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Abstract— Human sleep stage dynamics can be adequately rep-
resented using Markov chain models, and the accuracy of sleep
stage classification can be improved by considering these dynam-
ics. The present study proposes a new post-processing method
based on channel fusion using Latent Structure Influence Models
(LSIMs). LSIMs can simultaneously model sequences of different
channels to have a nonlinear dynamical fusion based on sleep
stage dynamics. The proposed method develops and examines
two channel-fusion algorithms: the standard LSIM fusion and the
integrated LSIM fusion, in which the latter is more efficient and
performs better. The proposed LSIM-based method simultaneously
incorporates the nonlinear interactions between channels and the
sleep stage dynamics. In the first step, existing sleep staging sys-
tems process every data channel independently and produce stage
score sequences for each channel. These single-channel scores
are then projected into belief space using the marginal one-slice
parameter of all channels by LSIM fusion algorithms. The loga-
rithms of marginal one-slice parameters are concatenated to obtain
log-scale belief state space (LBSS) features in the standard LSIM
fusion. In the integrated LSIM fusion, integrated LBSS (ILBSS)
features are formed by combining the LBSS features of several
LSIMs. Finally, a KNN classifier maps the LBSS and ILBSS features
onto the sleep stages. By utilizing four recently developed sleep
staging systems, the proposed method is applied to the publicly
available SleepEDF-20 database that contains five AASM sleep
stages (N1, N2, N3, REM, and W). Compared to single-channel (Fpz-
Cz, Pz-Oz, and EOG) results, integrated LSIM fusion results have a
statistically significant improvement of 1.5% in 2-channel fusion
(Fpz-Cz and Pz-Oz) and 2.5% in 3-channel fusion (Fpz-Cz, Pz-Oz,
and EOG). With an overall accuracy of 87.3% for 3-channel post-
processing, the integrated LSIM fusion system offers one of the
highest overall accuracy rates among existing studies.

Index Terms— Latent Structure Influence Model, Auto-
mated Sleep Staging, Deep Learning, Wavelet Scattering
Transform, Channel Fusion, EEG.

I. INTRODUCTION

SLEEPING is as important as eating or breathing for humans,
and it is an essential process to preserve human health. Several

psychophysiological states occur in a healthy human brain during
sleep, referred to as sleep stages [1]. Clinical evaluation of sleep
usually involves scoring the sleep stages using overnight polysomnog-
raphy (PSG) based on two well-known standard criteria, including
Rechtschaffen-Kales (R&K) [2] and the American Academy of Sleep
Medicine (AASM) [3]. AASM generalizes the R&K standard and
recognizes five sleep stages, stage N1, stage N2, stage N3, stage rapid
eye movements (REM), and wakefulness (W). Sleep scoring through
visual inspection is excessively expensive and time-consuming, with
variability in the agreement between experts [4]. Therefore, numerous
works have aimed to automate this task using artificial intelligence
(AI) systems in the past decades [5]–[9]. To date, various automated
sleep stage scoring approaches have been developed to replicate
expert labels with a restricted level of success. Improving sleep stage
scoring relies mainly on preprocessing, feature generation, classifiers,
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and post-processing [10]–[12]. Following is an overview of existing
approaches for preprocessing, features generation, and classifiers.
After that, we discuss how Markov models can be used for post-
processing as our contribution to the field of PSG-based sleep staging
in the current paper.

Conventional feature-based machine learning and deep learning
models are common approaches in automatic sleep staging systems.
The performance of the conventional machine learning and deep
learning systems is affected by the largeness of the data and the
capability of the feature extraction method. Conventional machine
learning models are better suited to small data sets than deep learning
models. The performance of the machine learning and deep learning
systems is affected by the largeness of the data and the capability
of the feature extraction method. Machine learning models are better
suited to small data sets than deep learning models. Conventional
systems are developed based on classical feature generation and a
subsequent classifier like support vector machine (SVM) or k-nearest
neighbors (KNN) [13]. These systems depend on hand-engineered
features that require prior sleep analysis knowledge. Empirical mode
decomposition (EMD) and wavelet analysis are effective approaches
to extracting sleep staging features [14]–[16]. They generally do not
encode the dynamic of sleep stage transitions into their extracted
features, which is important for identifying the stages of neighboring
epochs. In contrast, deep learning systems automatically learn fea-
tures from low-level signals or time-frequency images with a softmax
layer as the classifier at the last stage [17]. Due to ability of deep
learning systems to extract useful information from raw signal data,
they have become popular for automatic sleep stage scoring [18].
Deep learning systems can be categorized according to the signal
input types. One category processes 1-dimensional signals directly,
while the other one uses 2-dimensional time-frequency images [17].
Early attempts at automatic sleep staging by deep learning have
evolved rapidly in targeted modeling methodologies and effective
network architectures. One-to-one and many-to-one methods are
gradually being replaced by one-to-many (i.e., multitasking) and
many-to-many (i.e., sequence-to-sequence) methods to better repre-
sent sleep data [6]. Following is a review of several deep learning
studies on sleep staging.

