Abstract:
This work aims to propose an approach for pruning a bagging ensemble regression (BER) model based on sparse representation, which we call sparse representation pruning (S...Show MoreMetadata
Abstract:
This work aims to propose an approach for pruning a bagging ensemble regression (BER) model based on sparse representation, which we call sparse representation pruning (SRP). Firstly, a BER model with a specific number of subensembles should be trained. Then, the BER model is pruned by our sparse representation idea. For this type of regression problems, pruning means to remove the subensembles that do not have a significant effect on prediction of the output. The pruning problem is casted as a sparse representation problem, which will be solved by orthogonal matching pursuit (OMP) algorithm. Experiments show that the pruned BER with only 20% of the initial subensembles has a better generalization compared to a complete BER.
Published in: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 04-08 May 2020
Date Added to IEEE Xplore: 09 April 2020
ISBN Information: