
Biomedical Signal Processing and Control 87 (2024) 105379

A
1

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

Low-rank Tensor Restoration for ERP extraction
Zahra Sohrabi Bonab ∗, Mohammad B. Shamsollahi
BiSIPL, Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

A R T I C L E I N F O

Keywords:
Event related potentials
Low-rank tensor decomposition
ADMM
Multi-mode analysis

A B S T R A C T

Event-related potential (ERP) data is essentially multi-dimensional, with correlated data in some spaces.
Therefore, matrix and vector analysis results in structural information loss. Tensor decomposition can be used
to explore the shared structural information of ERP signal among related conditions. Perceiving the decaying
trends of the singular value changes of unfolding matrices indicate that they are low-rank matrices. Based on
this assumption, in this work, a low-rank tensor restoration (LTR) method is proposed. An operator splitting
method known as the alternating direction method of multipliers (ADMM) is adapted to tackle the proposed
optimization problem with orthogonality and sparsity constraints. Accordingly, the problem is solved in a
sequential fashion by computing the unconstrained and orthogonality constrained quadratic sub-problems with
closed-form solutions. The algorithm is examined under three application areas, namely, noise removal, feature
extraction and subject-to-subject transfer learning. The empirical evaluations on real P300-based ERP dataset
demonstrate the robustness and effectiveness of the proposed method.
1. Introduction

ELECTROENCEPHALOGRAM (EEG) is the most common non-inva
sive and simple signal that is used in brain–computer interface (BCI)
systems. BCI is an emerging technology that uses brain control signals
to directly link the brain with the outside world without the involve-
ment of muscles and peripheral nerves. Event-related potentials (ERPs)
are time-locked changes of neuronal activity of brain in response to
external stimuli. Among all EEG features, ERP-based BCIs are more
popular and they have many practical applications in both clinical
and non-clinical areas. While ERP detection is the core part of many
BCI systems, it suffers from low signal to noise ratio and trial-to-
trial variability [1]. Habituation, refractoriness, fatigue, boredom, or
even attention level of the subject can affect the ERPs [2]. Therefore,
averaging despite its signal-to-noise (SNR) improvement, implies a loss
of information related to trial-to-trial variability.

In order to extract ERP components, it is usually modeled as sum
of invariant signals and random noises. The signal part accounts for
the information processing stages which can be divided into perceptual
(e.g., N100), cognitive (e.g., P300), and decision-making (e.g., N400 or
P650) components while the noise part accounts for the non-stationary
background EEG, internal noises like muscle activity and Gaussian
noise [3–5].

The presence of noise confines the processing precision in succes-
sive ERP-based applications. Hence, ERP extraction is an important
preprocessing step for almost all usages. Until now, a large number
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of extraction techniques has been developed for different ERP signal
processing applications. Filtering based methods are commonly used
because of their simplicity and time effectiveness [6]. Using the idea
that discrimination of spatial topology and temporal template could dif-
ferentiate distinct tasks, several spatio-temporal filtering algorithms are
proposed [5,7–13]. However, most of these methods are template-based
and their performance is limited for variable components.

Optimization-based techniques also have been applied in EEG clas-
sification, where, ERP denoising is considered as an optimization prob-
lem consisting of regularization and data-fidelity. In [14], single-trial
ERPs are classified using multiple sparse discriminant vectors learned
from 𝓁1-regularized least-squares regressions. Zhang et al. [15] intro-
duced a regularized sparse Bayesian method where a sparse discrimi-
nant vector is learned with a Laplace prior in a hierarchical fashion.
In [16], three types of regularizers are presented that induce different
types of sparsity on the input signal matrix. However, in [17] the
optimization problem is solved under smoothness constraint.

In recent years, with the expansion of neural network research,
many neural network based algorithms are suggested by researchers
to detect ERP signals [18–21]. While these algorithms benefit from
concurrent processing property and high accuracy, they suffer from
computation cost and require higher hardware facilities [21]. Recently,
increasing number of studies have used tensor-based techniques in
many applications including signal and image processing [22–26] and
pattern recognition [27–29]. In this paper an ERP is represented as
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Table 1
Notations and definitions.
 , 𝑋, 𝑥 Tensor, Matrix, Vector
 ∈ R𝐼1×𝐼2×…×𝐼𝑁 An 𝑁th-order tensor
𝑋(𝑛) = unfold𝑛() 𝑛-mode matricization of tensor 
𝑟𝑎𝑛𝑘𝑑 () Rank of 𝑋(𝑛)
×𝑖 Multiplication across the 𝑛-mode
 × {𝐴}  ×1 𝐴1 ×2 𝐴2 ×3 …×𝑁 𝐴𝑁
 ×−𝑛 {𝐴}  ×1 𝐴1 ×2 …×𝑛−1 𝐴𝑛−1

×𝑛+1𝐴𝑛+1 ×𝑛+2 …×𝑁 𝐴𝑁
⟨ ,⟩ Inner product of two tensors
‖‖𝐹 =

√

⟨ ,⟩ The Frobenius norm of the tensor 
‖𝑋‖∗ =

∑min(𝑚1 ,𝑚2 )
𝑖 𝜎𝑖(𝑋) The Nuclear norm, which is sum of

singular values of 𝑋 ∈ R𝑚1×𝑚2

‖‖0 = |{𝑖 ∶ 𝑔𝑖 ≠ 0}| 𝓁0-norm defined as total number of
nonzero elements

a multi-dimensional signal. Therefore, multi-linear analysis can be
carried out based on these tensor space.