In [19], the complex Morlet wavelet is used to extract time-
frequency features. These features are given to a stacked sparse
autoencoder to reduce the feature dimension. In [20], features are
automatically learned by convolutional neural networks (CNNs) for
classification without using prior domain knowledge. Another study
utilizes CNNs to extract time-invariant features, and a bidirectional
Long Short-Term Memory (LSTM) automatically learns transition
rules among sleep stages from EEG epochs [7]. A hierarchical recur-
rent neural network named SeqSleepNet is proposed in [6] to perform
a sequence-to-sequence classification that received a sequence of mul-
tiple epochs as input and classified them at once. Several studies use
modern spectral transformations within conventional algorithms in
sleep staging, including tunable Q-factor wavelet transform (TQWT),
amplitude-modulated & frequency-modulated (AM-FM) components,
and deep scattering transform [9], [14], [21], [22]. In [9], the feature
extraction part of the algorithm is based on two advanced signal
processing tools, including the scattering transform and diffusion
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map. Study [9] performs sleep stage scoring by applying a multiview
diffusion map (MDM) to fuse spectral information of two EEG
channels. MDM has higher overall accuracy than the diffusion map
of single channels.

Deep learning and conventional systems focus on generating and
classifying features, but they do not directly consider sleep stage
dynamics and channel interactions within the PSG recording. Re-
searches on sleep stage dynamics suggest that a Markov chain model
represents human sleep stages fairly well [23], and several sleep
staging systems use hidden Markov models (HMMs) to analyze
sleep stage transition patterns [5], [24], [25]. However, existing
HMM-based studies only concatenate features of different PSG
channels without considering interactions between them [5], [25],
[26]. HMMs are used to consider sleep stage dynamics, and HMM
parameters are learned by the supervised algorithm or the Baum-
Welch algorithm [5]. For example, an HMM-based post-processing
method has been developed to incorporate the temporal structure of
sleep cycles into sleep stage scoring to reduce false positives in the
classification [8]. This method utilizes a supervised HMM on a single-
channel EEG.

Previous studies have examined the brain connectivity during
sleep between patients with psycho-physiological insomnia (PPI) and
controls using EEG channel interactions [27], [28]. According to
their findings, channel communication and interactions during sleep
may indicate a sleep disorder caused by PPI. While existing HMM-
based sleep staging systems or post-processing methods incorporate
sleep stage dynamics to improve performance, they still can not
consider the PSG channel interactions. Suppose several interacting
channels generate a multi-channel time series. In that case, an
HMM with a single hidden variable is adequate, and latent structure
influence models (LSIMs) are better than HMMs due to considering
multiple interacting channels. LSIMs are a particular kind of coupled
hidden Markov models (CHMMs) that consider the influence model's
interactions with hidden Markov chains [29], [30]. We solved the
inference and learning problems for LSIMs and indicated that LSIMs
have superior performance compared to HMMs for processing multi-
channel time series [30], [31]. While sequence-to-sequence (LSTM
and RNN) deep learning methods consider sleep dynamics, they
cannot handle PSG channel fusion effectively based on the current
study results. The current study addresses these limitations of existing
deep systems using LSIMs to propose a new post-processing method
with a nonlinear fusion of channels considering sleep stage dynamics.

The current study focuses on a new post-processing method to
improve the accuracy of existing sleep staging systems, and the
contributions can be summarized as follows.
• A new post-processing method is proposed that considers non-

linear channel interactions and sleep stage dynamics concur-
rently using LSIMs.

• We present a new unsupervised approach to extract features in
the belief state space using the inference algorithm of LSIMs
called log-scale belief state space (LBSS) features. These new
features improve class separability and enhance classification
accuracy for existing sleep staging systems.

• A standard LSIM fusion and an integrated LSIM fusion are
developed and examined based on LBSS features. Integrated
LSIM fusion is an extension of standard fusion that considers
several LSIMs with different hyperparameters, including hidden
states and Gaussian numbers.

• We propose the integrated LBSS features assembled from mul-
tiple LSIMs with different states and Gaussian numbers. The
advantage of integrated LBSS is that different dynamic sleep
stages from different LSIMs are involved in the fusion.

The rest of this manuscript is structured as follows. In section II, we

first review several state-of-the-art sleep staging systems. Then, we
describe the proposed post-processing method to fuse spatiotemporal
information of EEG & EOG channels in automated sleep staging. The
proposed method is applied to a publicly available sleep dataset for
several sleep staging systems. Section III presents its results compared
to single channels, followed by conclusion in section IV.

II. MATERIALS & METHODS

This section describes how LSIMs are used to fuse channels and
model the dynamics of sleep stages. Several state-of-the-art sleep
staging systems are considered to determine the effectiveness of
the proposed post-processing method. Each sleep staging system
processes every PSG channel independently, and we use sleep stage
scores or probabilities as the input of the proposed post-processing.
Afterward, we describe how the proposed post-processing method
analyzes the sequences of scores for multiple channels to improve
the classification accuracy of each system. In the following sections,
we briefly review several employed sleep staging systems, followed
by a detailed description of the proposed LSIM-based fusion method.

A. Selected Deep Spectrum & Deep Learning Systems
The following presents four recent innovative sleep staging systems

as baseline systems. In the current study, deep learning staging
systems are applied independently to every channel. The logarithm of
the last softmax layer values (logits) is used as input to the proposed
post-processing method.

1) Diffusion Geometry of Deep Scattering Spectrum
(DGDSS) [9]: This system has three main parts: feature generation,
extraction of intrinsic sleep dynamics, and the learning step. Feature
generation is performed by deep scattering transform [32] to extract
spectral features from individual channels. Deep scattering transform
is an enhanced spectral representation and is computed by cascaded
multi-stage of wavelet convolutions and modulus operators [33]. The
scattering features are the logarithm of renormalized coefficients,
as recommended in [33]. Morlet mother wavelet is applied to 90
seconds interval that slides every 30 seconds. Setting other scattering
parameters gives a sequence of 1278-dimensional feature vectors
associated with expert labels on 30 seconds intervals.

