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Abstract

Objective. Sleep apnea is a serious respiratory disorder, which is associated with increased risk factors
for cardiovascular disease. Many studies in recent years have been focused on automatic detection of
sleep apnea from polysomnography (PSG) recordings, however, detection of subtle respiratory events
named Respiratory Event Related Arousals (RERAs) that do not meet the criteria for apnea or
hypopnea is still challenging. The objective of this study was to develop automatic detection of sleep
apnea based on Hidden Markov Models (HMMs) which are probabilistic models with the ability to
learn different dynamics of the real time-series such as clinical recordings. Approach. In this study, a
hierarchy of HMMs named Layered HMM was presented to detect respiratory events from PSG
recordings. The recordings of 210 PSGs from Massachusetts General Hospital’s database were used for
this study. To develop detection algorithms, extracted feature signals from airflow, movements over
the chest and abdomen, and oxygen saturation in blood (Sa0O,) were chosen as observations. The
respiratory disturbance index (RDI) was estimated as the number of apneas, hypopneas, and RERAs
per hour of sleep. Main results. The best F1 score of the event by event detection algorithm was between
0.22 £ 0.16and 0.70 % 0.08 for different groups of sleep apnea severity. There was a strong
correlation between the estimated and the PSG-derived RDI (R* = 0.91, p < 0.0001). The best recall
of RERA detection was achieved 0.45 £ 0.27. Significance. The results showed that the layered
structure can improve the performance of the detection of respiratory events during sleep.

1. Introduction

Sleep apnea is a life-long condition leading to an increased risk of hypertension (Calhoun and Harding 2010),
obesity (Ogilvie and Patel 2017), depression (Nutt et al 2008), and cardiovascular diseases (Suzuki et al 2009).
Sleep apnea is commonly associated with apneas, defined as >90% reduction in airflow for >10 s (Berry et al
2018), and hypopneas, defined as a reduction in airflow >30% for >10 s with >3% or 4% oxygen desaturation
or cortical arousal (Berry ef al 2018). The severity of sleep apnea is clinically quantified by Apnea/Hypopnea
Index (AHI), which is calculated as the sum of the number of apneas and hypopneas per hour of sleep. AHI is
known to predict hypertension, mortality, and low quality of life (Malhotra e al 2021). AHI only accounts for
events with >30% reduction in airflow; however, there are respiratory events named Respiratory Event Related
Arousal (RERA) with lower level of reduction or flattening in airflow that lasts >10 sleading to an arousal from
sleep. The term Respiratory Disturbance Index (RDI) is another index similar to AHI that accounts for the
number of apneas, hypopneas, and RERAs per hour of sleep (Berry et al 2018).

Since RERA ends with an arousal, it is associated with a marked surge in cardiac sympathetic modulation. A
study showed individuals with high RERA index and even with low or normal AHI are still exposed to elevated
sympathetic tone during sleep with significantly greater effect in females (Chandra et al 2013, Park et al 2020).
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RERA can induce significant physiological changes (Guilleminault et al 1993, Calero et al 2006), alter the quality
oflife (Pépin et al 2012) that may progress to more severe respiratory events, and cardiovascular morbidity
(Pépinetal2012).

The clinical gold standard for identifying the severity of sleep apnea is Polysomnography (PSG), which
requires visual scoring of sleep more than 20 recordings of a sleep test by technicians. Therefore, PSG is costly,
inconvenient, and time-consuming with a long waiting list (Chesson et al 1997). To address the challenges of
manual annotation of sleep tests, many studies have presented algorithms for the automatic detection of
respiratory events using PSG recordings (Pombo et al 2017, Thorey et al 2019). For this purpose, previous studies
have proposed various data processing techniques such as thresholding (Nakano et al 2007, Saha et al 2020), or
developing mathematical detection models including K-nearest neighbor (Sharma and Sharma 2016, TIMUS
and BOLAT 2017), support vector machines (Khandoker et al 2008, Almazaydeh et al 2012), deep neural
network (Pourbabaee et al 2019, Hafezi et al 2020), Hidden Markov Model (HMM) (Travieso et al 2011, Song
etal2015). The majority of the proposed algorithms were validated through estimating AHI based on the
detected respiratory events and comparing the estimated AHI to the PSG-derived AHI (Issa et al 1993,
BaHammam etal 2011, Xie and Minn 2012, Pourbabaee et al 2019). A few studies have reported the accuracy of
their algorithms in detecting every single apnea and hypopnea (Hafezi et al 2020, Saha et al 2020).