The focus of the present paper is on the concepts and application
of low rank approximation framework based on well known tensor
decomposition method, known as Tucker decomposition (TD) [30].
Although TD generally suffers from non-uniqueness solution, it offers
extra degrees of freedom when compared with the other tensor decom-
position methods [23]. With our prior knowledge about each class (ie.
semi-class trials similarity, time course sparsity and spatial correlation),
we restrict ERP tensor to be low-rank in each mode and a sparse
regularization is induced on the core tensor allowing it to well describe
the detailed information in the data [31].

A practicable Alternating Direction Method of Multipliers (ADMM)
algorithm [32] is used to solve the proposed Low-rank tensor restora-
tion (LTR) model. Computationally efficient and closed-form expres-
sions are derived for updating each variable. By imposing additional
sparseness and orthogonality constraints it is possible to exploit the
prior knowledge simultaneously, namely, the local self-similarity of
trial mode, the sparse time course of temporal mode and the neighbor
electrodes recording correlation of spatial mode [31,33,34]. These
constraints lead to learn a structured factor matrices where they are
used to transfer the new subject’s raw data into feature space. In this
work, this property is called subject-to-subject transfer learning (STL).
The aim of STL is to learn an objective function for a target subject
with help of not only the target domain but also from other subjects
domain. Classification is one of the most investigated applications of
STL, where, it utilizes the knowledge implied in the source domain(s)
to improve the performance of the learned decision functions and
features on the target domain [35–37]. Due to low computational cost
and acceptable accuracy, the results obtained in this work are very
interesting considering real-world BCI application.

The remainder of the paper is organized as follows: In Section 2
briefly overviews tensor algebra. Section 3 presents the LTR model and
the corresponding ADMM-based algorithm to solve the low-rank tensor
restoration as an optimization problem. Experiments were performed
on two real dataset with P300 ERP component while focusing on
three applications and the results are presented in Section 4. Section 5
concludes this paper. Basic notations and definitions are shown in
Table 1.

2. Background

Two common models in tensor data analysis are Tucker decomposi-
tion and PARAFAC/CP decomposition. In this section, a brief review of
Tucker decomposition is presented. A Tucker model with orthogonality
constraints on component matrices is a generalization of SVD from ma-
trix to tensor which decomposes a tensor into a core tensor multiplied
by a matrix along each mode [23], and it is formulated as:

 =  × 𝐴 × 𝐴 × … × 𝐴 +  (1)
2

1 1 2 2 3 𝑁 𝑁
Fig. 1. Three dimensional tensor low-rank Tucker decomposition.

where  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 is decomposition error and  ∈ R𝐽1×𝐽2×⋯×𝐽𝑁

is called the core tensor and it is similar to the singular values in
SVD-based matrix decomposition with its intensity showing the level of
interaction between different components. 𝐴𝑖 ∈ R𝐽𝑖×𝐼𝑖 is the column-
wise orthonormal factor matrix and can be regarded as the principal
components in each mode [33].

It is notable that, although Tucker decomposition suffers from core
rotations, which results in non-unique solutions, it is preferred over
other tensor analysis methods because of its flexibility in extracting a
different number of components along each mode. Within this math-
ematical framework, every multidimensional data can be viewed as a
whole data set which involves a joint processing along each mode.

The focus of this article is to solve the constrained Tucker decom-
position of 𝑁 dimensional tensor data such as ERP signals. An ERP
tensor recorded from real experimental paradigms are always with an
evident correlation along each of its modes. Meanwhile, the constructed
tensor data often displays a low-rank structure due to significant cor-
relations between neighboring electrodes and similar trials. Therefore
with small number of latent factors, data variation and information
are represent-able. Based on this assumption, the ERP data is modeled
as a 𝑁-dimensional tensor  =  +  , where  is a tensorized
recorded EEG data and  is superposition of ERP components and
it is a low-rank tensor. Moreover,  corresponds to the background
EEG and additive noises. The least important tailing factor columns
in each 𝐴𝑖 and the proportional core slices in  along each dimension
are discarded to construct a compressed approximation. For simplicity
in Fig. 1 a three-dimensional tensor and its decomposed elements are
illustrated.

To restore tensor from corrupted observations  under low-rankness
and sparsity constraint, the corresponding noise-free tensor  can be
estimated by solving the following optimization problem:

𝐚𝐫𝐠𝐦𝐢𝐧


1
2
‖ − ‖

2
𝐹 + 𝜆𝛷() (2)

where  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 is the observation tensor and 𝛷() is the
regularization term related to the rank of  . 𝛷() identifies prior
knowledge about the clean ERP tensor, and 𝜆 > 0 is a compromise
parameter that controls trade-off between the two terms.

3. Proposed LTR model

In this section, first a general regularized minimization problem is
solved and then its extension to ERP signal denoising and classification
along with subject-to-subject transfer learning are introduced.

