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Dictionary learning
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 Dictionary learning problem [1]:

Dictionary learning problem is a non-convex problem over 
and jointly.
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 Dictionary learning by alternative minimization using:
1) Sparse representation:

2) Dictionary update:

Stage 1 is an ordinary sparse coding problem [2]–[5], which 
can be done, for example, by Orthogonal Matching Pursuit 
(OMP) [6].
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Dictionary learning
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Convex dictionary learning [ 7 ] 

 Convex approximation[7]:

  ,  
 −   − 

in which, it is assumed that −  −  ி is small.
 Convex dictionary learning problem:
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 Dictionary learning by alternative minimization using:
1) Sparse representation:

2) Dictionary update:
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Convex dictionary learning [ 7 ] 
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Another view point to Equation  

 Convex approximation by first order term of Taylor series:

ሾሿ
் denotes the j-th row of and  denotes the i-th column 

of 

Extending (8) to all elements of H results in 
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Our idea 

 Using is possible in the 4 following ways:

 Which one is better? → The question addressed in this paper
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 The first case reduces to the traditional DL problem
described by (2) and (3).

 The third case is the one used in [7], which is described by
(6) and (7).

 The second and fourth cases are being considered in this
paper.

 Note that all of these four cases can be applied on almost
any DL algorithm and obtain new algorithms. To call the
resulted algorithms, we add prefixes ‘UD1’ to ‘UD4’ to the
name of the original algorithm, corresponding to the cases 1
to 4, respectively (‘UD’ stands for ‘UpDated’).
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Our idea (continued) 



 Our proposed method uses the fourth case and “UD4” in 
the name of algorithms denote our proposed algorithms.

1) Sparse representation:

2) Dictionary update:
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Summary of our proposed method 
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Simulation Results

 Let’s apply all cases on the MOD[8], SGK[9] and MDU[10],
to evaluate their performance experimentally. The
performance measures are root mean square error (RMSE)

defined as  =
ೖࢄೖࡰିࢅ ಷ


and percentage of atom

recovery. Assuming that ࢚ is the true dictionary and is
the recovered dictionary, we say that the atom of
dictionary is successfully recovered if:

݉݅ ݊ሺ1 െ ࡰ : , ݅ :ሺ࢚ࡰ் , ݆ሻ ሻ ൏ 	0.01.
 

 ࡰ ∈ Թ ସൈଵ, ݏ ൌ 15, 10 (sparsity level), 3000 training data,
SNR=30 dB
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According to these simulations, our algorithms (denoted by
UD4) have higher convergence rate and lower RMSE in
comparison to the other algorithms. Sparsity level is 15.
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According to these simulations, our algorithms (denoted by
UD4) have higher convergence rate and lower RMSE in
comparison to the other algorithms. Sparsity level is 10.



TABLE I: Average running times (in seconds) for achieving percentage of
recovery=85. Those of our proposed algorithm (denoted by UD4) are
reported in parentheses. The second case (UD2) diverges most of the
time, so it is not in the table. A dash sign indicates divergence.
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According to Table I, if s increases, the difference in the
convergence rate and running time between our approach and
the other algorithms also increases.
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Conclusions
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 We showed that the main idea of [ 7 ] could actually been used
in different ways, and the way it had been used in [ 7 ] was not
the best one. We then experimentally proposed to use another
choice that results in a highly better performance, in terms of
both accuracy and speed.

 Note that his approach can be applied on almost any existing
DL algorithm to obtain modified versions.
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