Despite the potential clinical outcomes of RERA, alimited number of studies have addressed the detection of
RERA events (Ayappa et al 2000, Baisch et al 2007, Masa et al 2009, Nassi 2021), presumably due to the fact that
in many sleep studies scoring RERAs are optional and most laboratories do not score them (Berry et al 2018).
Among the studies that detected RERAs, Baisch et al extracted the shape and amplitude of airflow signal to detect
RERAs and reported modest correlation (r = 0.58) between estimated and PSG generated RERA-indices (Baisch
etal2007). Ayappa et al used a nasal cannula/pressure transducer for recording airflow, which was analyzed to
detect RERA, apnea, and hypopnea (Ayappa et al 2000). They reported a strong intra-class correlation coefficient
0f 0.96 between two scorers of the nasal cannula. Only in one study conducted by Nassi et al, the accuracy of
detecting RERAs was reported (Nassi 2021). They analyzed the respiratory related movements over the chest and
abdomen during sleep and proposed a multi-class stratification algorithm to detect apneas, hypopneas, and
RERAs. They have specifically reported the accuracy of detecting each type of respiratory events. The reported
accuracy of detecting RERA in this study was only 29%, indicating the gap in current techniques and algorithms
for robust and accurate detection of RERAs.

Therefore, in this study, a hierarchical mathematical model was proposed for the detection of apneas,
hypopneas, and RERAs using airflow, movements over the chest and abdomen, and oxygen saturation in blood
(Sa0,) recorded as part of PSG. The proposed algorithm was validated through estimating RDI and detecting the
respiratory events including RERAs. This paper is organized as follows: in section 2, the data used in this study
and the details of the proposed method as well as the optimization and validation methodology are presented.
The results obtained are exposed in section 3. Finally, the discussion and conclusion are outlined in section 4.

2.Method

2.1. Massachusetts General Hospital’s (MGH) database

To conduct this study, we used the MGH database provided for the 2018 PhysioNet/Computing in Cardiology
(CinC) Challenge. The MGH database included PSG recordings of 1983 adult individuals gathered at the MGH’s
sleep laboratory for the diagnosis of sleep disorders. The data were divided into training (n = 994), and test sets
(n=989) by CinC 2018.

An available public training set of the MGH database was included for this study. The Partners Institutional
Review Board approved retrospective analysis of the MGH dataset without the need for additional consent. It
has been reported that only one set of equipment at one site was used for collecting the whole database. Each PSG
recording contained between 7 and 10 h of night sleep data of 13 physiological signals including
electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) (Chin, Chest, and
Abdomen), electrocardiography (ECG), respiratory airflow, and SaO,. All the signals were resampled to 200 Hz.
The recordings were manually scored by certified sleep technicians at the MGH sleep laboratory according to the
American Academy of Sleep Medicine (AASM) guidelines (Berry et al 2018). Different annotations for different
sleep analysis purposes were provided in this dataset including apneas (central, obstructive and mixed),
hypopneas, and RERAs. Obstructive events were defined as decreases in airflow with increased or continued
movements over the chest and abdomen, whereas the central events were defined as reduced or no respiratory
effort. Mixed apnea was characterized by reduced or no respiratory effort in the first section of the event and
increased respiratory effort without airflow in the last section. When apnea/hypopnea events occur, SaO,
decreases gradually until the subject breathes again and the start of the SaO, desaturation has a delay of about
5-50 s with respect to the start of the event (Kwon et al 2014). In this study, regions associated with apneas
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Figure 1. The proposed structure for event-by-event detection.

(central, obstructive, and mixed), hypopneas, and RERAs from the beginning to the end of the event were
marked as 1 and otherwise set as 0. Furthermore, the EEG signals were scored in non-overlapping 30 s epochs
according to the AASM standards as one of the five common sleep stages: wake, rapid eye movement (REM),
non-REM stage 1, non-REM stage 2, and non-REM stage 3. The vector of the sleep-wake stage was formed in
such a way that the times when a subject was asleep were zero and otherwise one. For more details see Ghassemi
etal (2018).

In this study, the annotation of respiratory events and sleep-wake stages were used to develop the detection
model and validate the detection performance during sleep in overnight data.

2.2. Data pre-processing
All the analyses were developed and implemented in Matlab (2018b, The MathWorks Inc., Natick, MA, USA)
software. Two hundred and ten out of 994 PSG recordings were randomly selected for this study. From the
selected recordings, movements over the chest and abdomen, airflow, and SaO, were extracted from PSG.
First, the airflow and movements over the chest and abdomen signals were filtered using a notch filter with
bandwidth of 57-63 Hz to remove 60 Hz noise. Then, a spike removal algorithm was applied to remove noisy
segments with amplitudes higher than the 99th percentile using moving windows with 10 s length with 50%
overlap. Then, the signals were standardized with zero mean and unit variance. For SaO,, only the algorithm of
spike removal was applied.