In order to incorporate structural information hidden in the sig-
nal, sparsity constrain is imposed on the core tensor along with low-
rankness regularization over each factor matrix. To obtain this goal,
both inner sparsity and subspace low-rankness are integrated into
the problem. The regularization term is defined as: 𝛷() = ‖‖0 +
𝛼
∏𝑁

𝑑=1 𝑟𝑎𝑛𝑘𝑑 (), where  is TD core tensor, and ‖‖0 is 𝓁0-norm. The
variable 𝛼 is trade-off control parameter that determines the weight of
each term.
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Minimization of ‖‖0 is a nonconvex optimization problem and
generally it is impossible to solve it when the signal dimension is large.
A general alternative approach is to recast it to a linear problem as
‖‖1 ∶=

∑

𝑖 |𝑔𝑖| corresponding to sum of all the core tensor elements.
Meanwhile, due to the non-convex and non-smoothness of the rank

unction 𝑟𝑎𝑛𝑘(⋅), its calculation is usually NP-hard problem that cannot
e solved within polynomial time. Therefore, the function 𝑟𝑎𝑛𝑘𝑑 () is
elaxed to one of its convex successors with a singular value penalty
unction 𝑓 (⋅) as 𝑟𝑎𝑛𝑘𝑑 () ∶= min∑min{𝑚1 ,𝑚2}

𝑖=1 𝑓 (𝜎𝑖(𝑋(𝑑))), where 𝑋(𝑑) ∈
R𝑚1×𝑚2 denotes the mode-𝑑 unfolding matrix of the tensor  , and
𝜎𝑖(𝑋(𝑑)) represents the 𝑖th singular value of 𝑋(𝑑). With this definition,
the penalty function 𝑓 (𝑥) = 𝑥 induces the nuclear norm. Nuclear norm
is extensively used for matrix completion and rank relaxation. With
these assumptions along with adding defined regularization term to the
model in (2), the final model for ERP tensor restoration is given by:

𝐚𝐫𝐠𝐦𝐢𝐧
,𝐴1 ,…,𝐴𝑁

1
2
‖ − ‖

2
𝐹 + 𝜆‖‖1 + 𝛽

𝑁
∏

𝑑=1

𝑀𝑑
∑

𝑖=1
𝜎𝑖(𝑋(𝑑))

𝐬.𝐭.  =  ×1 𝐴1 ×2 𝐴2 ×3 …×𝑁 𝐴𝑁

𝐴𝑇
𝑖 𝐴𝑖 = 𝐼, 𝑖 = 1,… , 𝑁 (3)

here 𝛽 = 𝛼𝜆 with 𝜆 being the compromise parameter and 𝑀𝑑 is the
inimum dimension of mode-𝑑 unfolding matrix of  . Additionally,

he orthogonality constraint 𝐴𝑇
𝑖 𝐴𝑖 = 𝐼 is typically utilized to restrain

he columns of 𝐴𝑖 from becoming degenerate.
Note that problem (3) is difficult to solve due to the interdependent

uclear norms. Accordingly, we perform variable splitting and allocate
eparate auxiliary variables to each unfolding of  . Let 1, 2,… , 𝑁
e new tensor variables equal to the reconstructed tensor  . In an-
ther word, the new variable 𝑑 ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 is defined such that
𝑑(𝑑) = 𝑋(𝑑) for all 𝑑 ∈ {1, 2,… , 𝑁} and equivalently problem (3) is
eformulated as:

𝐚𝐫𝐠𝐦𝐢𝐧
,𝐴1 ,…,𝐴𝑁

1
2
‖ −  ×1 𝐴1 ×2 𝐴2 ×3 …×𝑁 𝐴𝑁‖

2
𝐹

+ 𝜆‖‖1 + 𝛽
𝑁
∏

𝑑=1

𝑀𝑑
∑

𝑖=1
𝜎𝑖(𝑇𝑑(𝑑)) (4)

𝐬.𝐭. 𝑑 =  ×1 𝐴1 ×2 𝐴2 ×3 …×𝑁 𝐴𝑁

𝐴𝑇
𝑑𝐴𝑑 = 𝐼, 𝑑 = 1,… , 𝑁

With these new variables 𝑑s, the semi-augmented Lagrangian func-
ion of problem (4) is given as follows:

(, 𝐴1,… , 𝐴𝑁 , 1,… , 𝑁 , 𝛬1,… , 𝛬𝑁 , 𝜇)

∶= 1
2
‖ −  ×1 𝐴1 ×2 𝐴2 ×3 …×𝑁 𝐴𝑁‖

2
𝐹 (5)

+ 𝜆‖‖1 + 𝛽
𝑁
∏

𝑑=1

𝑀𝑑
∑

𝑖=1
𝜎𝑖(𝑇𝑑(𝑑))

+
𝑁
∑

𝑑=1
⟨𝑑 −  ×1 𝐴1 ×2 𝐴2 ×3 …×𝑁 𝐴𝑁 , 𝛬𝑑⟩

+
𝑁
∑

𝑑=1

𝜇
2
‖𝑑 −  ×1 𝐴1 ×2 𝐴2 ×3 …×𝑁 𝐴𝑁‖

2
𝐹

.𝐭. 𝐴𝑇
𝑑𝐴𝑑 = 𝐼, 𝑑 = 1,… , 𝑁

here 𝛬𝑑s are Lagrange dual variables and 𝜇 > 0 is the step size.  is
omputed subject to 𝐴𝑇

