A proof of Krull-Schmidt's theorem for modules

M. G. Mahmoudi

November 18, 2012

The aim of this note is to provide a proof of Krull-Schmidt theorem for modules. Here R denotes a ring with unity.

Definition 1. An R-module M is said to be *indecomposable* if it satisfies the following equivalent conditions:

- (1) M can not be decomposed as a direct sum of two nonzero modules.
- (2) The only idempotents of the endomorphism ring of M are 0 and 1.

For the proof of the equivalence of (1) and (2), it suffices to observe that for every idempotent $e \in End(M)$, the sum $M = e(M) + (\mathrm{id} - e)(M)$ is direct.

Theorem 2. (Fitting's lemma) Let M be an R-module and let $\varphi: M \to M$ be an R-module homomorphism.

- (a) If M is noetherian then there exists a positive integer n such that $\ker \varphi^n \cap \operatorname{im} \varphi^n = 0$.
- (b) If M is artinian then there exists a positive integer n such that $M = \ker \varphi^n + \operatorname{im} \varphi^n$.
- (c) If M is a module of finite length (i.e., both artinan and noetherian), then there exists a positive integer n such that $M = \ker \varphi^n \oplus \operatorname{im} \varphi^n$.

Proof. (a) We have $\ker \varphi \subset \ker \varphi^2 \subset \cdots$. As M is noetherian, there exists a positive integer n such that $\ker \varphi^n = \ker \varphi^{n+1} = \cdots$. We claim that $\ker \varphi^n \cap \operatorname{im} \varphi^n = 0$. If $x \in \ker \varphi^n \cap \operatorname{im} \varphi^n$ then there exists $y \in M$ such that $x = \varphi^n(y)$. It follows that $\varphi^{2n}(y) = \varphi^n(x) = 0$. So $y \in \ker \varphi^{2n} = \ker \varphi^n$. Thus $x = \varphi^n(y) = 0$. (b) We have $\operatorname{im} \varphi \supset \operatorname{im} \varphi^2 \supset \cdots$. As M is noetherian, there exists a positive integer n such that $\operatorname{im} \varphi^n = \operatorname{im} \varphi^{n+1} = \cdots$. We claim that $M = \ker \varphi^n + \operatorname{im} \varphi^n$. To see this, let $x \in M$ be an arbitrary element. As $\operatorname{im} \varphi^n = \operatorname{im} \varphi^{2n}$, there exists an element $y \in M$ such that $\varphi^n(x) = \varphi^{2n}(y)$. Write $x = (x - \varphi^n(y)) + \varphi^n(y)$. It suffices to show that the term $x - \varphi^n(y)$ is in $\ker \varphi^n$. In fact we have $\varphi^n(x - \varphi^n(y)) = \varphi^n(x) - \varphi^{2n}(y) = 0$.

The assertion (c) follows from (a) and (b). \Box

Corollary 3. Let M be an indecomposable R-module of finite length then every endomorphism of M is either nilpotent or isomorphism. In particular the set of non-invertible elements of End(M) is closed under addition.

Proof. Let $f \in End(M)$. By Fitting's lemma, there exists a positive integer n such that $M \simeq \ker \varphi^n \oplus \operatorname{im} \varphi^n$. As M is indecomposable, we either have $\ker \varphi^n = 0$ and $\operatorname{im} \varphi^n = M$ or $\ker \varphi^n = M$ and $\operatorname{im} \varphi^n = 0$. In the former case, φ is an isomorphism and in the later case $\varphi^n = 0$ and φ is nilpotent.

For the second assertion, let f and g be two non-invertible elements of End(M).

We must show that h := f + g is also a non-invertible element of End(M). Otherwise h is invertible, so we obtain $\mathrm{id} = h^{-1}f + h^{-1}g$. As f is non-invertible, so is $h^{-1}f$ and by previous Corollary, $h^{-1}f$ is nilpotent and so $\mathrm{id} - h^{-1}f = h^{-1}g$ is invertible, so is g, contradiction.

Lemma 4. Let M be a nonzero R-module and let N be an indecomposable R-module. Suppose that $f: M \to N$ and $g: N \to M$ be two R-module homomorphisms such that $g \circ f: M \to M$ is an isomorphism. Then f and g are isomorphism as well.

