$\newcommand{\ones}{\mathbf 1}$
Convex problems
Consider the optimization problem \[ \begin{array}{ll} \mbox{minimize} & x_1^2 \\ \mbox{subject to} & x_1 \leq -1, \quad x_1^2 + x_2^2 \leq 2, \end{array} \] with variable $x=(x_1,x_2)$.
The point $(-1,1)$ is a solution.
True.
Correct!
False.
Incorrect.
The optimal value is
$0$.
Incorrect.
$1$.
Correct!
$-1$.
Incorrect.
The problem is convex.
True.
Correct!
False.
Incorrect.
If an optimization problem is feasible, its optimal value $p^\star$ satisfies $p^\star > -\infty$.
True.
Incorrect.
False.
Correct!
The correct conclusion is $p^\star < \infty$.
If the optimal value $p^\star$ of an optimization problem satisfies $p^\star < \infty$, then the problem is feasible.
True.
Correct!
False.
Incorrect.
Geometric programming
$f(x,y) = x/y + y/x$ is a posynomial function ($x$ and $y$ are positive variables).
True.
Correct!
False.
Incorrect.
The squareroot of a monomial function is a monomial function.
True.
Correct!
False.
Incorrect.
Suppose $f$, $g$, and $h$ are posynomial functions of a positive variable $z$. The constraint $f(z) + g(z) \leq h(z)$ can be handled by Geometric Programming.
True.
Incorrect.
False.
Correct!
Multi-objective optimization
Suppose $\tilde x$ uniquely minimizes $\max\{f(x),g(x)\}$. Then $\tilde x$ is Pareto optimal for the bi-criterion optimization problem \[ \begin{array}{ll} \mbox{minimize} & (f(x),g(x)). \end{array} \]
True.
Correct!
False.
Incorrect.