𝑑𝐴𝑑 = 𝐼, 𝑑 = 1,… , 𝑁 .
Estimation of multiple unknowns simultaneously and directly, is

ard. One idea to solve these kinds of problems is to decompose
hem into 𝑚 smaller subproblems so that each of these decomposed
ubproblems only involves one variable and thus the properties of this
ariable could be used effectively in algorithmic design. ADMM is an
pproximation to augmented Lagrangian method (ALM) by sequentially
pdating each of the primal variables that make use of the advantages
3

hat the generated sub-problems could have closed-form solutions [38,
9]. Problem (5) can be decomposed into several subproblems for
ach variable,where at each iteration, the objective function is solved
ccording to one of the constraints while other constraints are fixed.
n consequence, the core tensor and the factor matrices are updated
lternatively. The solution of the model (5) can be established by
teratively optimizing the corresponding subfunctions.

(1) Update : With other parameters fixed, the core tensor  can be
updated using:

𝐚𝐫𝐠𝐦𝐢𝐧


(, 𝐴1,… , 𝐴𝑁 , 1,… , 𝑁 , 𝛬1,… , 𝛬𝑁 , 𝜇) =

𝐚𝐫𝐠𝐦𝐢𝐧


𝜆‖‖1 +
1
2
‖ −  ×1 𝐴1 ×2 …×𝑁 𝐴𝑁‖

2
𝐹

+
𝑁
∑

𝑑=1
⟨𝑑 −  ×1 𝐴1 ×2 …×𝑁 𝐴𝑁 , 𝛬𝑑⟩

+
𝑁
∑

𝑑=1

𝜇
2
‖𝑑 −  ×1 𝐴1 ×2 …×𝑁 𝐴𝑁‖

2
𝐹 (6)

By doing some simple algebra problem (6) turns to following
optimization problem:

𝐚𝐫𝐠𝐦𝐢𝐧


𝑎‖‖1 +
1
2
‖ − ×1 𝐴

𝑇
1 ×2 …×𝑁 𝐴𝑇

𝑁‖

2
𝐹 (7)

where 𝑎 = 𝜆
1+𝑁𝜇 and  = +

∑𝑁
𝑑=1 (𝜇𝑑+𝛬𝑑 )
1+𝑁𝜇 . If we set  =  ×1

𝐴𝑇
1 ×2…×𝑁 𝐴𝑇

𝑁 , then the problem (7) has a closed form solution
as follows [40]:

̂ = sign()max(0, || − 𝑎𝜌). (8)

where 𝜌 is pre-defined thresholding parameter.
(2) Update 𝐀𝐢: In order to update each factor matrix 𝐴𝑖, all other

variables are fixed. Ignoring the constant terms, the sub-problem
for updating 𝐴𝑖 is re-arranged as:

𝐚𝐫𝐠𝐦𝐢𝐧
𝐴𝑖

1
2
‖ ×1 𝐴1 ×2 …×𝑁 𝐴𝑁 −‖

2
𝐹 (9)

𝐬.𝐭. 𝐴𝑇
𝑖 𝐴𝑖 = 𝐼

whose optimal solution can be obtained via employing the fact
that ‖ ×𝑛 𝐴‖𝐹 = ‖‖𝐹 ,∀𝐴𝑇𝐴 = 𝐼 :

𝐚𝐫𝐠𝐦𝐢𝐧
𝐴𝑖

1
2
‖𝐴𝑖𝐺(𝑖) − 𝐵𝑖‖

2
𝐹 (10)

𝐬.𝐭. 𝐴𝑇
𝑖 𝐴𝑖 = 𝐼

where 𝐵𝑖 = unfold𝑖( ×−𝑖 {𝐴𝑇 }). It is simple to show that the
optimization problem (10) is equivalent to:

𝐚𝐫𝐠𝐦𝐢𝐧
𝐴𝑖

1
2
‖𝐴𝑖 − 𝐺𝑇

(𝑖)𝐵𝑖‖
2
𝐹 (11)

𝐬.𝐭. 𝐴𝑇
𝑖 𝐴𝑖 = 𝐼

Therefore, following theorem 2.1 of [41] quadratic problem (10)
has closed-form solution:

𝐴̂𝑖 = 𝑈𝑖𝑉
𝑇
𝑖 (12)

where 𝑈𝑖 and 𝑉𝑖 are two orthogonal matrices satisfying the SVD
factorization 𝐺𝑇

(𝑖)𝐵𝑖 = 𝑈𝑖𝐷𝑖𝑉 𝑇
𝑖 .

(3) Update  𝐢: With other parameters fixed, each auxiliary tensor
𝑖 is updated via:

𝐚𝐫𝐠𝐦𝐢𝐧
𝑖

𝛽′
𝑀𝑑
∑

𝑗=1
𝜎𝑗 (𝑇𝑖(𝑖)) + 𝑇 𝑟(𝛬𝑇 (𝑖 − ( × {𝐴})))

+
𝜇
2
𝑇 𝑟((𝑖 − ( × {𝐴})𝑇 (𝑖 − ( × {𝐴})) (13)

where 𝛽′ = 𝛽
∏𝑁

𝑑≠𝑖
∑𝑀𝑑

𝑗=1 𝜎𝑗 (𝑇𝑑(𝑑)). Problem (13) rearranges into
squared from as follows:

𝐚𝐫𝐠𝐦𝐢𝐧 𝛽′

𝜇

𝑀𝑑
∑

𝜎𝑗 (𝑇𝑖(𝑖)) +
1
2
‖𝑖 − ( × {𝐴}) −

𝛬𝑖
𝜇
‖

2
𝐹 (14)
𝑖 𝑗=1
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Problem (14) is known as singular value thresholding which is
proximity operator associated with the nuclear norm, and it has
a closed form solution as follows [42]:

𝑇̂𝑖(𝑖) = 𝑈𝑖(max(𝛴𝑖 −
𝛽′

𝜇
𝐼, 0))𝑉 𝑇

𝑖 (15)

where 𝑈𝑖 and 𝑉𝑖 are the singular vectors of SVD decomposition
of (unfold𝑖(×{𝐴})+ 𝛬𝑖

𝜇 ) associated with singular values greater
than 𝛽′

𝜇 . Note that since only singular values greater than 𝛽′

𝜇
is needed, to speed up the calculations, with appropriate algo-
rithms (e.g. Lanczos algorithm) only first few singular values and
singular vectors could be computed [42,43].

(4) Update Λ𝐢: Lagrange multipliers is updated using gradient as-
cent.

𝛬𝑡+1
𝑖 = 𝛬𝑡

𝑖 + 𝜇𝑡( 𝑡+1
𝑖 − 𝑡+1 × {𝐴𝑡+1}) (16)

Algorithm 1 LTR algorithm via ADMM

Input: Recorded noisy ERP tensor  ∈ R𝐼1×𝐼2×…×𝐼𝑁 , stopping criterion
𝜖

Output: The restored ERP tensor  ∈ R𝐼1×𝐼2×…×𝐼𝑁

Initialization: core tensor 0, factor matrices 𝐴0
𝑖 , and auxiliary tensor

 0
𝑖 =  for 𝑖 = 1, 2,… , 𝑁 , 𝜇0 > 0, 𝜇𝑚𝑎𝑥, 𝛿 = 1.1, maximum number

of iterations 𝑇 .
1: while not converge or 𝑡 < 𝑇 do
2: Update core tensor 𝑡+1 by (8)
3: Update all factor matrices 𝐴𝑡+1

𝑖 by (12)
4: Update all auxiliary tensors  𝑡+1

𝑖 by (15)
5: Update Lagrange variable 𝛬𝑡+1

𝑖 by (16)
6: Update step size 𝜇𝑡+1 by 𝜇𝑡+1 = min(𝛿𝜇𝑡, 𝜇𝑚𝑎𝑥)

7: Check the convergence condition: ‖ 𝑡+1− 𝑡
‖

2
𝐹

‖‖

2
𝐹

< 𝜖

8: 𝑡 = 𝑡 + 1
9: end while

Since subproblems arising in the -update and 𝐴𝑖-update and 𝑖-
update are solvable with closed form solution, i.e., there exist ̂ and
𝐴̂𝑖(12) and ̂𝑖(8), after each iteration of ADMM the sum of the primal
and dual optimality gaps decreases. According to [32], this results is
sufficient decrease condition to minimize the augmented Lagrangian.
Therefore, in practice the ADMM converges to a modest accuracy
solution within a few tens of iterations.

3.1. LTR for feature extraction

In order to extract significant features to maximize classification
performance, simultaneous tensor decompositions is required. This
problem can be considered as a generalization of Joint Approximative
Diagonalization (JAD) in matrix algebra [23]. Accordingly, all training
tensors are concatenated into one 𝐾 +1 order training data tensor, and
the Tucker-𝐾 decomposition is performed [44].

Algorithm 2 summarizes the training procedure of proposed LTR
method for feature extraction and online classification. At step 2, LTR
seeks to optimize factor matrices 𝐴𝑛 under the constraint 𝐴𝑇

𝑛 𝐴𝑛 = 𝐼 .
By the end of the training stage, with the learned factor matrices
𝐴𝑛, the lower-dimensional tensor subspace representation 𝑖,𝑗 of each
𝑖,𝑗 belonging to class 𝑖 is computed as 𝑖,𝑗 = 𝑖,𝑗

∏𝐾
𝑘=1 ×𝑘𝐴𝑇

𝑘 . In the
classification framework, when a recorded tensor  𝑡 is received, first
its low-rank tensor subspace representation is computed via the factor
matrices found for training data named as projection matrices. Then
the extracted feature is fed into a desired classifier and it is compared
with train features. This procedure is illustrated in Fig. 2.
4

Algorithm 2 Training Procedure of LTD for classification

Input: Training tensor 𝑖,𝑗 |
1≤𝑗≤𝑛𝑖
1≤𝑖≤𝑐 ∈ R𝐼1×𝐼2×…×𝐼𝐾×𝑁 , corresponding

class labels 𝑖 ∈ {1, 2,… , 𝑐}, total number of training tensors 𝑁 =
∑𝑐

𝑖=1 𝑛𝑖 and reduced tensor subspace 𝐽1 × 𝐽2 × … × 𝐽𝐾 , ADMM
parameters, and 𝜖.

Output: Projection matrices 𝐴𝑛 ∈ R𝐼𝑛×𝐽𝑛 constrained by 𝐴𝑇
𝑛 𝐴𝑛 = 𝐼 and

the projected tensor 𝑖,𝑗 |
1≤𝑗≤𝑛𝑖
1≤𝑖≤𝑐 ∈ R𝐽1×𝐽2×…×𝐽𝐾 .

1: while not converge do
2: Optimize projection matrices 𝐴̂𝑛 by solving problem (3) with

ADMM method.
3:  𝑡 =  × {𝐴𝑡}

4: Check the convergence condition: ‖ 𝑡−1− 𝑡
‖

2
𝐹

‖‖

2
𝐹

< 𝜖

5: 𝑡 = 𝑡 + 1
6: end while
7: 𝑖,𝑗 = 𝑖,𝑗

∏𝐾
𝑘=1 ×𝑘𝐴𝑇

𝑘

Fig. 2. Diagram of LTR model online classification procedure.

Fig. 3. Traditional vs. Transfer learning.

3.2. LTR for subject-to-subject transfer learning

In machine learning, TL is a method that utilizes data or knowledge
from relevant situation to facilitate learning for a new desired problem.
In the proposed work, subject to subject transfer learning (STL) is
implemented in order to facilitate BCI applications. As depicted in
Fig. 3, in this framework the required training time is remarkably
reduced. Only a small amount of calibration data is required from a
new subject. The work is based on the hypothesis that the similarity of
brain dynamics in ERP paradigms among individuals is predictable. In
order to validate the efficiency of STL model with the proposed LTR
method, an experiment on real data is performed. The results suggest
a practical way toward online ERP detection and can set a light to
numerous real-world BCI applications.

When solving cross-subject classification problem via STL, a target
subject classifier is designed by using the labeled data from the related
subjects. A practical solution to this problem is to find the common
latent features through feature transformation and use them as a bridge
to transfer knowledge [35]. 𝑇

𝐿 are labeled target subject’s data from
some calibration trials, and 𝑇

𝑈 are unlabeled data to be recognized in
subsequent trials.
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In each iteration, LTR-STL has the following steps.

(1) Common Factor Matrix Extraction: For each source subject (de-
noted by 𝑆𝑘 with 𝑘 = 1,… , 𝑚), the source domain trials 𝑆𝑘

are separately input to the LTR algorithm to produce common
latent feature extractor space 𝐴𝑆𝑘

𝑖 . Common latent factor 𝐴𝑖
is obtained by averaging latent factors of all subjects 𝐴𝑖 =
mean(𝐴𝑆1

𝑖 ,… , 𝐴𝑆𝑚
𝑖 ).

(2) Specific Feature Extraction: For each target subject, the extracted
common latent factor is fed to the target-specific feature ex-
tractor, which results in target feature space. Feature encoder
function is defined as:

𝑓 () = (
𝐾
∏

𝑘=1
×𝑘𝐴

𝑇
𝑘 ) (17)

(3) Data Classification: The feature extraction rule is subsequently
applied to the test set. The output of the target specific feature
extractor is input to the preferred classifier (e.g. LDA).

4. Experiments and results

The LTR method can effectively use the correlation between dif-
ferent modes and suppress the background noise. It may be widely
applied to many types of EEG signal processing. This section discusses
the application of proposed method in the detection of EEG signal
components in one of widely used paradigms, named P300 speller.

4.1. Application I: Noise removal

In order to study noise removal capability of our method we used
the real data with adding different levels of background Gaussian
noise. The experimental data set provided in [45] was applied for
the comparative analysis. Although our research purpose differs from
the reference, the dataset nonetheless provides relevant experimental
material for our research. The dataset is based on the P300 response
and applied to both disabled and healthy subjects. It contains a total
of 8 subjects’ experimental data (Subject 1–4, 6–9). Due to reasons
stated in [45], Subject 5 is not considered in this paper. It contains
four recording sessions per subject, while each session includes six runs.
In each session one of the images is set as target and the participants
should count how many times this image is appeared in the screen. The
group of six images randomly flashed is called one block. The number
of blocks was chosen randomly between 20 and 25. In our experiment
we use 15 blocks to train data for all subjects. Hence, the training data
for one subject consisted of 1620 trials.

Before applying our method, the data was bandpass filtered between
1 Hz and 12 Hz by a 6th order Butterworth filter to attenuate large
drifts and irrelevant high frequency noise. Then, the signal was further
downsampled to 256 Hz from 2048 Hz to reduce the unnecessary
dimensionality. For every single trial 1 s of EEG data after stimulus
onest is extracted. Therefore, our 32-channel input tensor dimension
is [32; 256; 1620]. A four-fold cross validation was applied to test
the algorithm performance. One session’s data is left for testing and
the remaining three sessions are used for training. This procedure was
repeated four times so each session served once for validation.