Proof. As $g \circ f$ is isomorphism we obtain that g is surjective and f is injective. Consider the exact sequence $0 \to M \to N \to \operatorname{coker} f \to 0$ and $0 \to \ker g \to N \to M \to 0$. As $g \circ f$ is isomorphism, these sequence split. So $N \simeq M \oplus \operatorname{coker} f \simeq \ker g \oplus M$. As N is indecomposable, it follows that $\operatorname{coker} f = 0$ and $\ker g = 0$. Thus f is surjective and g is injective.

Theorem 5. (Krull-Schmidt) Let M be an R-module and let $M \simeq U_1 \oplus \cdots \oplus U_m \simeq V_1 \oplus \cdots \oplus V_n$ be two decomposition of M where U_i 's and V_j 's are indecomposable R-modules. Then m = n and after a rearrangement of indices we have $U_i \simeq V_i$ for every i.

Proof. Let $\varphi: U_1 \oplus \cdots \oplus U_m \to V_1 \oplus \cdots \oplus V_n$ be an R-module isomorphism. We prove the result by induction on m+n. If m+n=2 then m=n=1 and the conclusion is immediate. Let $\pi_i: U_1 \oplus \cdots \oplus U_m \to U_i$ and $\pi'_j: V_1 \oplus \cdots \oplus V_n \to V_j$ be the canonical projections and let $\iota_i: U_i \to U_1 \oplus \cdots \oplus U_m$ and $\iota'_j: V_j \to V_1 \oplus \cdots \oplus V_n$ be the canonical injections.

Consider the endomorphism ρ_{ij} of U_i which is the composition of $\pi'_j \circ \varphi \circ \iota_i : U_i \to V_j$ and $\pi_i \circ \varphi^{-1} \circ \iota'_j : V_j \to U_i$.

If there exist two indices i and j such that ρ_{ij} is an isomorphism (say i=j=1) then we have an isomorphism $\pi'_1 \circ \varphi \circ \iota_1 : U_1 \simeq V_1$ as well. It follows that $\varphi' := (\bigoplus_{r=2}^m \pi'_r) \circ \varphi \circ (\bigoplus_{s=2}^n \iota_s) : (\bigoplus_{r=2}^m U_r) \to (\bigoplus_{s=2}^n V_s)$ is an isomorphism. For the injectivity: suppose that $(0,u_2,\cdots,u_m)$ is in the kernel of this maps. So $\pi'_r(\varphi(0,u_2,\cdots,u_m))=0$ for $r=2,\cdots,n$. So we have $\varphi(0,u_2,\cdots,u_m)=(v_1,0,\cdots,0)$. It follows that $\varphi(0,u_2,\cdots,u_m)=\iota'_1(v_1)$. By applying the map $\pi_1\circ\varphi^{-1}$ on both sides we get $0=\pi_1\circ\varphi^{-1}\circ\iota'_1(v_1)$. As $\pi_1\circ\varphi^{-1}\circ\iota'_1$ is isomorphism we obtain $v_1=0$ so $\varphi(0,u_2,\cdots,u_m)=(0,0,\cdots,0)$ and so $(u_2,\cdots,u_m)=(0,\cdots,0)$. For the surjectivity: as φ' is injective so $\ell(\bigoplus_{r=2}^m U_r)=\ell(\varphi'(\bigoplus_{r=2}^m U_r))$. On the other hand $\ell(\bigoplus_{r=2}^m U_r)=\ell(\bigoplus_{s=2}^n V_s)$ it follows that $\varphi'(\bigoplus_{r=2}^m U_r)=\bigoplus_{s=2}^n V_s$ so φ' is surjective.

We may now use the induction hypothesis to concludes the result.

If for every j, ρ_{ij} is not isomorphism then by previous Corollary ρ_{ij} is nilpotent and so $\sum_{j=1}^{n} \rho_{ij}$ is nilpotent as well. But $\sum_{j=1}^{n} \rho_{ij} = id_{U_i}$ contradiction. \square

M. G. Mahmoudi,

DEPARTMENT OF MATHEMATICAL SCIENCES, SHARIF UNIVERSITY OF TECHNOLOGY, P. O. BOX 11155-9415, Tehran, Iran.

E-mail address: mmahmoudi@sharif.ir