DGDSS uses the diffusion map algorithm to reduce the dimension
of scattering features. This part transforms the 1278-dimensional
scatter features to 80-dimensional intrinsic sleep features (see Fig. 1).
Intrinsic sleep features (80-dimensional) are input features of a
standard kernel SVM with radial basis function as the learning step.
The binary SVM is generalized to the 5-class SVM by the one-versus-
one classification scheme. Outputs of the 5-class SVM include an
estimated label and a 5-dimensional vector filled with negative hinge
loss values (NHLVs) [34]. NHLVs are also known as SVM scores,
and the sequences of these 5-dimensional vectors are collected in a
multi-channel time-series for EEG channels. Fig. 1 displays DGDSS
parts for a single-channel EEG recording. We refer the interested
readers to [9] for further technical details. DGDSS is applied to every
single channel, and then LSIM fusion algorithms work on the multi-
channel time-series of NHLVs.

2) SeqSleepNet [6]: In this model, a hierarchical recurrent neural
network is used to tackle the data classification problem, receiving
a sequence of multiple epochs as input and determining their labels
simultaneously. The goal of the computation is to identify a sequence
of PSG epochs of length L represented by (S1, S2, ..., SL) that maxi-
mizes the conditional probability p(y1, y2, ..., yL|S1, S2, ..., SL) [6].

On the epoch-processing level, the network incorporates a filter-
bank layer designed to learn frequency-domain filters for prepro-
cessing and an attention-based recurrent layer designed for short-
term sequential modeling. Sequence processing involves placing a
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Fig. 1. Feature extraction and classification in DGDSS with 5-
dimensional vectors of NHLVs as outputs (red blocks use train labels).

recurrent layer on top of the epoch-wise learned features for long-
term modeling of sequential epochs. The output vectors of the top
recurrent layer are then classified at every time step to generate the
sequence of output labels.

3) TinySleepNet [35]: Compared to the existing deep models,
this one consists of fewer parameters to train, requiring a smaller
amount of training data and computational resources. TinySleepNet
is a novel technique to effectively train the model end-to-end based
on raw single-channel EEG. The model becomes more robust to shifts
along the time axis through data augmentation and prevents it from
remembering the sleep stages sequences [35]. TinySleepNet is an im-
proved version of DeepSleepNet that uses raw single-channel EEGs
to score sleep stages automatically. Compared to DeepSleepNet [7],
TinySleepNet focuses primarily on an efficient model architecture
that significantly reduces the number of parameters and computing
resources necessary for the EEG analysis. Also, it proposes an
innovative training method that uses data augmentation to generate
different sets of training data for different training epochs to avoid
overfitting.

CNNs are the first part of the network close to the input signals.
There are four convolutional layers as well as two max-pooling
and two dropout layers in the CNNs. In contrast to DeepSleepNet,
TinySleepNet uses only one CNN branch instead of two branches.
The second part of the network is a unidirectional RNN consisting
of a single LSTM layer, followed by a dropout layer.

4) XSleepNet [17]: Using multi-view signals (i.e., raw signals
and time-frequency images) can make sleep staging tricky and
challenging to understand. With XSleepNet, a sequence-to-sequence
sleep staging model can be learned from raw signals and time-
frequency images to create a joint representation of sleep stages.
Since different views may generalize or overfit at different rates,
XSleepNet is trained such that the learning pace on each view is
adapted based on their generalization/overfitting behavior [17]. As a
multi-view model, XSleepNet is composed of two network streams:
one for the raw signal and the other for the time-frequency image.

The principle behind this model is robustness (to the amount of
training data) and complementarity (i.e., how the two input views
complement one another) in the network while maintaining flexibility
to learn from multiple views effectively.

B. LSIMs

LSIMs are suitable tools for modeling multi-channel time-series
dependent on time and space, and they are capable of detecting
nonlinearity and nonstationarity, making them well suited for multi-
channel brain signals. LSIMs use the influence model to consider
coupled Markov chains and have an interpretable and linear-wise
structure in state-space [30]. Like HMMs, inference and learning
problems are essential in using LSIMs in practice. Following are
some definitions and explanations about notations of LSIMs [30],
and then there is an overview of existing solutions for inference and
learning problems [30], [31].
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Fig. 2. Representation of graphical model for a 2-channel LSIM.

Assuming that there exists a C-channel LSIM and its associated
multi-channel time-series, we denote Sc = {Sc1, Sc2, ..., ScM(c)} to be

state space of channel c in the LSIM, and qct ∈ Sc and oct ∈ RL(c)
are state and observation of channel c at time t, respectively (L(c)
is dimension). There is also a simplifying definition as vct (m) =
{qct = Scm}. Initial state probabilities of each channel are denoted by
πcm = P (qc1 = Scm). In addition, ac,ξm,n = P (qξt = Sξn|qct−1 = Scm),
and θc,ξ is coupling weight from channel c to channel ξ. The sets of
all initial probabilities, transition matrices and coupling weights are
denoted by π, A and Θ respectively. The emission probabilities of the
observation given its hidden state are written as bcm(oct) = f(oct |qct =
Scm) where oct may be either discrete or continuous. In current study,
observations are continuous amplitude, and emission probabilities
bcm(oct) belong to Gaussian Mixture Model (GMM) families with
D(c) components. Sets of all mixing weights, means and covariance
matrices are also denoted by ω , µ and Σ. Thus, LSIM parameters are
indicated by λ = {π,A,Θ, ω, µ,Σ}. The influence model factorizes
transition matrices of coupled Markov chains as follows

P (qξt |q
1
t−1, ..., q

C
t−1) =

C∑
c=1

θc,ξP (qξt |q
c
t−1),

θc,ξ ≥ 0,

C∑
c=1

θc,ξ = 1.

