
True.
Correct!
In general, the union of convex sets is not convex, but here, it is.
False.
Incorrect.
$S \setminus D$ is convex.
True.
Incorrect.
False.
Correct!
$C = \{ (1,0), (1,1), (-1,-1), (0,0) \}$.
$(0,-1/3) \in \mathbb{conv}\; C$.
True.
Correct!
False.
Incorrect.
$(0,1/3) \in \mathbb{conv}\; C$.
True.
Incorrect.
False.
Correct!
$(0,1/3)$ is in the conic hull of $C$.
True.
Incorrect.
False.
Correct!
Consider the set $S = \{ (0,2),~ (1,1),~ (2,3),~ (1,2),~ (4,0) \}$.
$(0,2)$ is the minimum element of $S$.
True.
Incorrect.
False.
Correct!
$(0,2)$ is a minimal element of $S$.
True.
Correct!
False.
Incorrect.
$(2,3)$ is a minimal element of $S$.
True.
Incorrect.
False.
Correct!
$(1,1)$ is a minimal element of $S$.
True.
Correct!
False.
Incorrect.
$\{Ax + b \mid Fx = g \}$ is affine.
True.
Correct!
False.
Incorrect.
$S = \{ \alpha \in \mathbf{R}^3 \mid \alpha_1 + \alpha_2e^{-t} + \alpha_3 e^{-2t} \leq 1.1 \mbox{ for } t\geq 1\}$.
$S$ is affine.
True.
Incorrect.
False.
Correct!
$S$ is a polyhedron.
True.
Incorrect.
False.
Correct!
$S$ is convex.
True.
Correct!
False.
Incorrect.
Generalized inequality.
$K = \{(x_1,x_2) \mid 0 \leq x_1 \leq x_2 \}$.
$(1,3) \preceq_K (3,4)$.
True.
Incorrect.
False.
Correct!
$(-1,2) \in K^*$.
True.
Correct!
False.
Incorrect.