The optimal reduced dimension equal to [8, 8, 100] was chosen
based on the results of the noise-free premier experiment, and applied
to the online experiment. We preferred to find a common low-rank
for all subjects to reduce the number of parameters, thus making the
algorithm more general across subjects. However, it could be also
possible to obtain a subject-specific optimal dimension based on the
individual training dataset. The trained classifier was then applied for
the testing session. The incoming data 𝑋𝑛𝑒𝑤 was preprocessed and
noise added in the same way as the training data. Since LDA is one
of the most commonly used method for ERP signal analysis, a trained
5

LDA is used to classify each segment into one of the two classes. It
Fig. 4. Classification accuracies obtained by the LTR algorithm for SNR = −7 dB vs.
different numbers of training data blocks.

is notable that LDA was performed using the 𝑓𝑖𝑡𝑐𝑑𝑖𝑠𝑐𝑟() function in
ATLAB 2016b, with the ‘DiscrimType’ option set to ‘linear ’ and the

egularization parameter ‘Gamma’ set to 0.1.
The method performance is validated in different signal-to-noise

atios (SNR) defined as 20𝑙𝑜𝑔( 𝜎𝑥𝜎𝑛 ) [dB], where 𝜎𝑥 and 𝜎𝑛 are respectively
the standard deviation of the signal and noise throughout the simula-
tions. We considered the SNR values to be −15 and −7 dB. Fig. 5 shows
the classification accuracies obtained by LDA and LTR-LDA, averaged
over the generated twenty noisy signal tensors, for different numbers of
training data blocks. For all subjects LTR-LDA yielded higher average
accuracy than the solely LDA . As the SNR decreased, a more significant
superiority was achieved by LTR-LDA method. Moreover, let us analyze
the accuracy of the LTR method versus time, in terms of both mean and
standard deviation of the error. In this study, the results are reported
for the average statistics derived over the available subjects. As seen in
Fig. 4, the plot depicts that the accuracy of the proposed LTR method
increases with less standard deviation.

4.2. Application II: Feature extraction

In order to check feature extraction capability of our method, the
publicly available P300 speller dataset from BCI Competition III Dataset
II1 is used. The dataset denoted A and B are from 2 healthy volunteers
and they are recorded using the standard 10–20 EEG montage. The 64
channel data were acquired at sampling frequency of 240 Hz. Similar
to [28], only 667 ms after each trial’s stimulus onset is considered. Each
extracted trial is bandpass filtered in the band 0.1 Hz to 12 Hz with 8th
order Butterworth filter.

During the signal collection stage, the subject was seated in front
of a computer screen, and a 6 × 6 character matrix was displayed as
a stimulus. Out of 6 rows and 6 columns, one row and one column
contain the desired character. The character matrix was shown for a 2.5
s period during each character spelling interval. The rows and columns
of this matrix were intensified for 100 ms and remains blank for 75
ms. These 12 intensifications are referred as one trial. For a single
character, 15 trials of data is collected. The training set for each of
the two subjects contains the EEG data of 85 characters and the test
set includes 100 characters. The true characters of the test dataset is
available in the competition website2. The number of corresponding
train and test epochs for each subject are 85 × 12 × 15 = 15 300 and
100× 12×15 = 18 000, respectively. After this preprocessing stage, each

1 http://www.bbci.de/competition/iii/
2 Available online: http://www.bbci.de/competition/iii/

http://www.bbci.de/competition/iii/
http://www.bbci.de/competition/iii/
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Fig. 5. Classification accuracies obtained by the LDA and LTR-LDA algorithms for all subjects of EPFL Dataset [45] with different additive noise level vs. training data time.
rial is assumed to be a second order tensor (𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑇 𝑖𝑚𝑒) and all
rials are concatenated in the third mode. Therefore, the final tensor
imension is 64× 160×𝐾, where its modes are 𝐶ℎ𝑎𝑛𝑛𝑒𝑙× 𝑇 𝑖𝑚𝑒× 𝑇 𝑟𝑖𝑎𝑙𝑠
ith 𝐾 indicating the number of training or testing trials.

.2.1. Parameter setting
The whole optimization procedure for the proposed LTR model for

ensor classification can be summarized as Algorithm 2. It is required
o balance the trade-off between different variations in the augmented
agrange function (5) by tuning the parameters. The investigation is
ade based on grid-search strategy and for each analysis, one param-

ter is changing while the others are fixed. We choose 𝜆 and 𝛽 from
he set {0.1, 0.2,… , 10.0} and select initial 𝜇 from {0, 0.5,… , 10}. In our
xperiments, the initialized parameter 𝜇 is updated by 𝜇𝑡+1 = 𝛿𝜇𝑡 with
= 1.2 (where this value is chosen from the similar works), under the
DMM framework in an iteration processing. The parameter 𝛽 controls

he effect of factor matrices low rankness, while 𝜆 controls compressed
ore tensor’s sparsity regularization. Through all the experiments, the
arameter 𝛽 shows little effect on both subjects, and empirically it is
et to 1.8. Moreover, 𝜆 is set to 0.5 and 𝜇0 = 10. The input signal is
f dimension [𝐶ℎ𝑎𝑛𝑛𝑒𝑙; 𝑇 𝑖𝑚𝑒] = [64; 160]. In our experiment based on
ross validation the best reduced rank for Subject A is extracted to be
33; 14], while for Subject B is [37; 7].

.2.2. Recognition accuracy:
The character recognition accuracy is shown in Table 2. Bold num-

ers indicate the highest accuracy of the proposed algorithm along
he columns. The comparison methods include: higher order spectral
egression discriminant analysis (HOSRDA) [28] representing state-
f-the art for the tensor-based approach, SVNN [21], MsCNN [19],
apsNet [20], and CNN-1 [18] representing state-of-the-arts for neural
etwork and deep learning based feature extraction approach. Ds-
eg [16] representing state-of-the-art for regularized method. Finally,
SVM [46] the winner group of the main competition. It can be seen
hat LTR has an acceptable performance in facing the classification
roblems.