(1)

Set of observations at time t is denoted by ot = {o1t , o2t , ..., oCt }
and ots:tp = {ots , ots+1, ..., otp} indicates an interval of obser-
vations. Fig. 2 shows the structure of a 2-channel LSIM. In this
study, observations of LSIMs are the sequences of NHLVs or logits.
As pointed out before, DGDSS or deep models provides a vector
of NHLVs or logits for each 30 seconds interval per channel, and
this vector is viewed as a feature vector for the proposed fusion
algorithm.Arranging these vectors along the time horizon leads to
a 5-dimensional time series per channel with an equal duration of
expert labels for each subject. We denote the groups of time series
at all channels and subjects by o1:T , where T is the total number of
epochs across all subjects.

Inference and learning are two important LSIM problems that
must be addressed to make them useful. The inference is defined
as computing the probability distribution over hidden states given
an interval of observations. The belief state space is the space of
probability distributions for hidden states. The learning problem
consists of selecting optimal parameters for a multi-channel time
series observation to maximize an appropriate criterion. There is a
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comprehensive framework with many formulas and recursive relation-
ships for indicating the solution of inference and learning problems
in LSIMs. The following is a summary of those solutions, and the
equations may be challenging to follow.

The inference is performed by the marginal forward, one-slice, and
backward parameters that are respectively defined as follows [30]

αξ
t|t−1(m) = P (vξt (m)|o1:t−1)

αξ
t|T (m) = P (vξt (m)|o1:T )

βξt (m) =
αξ
t|T (m)

αξ
t|t−1(m)

= b̃
ξ
m(oξt )×

f(ot+1:T |vξt (m), o1:t)

f(ot+1:T |o1:t)
.

(2)

where,

b̃
ξ
m(oξt ) =

bξm(oξt )

f(oξt |o1:t−1)
. (3)

These parameters are calculated recursively by an approximate
inference algorithm that considers the following main equations [30]

αξ
t|t−1(m) =

C∑
c=1

θc,ξ
M(c)∑
nc=1

ac,ξm,ncα
c
t−1|t−2(nc)̃b

c
nc(o

c
t−1),

βξt (m) = b̃
ξ
m(oξt )

C∑
w=1

d̂
ξ,w
t

M(w)∑
nw=1

ρξ,wt+1(m,nw)βwt+1(nw).

(4)

where,

ρξ,wt+1(m,nw) = αwt+1|t(nw)+

θξ,w[aξ,wm,nw −
M(ξ)∑
mξ=1

aξ,wmξ,nwα
ξ
t|t−1(m)bξm(oξt )]

(5)

LSIM parameters λ are learned by applying a recently developed
re-estimation algorithm to o1:T [31]. This algorithm requires another
parameter called the two-slice parameter. The two-slice parameter
Γc,ξt (nc, nξ) is the joint distribution of two successive hidden states
from different or same channels given all observations [31]. This
parameter is defined by

Γc,ξt (nc, nξ) = b̃
c
nc(o

c
t)α

c
t−1|t−2(nc)θ

c,ξac,ξnc,nξβ
ξ
t (nξ). (6)

Parameters of the influence model are re-estimated using the two-
slice parameter through [31]

θc,ξ =

∑M(ξ)
nξ=1

∑M(c)
nc=1

∑T
t=1 Γc,ξt (nc, nξ)∑C

s=1

∑M(ξ)
nξ=1

∑M(s)
ns=1

∑T
t=1 Γs,ct (ns, nξ)

,

ac,ξnc,nξ =

∑T
t=1 Γc,ξt (nc, nξ)∑M(ξ)

n=1

∑T
t=1 Γc,ξt (nc, n)

.

(7)

C. Proposed Post-processing Framework

Nonlinear and nonstationary EEG signals provide information
about spatial and temporal patterns of brain electrical activity. Studies
on functional connectivity suggest that brain regions have temporal
dependencies. Therefore, LSIMs are suitable candidates for analyzing
multi-channel brain signals. LSIMs can be used to analyze temporal
dynamics and spatial interactions of PSG channels in sleep staging.

In LSIMs, coupling weights θc,ξ determine the structure of the
nonlinear interaction between channels, and transition probabilities
ac,ξnc,nξ indicate dynamical transitions between hidden states. Thus,

the influence model provides a nonlinear dynamical fusion of chan-
nels. Our study proposes a new post-processing method that maps
the score sequences of channels to belief state space using LSIMs.

Two fusion algorithms are proposed to enhance the accuracy of
single channels processed by its baseline sleep staging system. The
raw PSG signals are divided into 30-second epochs in automated
sleep staging, and a baseline sleep staging system assigns a 5-
dimensional stage score to each epoch. It is important to note that
each PSG channel is processed by its trained baseline system. In
the first fusion algorithm called standard LSIM fusion, an LSIM is
considered to model the sequences of scores (NHLVs or logits) of
PSG channels, and LSIM channels are the same as PSG channels
(see Fig. 3). Therefore, each channel of LSIM is composed of 5-
dimensional observations, and there are two and three channels in
the selected sleep dataset of the current study. LSIM parameters
are learned unsupervised for modeling score sequences of different
channels using a baseline sleep staging system. The LSIM learning
algorithm adjusts the parameters to maximize the observation likeli-
hood. Therefore, the parameters are optimized to consider the sleep
dynamic between epochs and channel interaction. Two hyperparam-
eters in the LSIM learning algorithm, including state numbers M(c)
and Gaussian numbers D(c), must be set before learning. LSIMs have
an inherent difficulty in parameter learning since there are multiple
channels with different states and Gaussian numbers. The grid-search
size increases exponentially with the number of channels to select the
optimal hyperparameters. We assume all channels have the same state
and Gaussian numbers to simplify and reduce the hyperparameter
space.

We propose a novel feature extraction approach in the belief state
space based on its ability to generate a nonlinear dynamical fusion
of score sequences after learning LSIM parameters. The inference
algorithm performs this feature extraction by computing probability
distributions over hidden states for a given observation. Marginal
forward and one-slice parameters are a representation of belief state
space. As demonstrated in (2), the marginal one-slice parameter
provides a better representation than the marginal forward parameter
because it considers past, present, and future observations, whereas
the marginal forward parameter only considers past observations.
A detailed formula of the marginal one-slice parameter from its
definition is as follows [30]

αξ
t|T (m) = αξ

t|t−1(m)βξt (m)

=

b̃ξm(oξt )

C∑
c=1

θc,ξ
M(c)∑
nc=1

ac,ξm,ncα
c
t−1|t−2(nc)̃b

c
nc(o

c
t−1)

×
 C∑
w=1

d̂
ξ,w
t

M(w)∑
nw=1

ρξ,wt+1(m,nw)βwt+1(nw)

 .

(8)

The marginal one-slice parameter contains the effect of both
marginal forward and backward parameters, and it transfers channel
observations into belief state space. The first part of (8) shows the
dynamical effect of past and present stage scores on the marginal
one-slice parameter, and θc,ξ also shows the nonlinear interaction
from past stage scores of channel c. The second part of (8) indicates
the dynamical modification of future stage scores in the present
marginal one-slice parameter, and d̂

ξ,w
t shows the resulting nonlinear

interaction from the future stage scores of channel w. In addition, the
LSIM learning algorithm is unsupervised and does not require true
stage labels. Thus, the marginal one-slice parameter can be viewed
as an unsupervised nonlinear dynamical fusion that projects NHLVs
or logits to the belief state space. We define the log-scale belief state
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space (LBSS) feature vector of LSIM for epoch t in sequence o1:T
as follows

LBSSt = log
([
α1
t|T (1), α1

t|T (2), ..., α1
t|T (M(1)),

α2
t|T (1), α2

t|T (2), ..., αCt|T (M(C)− 1), αCt|T (M(C))
])
.

(9)

Because each observation sample (stage scores) is linked to its
hidden state (see Fig. 2), the number of LBSS features is the same
as the number of epochs. The dimension of LBSS features is equal
to the sum of all channel hidden states

∑C
c=1M(c). For example,

if there is a 2-channel LSIM with 10 hidden states per channel, the
dimension of LBSS features is 20. Fig. 3 shows a block diagram of
the new post-processing method, with LBSS features as the LSIM
inference block outputs. In the final step, a KNN with Euclidean
distance is applied to LBSS features.

Standard LSIM fusion has three hyperparameters, including hidden
state numbers, Gaussian numbers, and the K-parameter of KNN.
We need to determine the optimal LSIM structure and K-parameter
based on the training data. Thus, the training set is divided into
a smaller train set and a validation set. Each K-parameter has
several validation accuracy values based on different LSIMs, and
the average validation accuracy is calculated by averaging them all
together. The K-parameter is determined using a simple grid search to
maximize the average validation accuracy. After finding the optimum
K-parameter, hidden states and Gaussian numbers are selected as
the best arguments for validation accuracy with the optimum K-
parameter. Then, these optimum hyperparameters are applied to the
test dataset.

Standard LSIM fusion selects only one optimum LSIM to analyze
train and test datasets. LSIMs with different hidden states and Gaus-
sian numbers can cover a broader range of dynamics and interactions.
Therefore, we presented another approach that concatenates the LBSS
features of multiple LSIMs, referred to as integrated LSIM fusion.
Fig. 4 shows the integrated LSIM fusion framework with N different
LSIMs. This fusion makes integrated LBSS (ILBSS) features from
multiple N LSIMs as follows

ILBSSt = [LBSS1
t , LBSS

2
t , ..., LBSS

N
t ], (10)

where LBSSkt denotes the LBSS features of LSIM number k. Inte-
grated fusion offers two main advantages compared to the standard
version. The first advantage is that because multiple LSIMs are
used, their LBSS features cover different dynamics. Second, using
multiple LSIMs instead of single selected LSIMs will reduce the
biases and increase the generality. Integrated LSIM fusion has only
the K-parameter of KNN as a hyperparameter. Due to the integration
of all LSIMs within ILBSS features, average validation accuracy is
not required in this case. This hyperparameter is determined using a
simple grid search on the validation accuracy.

III. PERFORMANCE ASSESSMENT

A. Experimental setup and Statistics

To evaluate the performance of the proposed post-processing
method, we consider a commonly considered benchmark databases
SleepEDF-20, from the public repository Physionet [36]. This is the
Sleep Cassette (SC*) subset of the Sleep-EDF Expanded dataset. The
subset SC* contains PSG recordings from 20 subjects without sleep-
related medication aged 25-34 (28.7±2.9). Two consecutive day-night
PSG recordings were collected for each subject, except for subject
13. The PSG recordings contain two scalp-EEG signals from the
Fpz-Cz and Pz-Cz channels, one EOG (horizontal), one EMG, and
one oro-nasal respiration signal. EEG and EOG were collected at the

same sampling rate of 100 Hz. According to the R&K standard, sleep
experts manually classified these recordings into one of eight classes
(W, N1, N2, N3, N4, REM, MOVEMENT, UNKNOWN). The Fpz-
Cz, Pz-Cz, and EOG channels are used to evaluate models without
further processing. In addition, the N3 and N4 stages are merged
into one stage N3, in accordance with the AASM standard. Since
we are interested in sleep periods, we only consider 30 minutes of
such periods just before and after sleep. Because MOVEMENT and
UNKNOWN stages are not the sleep stages, we excluded them.

There are long wakefulness periods at the start and the end of
recordings when a subject is not sleeping. To have a reasonable
comparison with existing studies, we consider 30 minutes of such
periods before and after the sleep periods. Some recent studies
considered 30 minutes before and after the lump-off-on, which causes
more wakefulness stages. Due to this, there are some deviations in
our reproduced results from the original papers.

There are two general cross-validations (CV) schemes for au-
tomatic sleep stage scoring in literature, including leave-one-
subject-out CV (LOSOCV) and non-leave-one-subject-out CV (non-
LOSOCV) [7]. LOSOCV is close to the real-world scenario, and
the training set and the validation set contain different subjects. This
scheme considers the inter-individual variability, and the computed
accuracy is acceptable for new arrival subjects from a given annotated
database [9]. By contrast, training and testing sets are dependent
on the non-LOSOCV scheme, and the effect of this dependency
might exaggerate the performance. To have a thorough evaluation of
the proposed algorithm and consider inter-individual variability, this
study focuses on AASM scoring with leave-one-subject-out cross-
validation [6], [7], [9].

All performance measurements used in the current study are
computed through the unnormalized confusion matrix M ∈ R5×5.
For 1 ≤ p; q ≤ 5, the entry Mpq represents the number of expert-
assigned p-class epochs, which were predicted to the q-class. The
F1-score (F1p) of the p-th class, is computed based on precision
(PRp) and recall (REp) through

PRp =
Mpp∑
pMpq

, REp =
Mpp∑
qMpq

, F1p =
2PRpREp
PRp +REp

.

(11)
The overall accuracy (ACC) and macro F1-score (MF1) are

computed respectively through

ACC =

∑
pMpp∑
p,qMpq

, MF1 =
1

5

∑
p

F1p. (12)

In this study, the overall accuracy and macro F1-score are used as
performance criteria [9]. These provide a comprehensive comparison
with other studies in this field.

B. Results

This section reports the results of applying the proposed LSIM
fusion to the Sleep-EDF SC* database using LOSOCV (20-fold CV).
The four automated sleep staging systems are applied independently
to three channels of the PSG dataset, namely Fpz-Cz, Pz-Oz, and
EOG. These systems include DGDSS, TinySleepNet, SeqSleepNet,
and XSleepNet. The total number of epochs in this dataset is 42308
for all systems.

In TABLE I, the first three columns indicate the overall accuracy
and macro F1-score for different channels and sleep staging systems.
As expected from the literature, the Fpz-Cz has the best results
compared to Pz-Oz and EOG for this dataset. In agreement with
the literature, XSleepNet also performs well on single channels.
TinySleepNet, SeqSleepNet, and XSleepNet achieved slightly lower
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Fig. 4. The proposed post-processing method for 2-channel PSG with
the integrated LSIM fusion (red blocks use train labels).

results than the original papers (Fpz-Cz channel). Fewer wakefulness
stages (see section III-A) or random parameter initialization in deep
learning may cause differences in our test dataset than in the original
papers.

Based on previous studies, PSG channels are selected from
SleepEDF-20 for two scenarios, including 2-channel (Fpz-Cz and
Pz-Oz) and 3-channel (Fpz-Cz, Pz-Oz, and EOG). In each scenario,
the 5-dimensional score sequence of a baseline system for single
channels is given as a channel observation of LSIMs.

1) LBSS features visualization: A 2-channel LSIM with three
states per channel for the DGDSS system allows us to visualize LBSS
features in three dimensions for all subjects. This visualization of the
EEG channels for all five sleep stages is shown in Fig. 5. Since
the DGDSS system is effective, sleep stages are clustered well. As
can be seen, LBSS features provide complementary information over
different channels. For example, N2 and R stages in Fpz-Cz are
neighbor clusters, while in Pz-Oz, they are well separated, or N2
and N3 are neighbors in Pz-Oz, while they are distant in Fpz-Cz.

2) Standard LSIM fusion: The number of hidden states (M(c)),
the number of Gaussian components of each state (D(c)), and the
K-parameter are three hyperparameters that affect the performance of
standard LSIM fusion. The first two hyperparameters are considered
equal for all channels and are denoted by M and D, respectively.
To determine the optimal hyperparameters, we perform a grid search
on M (from 5 to 25 with 5 steps), D (1 and 2), and K (from 5
to 50 with 5 steps), and these grids are selected empirically. Then

the optimal hyperparameters are determined based on data-driven
selection methods. We apply the reestimation algorithm to the training
and testing sets (without using true labels) in each cross-validation
fold to learn the LSIM parameters unsupervised for the given M
and D. As discussed, the training set determines the optimal M , D,
and K-parameter by using average validation accuracy. The average
validation accuracy is determined by holding out four subjects from
the training dataset and applying KNNs with different K-parameters.
Fig. 6 shows the average validation accuracy of each K-parameter
in XSleepNet for the first training fold. According to this figure,
the optimal K-parameter equal to 30 gives the maximum average
validation accuracy.

When the optimal K-parameter has been determined, the optimal
LSIM is selected to maximize the validation accuracy. Fig. 7 shows
the histogram of the optimal M values from the four sleep staging
systems and the 20-fold CV (total 4x20 = 80 values). This figure
shows that higher M values are selected more frequently, and
complex LSIMs are preferred over simple ones in the fusion task.

TABLE I presents post-processing results with standard LSIM
fusion in the ”*-ch STD” columns. Compared with the best single
channel, there is a performance improvement for 2-channel standard
LSIM fusion, and 3-channel fusion provides better results than 2-
channel fusion. TinySleepNet and XSleepNet outperform DGDSS
and SeqSleepNet in the two scenarios. The 2-channel standard fusion
improves accuracy by about 1.2% over the best single-channel sleep
staging system. There is a performance improvement of approxi-
mately 2.1% in 3-channel fusion, which is more than the improvement
in 2-channel fusion.

3) Integrated LSIM fusion: The proposed post-processing with
integrated LSIM fusion starts with creating ILBSS from LSIMs
with M={5,10,15,20,25} and D={1,2}, resulting in 300-dimensional
features for integrated 2-channel fusion and 450-dimensional fea-
tures for integrated 3-channel fusion. The K-parameter is the only
hyperparameter in this fusion, and it is searched in from 10 to 100
with 10 steps. While the range and steps are considered empirically,
a data-driven approach determines the optimal hyperparameter by
maximizing validation accuracy.

In TABLE I, the results of integrated LSIM fusion are listed
under the ”*-ch INTG” columns. Performance improvements are
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TABLE I
RESULTS OF SINGLE CHANNEL SLEEP STAGING SYSTEMS AND TWO PROPOSED LSIM FUSIONS IN TERMS OF THE OVERALL ACCURACY (ACC)

AND MACRO F1-SCORE (MF1).

System Fpz-Cz Pz-Oz EOG 2-ch STD 2-ch INTG 3-ch STD 3-ch INTG
ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1

DGDSS 82.9 75.8 81 72.7 78.0 70.9 84.2 76.8 84.8 77.6 85.4 78.7 85.9 79.6
TinySleepNet 83.8 79.3 81.7 76.0 77.0 70.9 86.3 81 86.6 81.4 87.0 82.0 87.3 82.4
SeqSleepNet 84.7 78.2 81.7 73.1 81.9 74.6 85.4 79.3 85.5 79.7 86.3 80.4 86.8 81.1
XSleepNet 85.5 80.1 80.8 74.5 81.2 74.0 85.7 80.2 85.9 80.4 86.3 80.7 87.0 81.5

Notes: Results in bold denote the best results; STD stands for the standard LSIM fusion, and INTG stands for the integrated LSIM fusion.
Notation with 2-ch and 3-ch refers to (Fpz-Cz, Pz-Oz) and (Fpz-Cz, Pz-Oz, EOG).
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Fig. 5. A visualization of LBSS features for a standard LSIM fusion with
three states per channel.

again evident for LSIM fusion of two or three channels. Again,
TinySleepNet and XSleepNet have superior performance for two and
three channels fusion with integrated LSIM. In 2-channel integrated
fusion, accuracy is improved by about 1.5% over the best single
channel. In 3-channel integrated fusion, accuracy is improved by
about 2.5%. As integrated LSIM fusion incorporates different dy-
namics from different trained LSIMs, it performs better than standard
LSIM fusion. Furthermore, TABLE I indicates that integrated LSIM
fusion offers robust performance regardless of the baseline systems.
Applying the proposed post-processing to two and three channels
from the deep base systems, overall accuracy values of 86% and
87% can be easily achieved. The integrated LSIM fusion method
achieves the overall accuracy values of 86.6% for two channels and
87.3% for three channels on the Sleep-EDF SC* database. Thanks to
recent deep systems that have improved sleep staging accuracy, the
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Fig. 6. Average validation accuracy for each specific K-parameter in
XSleepNet for the first training fold.

Fig. 7. Histogram of the optimal number of states for two (Fpz-Cz and
Pz-Oz) and three (Fpz-Cz, Pz-Oz, and EOG) channels in the standard
LSIM fusion.

proposed post-processing method can achieve these accuracy levels.
In Fig. 8, the confusion matrix and per class accuracy for all

sleep stages are shown for the best case (3-channel integrated LSIM
fusion with TinySleepNet) in TABLE I. The wakefulness stage has
the highest accuracy, at 93.9%, while the N1 stage has the lowest
accuracy, at 52.3%.