.3. Application III: Subject-to-subject transfer learning

One of BCI applications main challenge is obtaining sufficient train-
6

ng data and performing real-time processing. Transferring one subject’s
Table 2
Character recognition of different methods applied on two subjects of dataset II of BCI
competition III with different number of trials repetitions.

Method Subject A Subject B

15 10 5 1 15 10 5 1

LTR 99 88 55 20 99 94 72 35
HOSRDA [28] 96 86 63 17 97 94 82 46
SVNN [21] 98 88 71 17 96 94 76 31
MsCNN [19] 89 81 46 16 96 94 74 37
CapsNet [20] 98 87 68 16 96 94 81 45
CNN-1 [18] 97 86 61 16 92 91 79 35
DS-Reg [16] 99 86 71 17 94 90 79 35
eSVM [46] 97 83 72 16 96 91 75 35

data model to another is a solution for this problem. Therefore, with
minimized computational cost an acceptable accuracy is obtained. In
subject-to-subject transfer framework, the parameters of the pre-trained
LTR model are transferred and fine-tuned by the new subject’s dataset.
Hence, by learning the shared structure of datasets, the classification
time is reduced for the new subject.

The efficiency of the proposed LTR-STL algorithm is examined by
classification performance. BCI competition III dataset is used for this
experiment. One of the subjects is chosen as LTR model train subject.
The other subject is set as the test one. 40 characters of the test subject’s
training data is given to the algorithm to adapt the bias of the classifier.
The feature extraction rule is subsequently applied to the test set,
followed by a linear LDA classifier. In order to study the effect of fine-
tuning a comparative study is done between pre-trained model without
any fine-tuning train data from new subject and 10 characters and 45
characters fine-tuned model (see Fig. 6).

A comparison between character recognition performance of the
proposed LTR method with MsCNN and HOSRDA algorithms and their
STL version is shown in Table 3. MsCNN algorithm uses SVM classifier,
while both LTD and HOSRDA utilize LDA classifier. The proposed LTR-
STL technique achieves acceptable performance with limited training
data and exponentially decreased classification time, which is depicted
in Fig. 7.

5. Conclusion

Taking across-trial variability into account is important for phys-

iological and clinical studies. In this paper, a tensor-based model,
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Table 3
Quantitative comparison of different methods for traditional and transfer learning. Forty characters are selected to fine-tune the transfer learning method.

Method Subject Trials
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 20 31 49 54 55 65 72 74 81 88 90 94 95 96 99
LTR B 35 54 54 66 72 80 80 85 88 94 97 98 99 98 99

Mean 27.5 42.5 51.5 60 63.5 72.5 76 79.5 84.5 91 93.5 96 97 97 99

A 23 31 50 53 56 62 72 72 78 80 85 84 87 92 93
LTR-STL B 36 62 67 73 80 82 87 91 90 92 93 95 92 95 95

Mean 26 45.5 54.5 60 68.5 72.5 76.5 78 80.5 85 87 91.5 89.5 92 94

A 16 16 39 38 46 49 65 69 78 81 82 87 88 89 89
MsCNN B 37 58 65 73 74 83 87 88 91 94 92 92 93 96 96

Mean 26.5 37.0 52.0 55.5 60.0 66.0 76.0 78.5 84.5 87.5 87.0 89.5 90.5 92.5 92.5

A 24 38 46 50 60 70 72 79 84 86 89 89 92 94 96
MsCNN-STL B 40 59 67 74 79 84 90 92 94 97 96 98 97 97 96

Mean 32.0 48.5 56.5 62.0 69.5 77.0 81.0 85.5 89.0 91.5 92.5 93.5 94.5 95.5 96.0

A 17 33 50 60 63 70 70 75 83 84 88 91 92 94 96
HOSRDA B 46 64 71 76 82 88 92 93 94 94 95 96 95 96 97

Mean 31.5 48.5 60.5 68 72.5 79 81 84 88.5 89 91.5 93.5 93.5 95 96.5

A 10 14 23 26 31 37 41 40 44 52 54 60 61 64 66
HOSRDA-STL B 10 19 26 40 41 40 44 49 51 58 56 59 60 60 66

Mean 10 16.5 24.5 33 36 38.5 42.5 44.5 47.5 56 55 59.5 60.5 62 66
Fig. 6. Fine-tuning effect for subject A (a) and subject B (b)

Fig. 7. LTR and LTR-STL Model Training time comparison.

named LTR, for ERP extraction from multichannel EEG is proposed.
The multi-dimensional ERP signal was decomposed and redeemed with
low-rank Tucker model constrained with sparsity regularization on its
7

core tensor. The optimization problem is solved via ADMM algorithm
with closed-form solutions.

It is shown that LTR is a reliable algorithm to identify and charac-
terize ERP events. The experimental results showed that the proposed
method can achieve noticeable SNR improvement and it boosts the
classification accuracy. Given its increased detection performance, LTR
lighten the road to a more efficient modeling of the ERP component
extraction and detection, where it becomes possible to transfer one sub-
ject’s model to train another one with much lower computation time.
Therefore, it could provide new significant insights for BCI applications
and explanation of brain mechanisms in many different conditions.
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