Fig. 9 shows the first 500 output hypnograms for subject 2 on
the first night that were processed by TinySleepNet and then post-
processed using 3-channel integrated LSIM fusion. This figure also
plots the output hypnograms of baseline methods for the Fpz-Cz
channel. Ground truth and output hypnogram of LSIM fusion are
in close alignment, as can be seen. The figure also shows that the
LSIM fusion reduces the incorrect sleep stage transitions in baseline
systems and effectively filters their output hypnograms.

4) Baseline systems with multi-channel inputs: A comprehen-
sive evaluation of the proposed method must answer the question: Is
integrated LSIM fusion more effective than baseline systems with
multi-channel inputs? In order to answer this question, baseline
systems are used with multi-channel PSG inputs instead of single
channels. Both SeqSleepNet and XSleepNet can accept two and
three channels as inputs, but DGDSS can handle two channels.
TinySleepNet is a single-channel staging system, so it will not
be discussed in this segment. The accuracy of integrated LSIM
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Fig. 8. The confusion matrix of proposed integrated LSIM fusion of
three channels processed by TinySleepNet with an overall accuracy
87.3%.

TABLE II
THE COMPARISON BETWEEN INTEGRATED LSIM FUSION AND BASELINE

SLEEP STAGING SYSTEMS WITH MULTI-CHANNEL INPUTS IN TERMS OF

THE OVERALL ACCURACY (ACC).

System 2-ch base 2-ch INTG 3-ch base 3-ch INTG
DGDSS 84.4 84.8 - -

SeqSleepNet 85.1 85.5 85.8 86.8
XSleepNet 83.9 85.9 85.3 87.0

Notes: 2-ch and 3-ch refer to (Fpz-Cz, Pz-Oz) and (Fpz-Cz, Pz-Oz, EOG).

fusion is compared to multi-channel baseline systems in TABLE II.
This table displays the results of the baseline systems in the ”*-
ch base” columns. TABLE II shows that the proposed integrated
LSIM fusion performs better than multi-channel baseline systems.
Compared to multi-channel baseline systems, the proposed integrated
fusion improves the overall accuracy order by 0.6% on two PSG
channels and 1.5% on three channels.

Finally, for each sleep staging system, integrated LSIM fusion
train and testing codes for all 20-fold LOSOCV on the Sleep-EDF
SC* database require 260 minutes and 450 minutes (faster than deep
learning systems) for two and three channels fusion, respectively,
using Intel Core i9-11900K processor.

C. Discussion
TABLE I is statistically tested by the two-way analysis of variance

(ANOVA), considering the four sleep staging systems as the first
factor. The second factor includes single-channel processing, two-
channel fusion, and three-channel fusion groups. For the integrated
LSIM fusion, the p-value is 0.001, which is significant at the
significance level of 0.05. A p-value of 0.003 indicates a significant
result, with a significant level of 0.05 for standard LSIM fusion. Thus,
accuracy improvement by the proposed post-processing method is
marginal but statistically significant. According to Fig. 8, except for
stage N1, the rest of the stages are well classified with accuracy above
89%. The unbalanced low sample size causes stage N1 to have the
poorest accuracy, and it is commonly misclassified with neighboring
stages W and N2.

In TABLE II, a paired-sample t-test is also conducted, which
yields a p-value of 0.028, which is significant at the 0.05 level. This

table can also compare the proposed LSIM fusion with LSTM or
RNN fusion. For example, LSTM and RNN are used in XSleepNet
with two or three channels inputs to process different channels and
involve the dynamic of sleep stages. Based on TABLE II, LSIM
fusion of channels performs better than LSTM or RNN fusion in
SeqSleepNet and XSleepNet. The integrated LSIM fusion can achieve
high classification accuracy thanks to the accurate single-channel
processing of these deep systems.

IV. CONCLUSION

This study proposes a new post-processing method using an LSIM-
based fusion algorithm to improve the accuracy of existing sleep
staging systems. Single-channel scores are taken from the four
state-of-the-art automated sleep staging systems, including DGDSS,
TinySleepNet, SeqSleepNet, and XSleepNet. The contributions con-
sist of fusing PSG channels and developing LBSS and ILBSS features
from scores of PSG channels using LSIMs. This study aims to
improve the accuracy of existing sleep staging systems by fusing
different channels. The nonlinearity and dynamic nature of LSIM
fusion are explained by visualizing LBSS features in belief state
space. It has been shown that the proposed post-processing method
with integrated LSIM fusion performs better than the standard LSIM
fusion. Integrated LSIM fusion with two and three channels improves
the accuracy by about 1.5% and 2.5% over the maximum accuracy
of single channels in baseline systems. Improvements are consistent
regardless of the number of channels or the system. Results also
show that the proposed post-processing method is superior to baseline
systems with multi-channel PSG inputs. Moreover, the proposed
method produces stable results, and we reran the training and testing
fusion algorithms for TinySleepNet and XSleepNet, which produced
similar results. The proposed LSIM fusion framework can address
a wide range of research problems with complicated dynamics and
multi-channel structures because of its flexibility and reliability.

The proposed method is substantially faster than deep learning
systems for two and three channels post-processing, resulting in
good excess performance. The disadvantage of this method is that
the learning duration increases with the square of the number of
channels. Accordingly, if we were working with a 9-channel dataset
in this study, integrated LSIM fusion training and testing could take
approximately 60 hours (450x9 minutes), similar to deep learning.
This method, however, becomes intractable for a dataset with 100
channels. Future studies may be possible to select the state number
and GMM number with some proper criteria to train only one optimal
LSIM instead of several to speed up the learning process. It allows
the proposed method to be applied to systems with a large number
of channels.
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