2.3. Feature extraction

A moving window of 10 s with a stride of 0.5 s was used for segmenting the overnight data to obtain feature
signals. The characteristics of the sliding window were selected as the average duration of each breath is 3 s, thus
itis expected to find three breaths within the window during normal breathing. The average absolute of airflow
(AFW) and the average value of SaO, (Ox) were calculated. For the movements over the chest and abdomen,
local maxima and minima, which are associated with the end of inspiration and expirations, respectively, were
detected. Then, the horizontal distance between the amplitude of each local minimum and its following local
maximum was measured. The mean value of the measured differences within the segment was used as the range
of respiratory movement feature (TAL). TAL was set as zero for the segments such as during apneas where no
pair of minimum and maximum was detected (Ghahjaverestan et al 2021).

2.4. Detection model

To identify regions that are associated with one of the respiratory events including apneas, hypopneas, and
RERAs, the extracted features were fed into the detection model categorized as Layered HMM (LHMM) (Oliver
etal2004). This model was consisted of a two-layer hierarchy of standard HMMs (figure 1). Standard HMM is a
probabilistic model with finite number of unobservable or hidden states that produces a sequence of
observations based on Markov process (a change in the current state depends on the previous state)

(Rabiner 1989). Using different HMMs in a layered structure enables analyzing of feature vectors by different

3



10P Publishing

Physiol. Meas. 43 (2022) 015002 A Sadoughi et al

time resolution, injecting signals with different manifestations of the dynamic caused by the event in different
layers, and interpreting the effect of each layer separately (Oliver et al 2004). For example, airflow and
movements over the chest and abdomen are associated with reductions during respiratory events; however,
reduction in the SaO, signals happened with 5-50 s delay after the start of events due to the blood circulation
(Kwon etal2014).

To implement LHMM, the first layer included two HMM banks to separately analyze airflow (Bagw) and
movements over the chest and abdomen (B, ) feature signals. Each HMM bank consisted of two HMMs, one
trained by segments associated with the events (EV) and the other one by segments selected from parts out of
event segments (NO). At the first layer, each segment of data had T} = 10 s duration extracted by sliding
windows and a stride of 0.5 s. The 10 s duration of segments was selected for the training of the models in the first
layer based on the definition of the least length of respiratory events (Berry et al 2018).

Then, for each segment of a test data, O;_ 1, 1., the HMM of class k, k € {EV, NO}, inbank B,

B = Bupw, Brar generates alikelihood value as its output:

(1) = log P(Oy— 1414 A0)s (Y]

where )f is the set of parameters by which the related HMM is characterized. The likelihood of a segment
generated by a model represents the chance that the segment belongs to the class/dynamic by which that model
was trained. For each bank, the difference log-likelihood was calculated as:

Ui (£) = gy (£) — o (0). ®)
To detect the respiratory events at the first layer, a threshold was applied to each sample of lldlfﬁ; (t),as:
g (t) = 6> i = {Bapw, Brac}, 3)

where 0g,,,,» 0p,,, were thresholds used for airflow (Bypw ) and movements over the chest and abdomen (Brap)
banks, respectively. Difference log-likelihoods lower than the threshold indicates normal breathing. By applying
the thresholds, two binary sequences of 0 (normal breathing) and 1 (event) were generated. Then, using the
sleep-wake stage information, the classified events occurring when the subject was awake can be eliminated,
hence the classification results and the sleep-wake stage vector were combined to remove the events mistakenly
detected during the wake stage. Finally, the generated binary sequences of the first layer were used as the inputs
of the second layer.

The purpose of the second layer is to analyze the inputs with usually longer analysis window to make the final
decision of classifying each segment of the inputs into normal or within-event classes. In the second layer, each
segment of the inputs was selected with the sliding window of T5. To classify each segment, the two binary
sequences generated by Byry and Bryy in the first layer were segmented by a longer sliding window. Two
approaches were implemented in the second layer:

a. Analysis of only binary sequences (without-SaO, approach): the two binary sequences were fed to HMMs

with TZwithout— Sa02-

b. Analysis of binary sequences and the feature Ox (with-SaO, approach): the two binary sequences along with
Ox with a delay of Do, were used as the inputs of the models using T’ _s.02 sliding window.

For the two approaches, the second layer was designed by only one bank (B,,,,, app € {without-SaO5,
with-Sa0, }), which includes two HMM s (one for respiratory events class and another for normal class). To
detect the segments associated with events, different thresholds 63 ., .0, and 0p were applied to the
difference log-likelihood of each approach (without-SaO,, with-Sa0,). A window was labeled as respiratory
event (1) if the following condition was met:

with—Sa0y

llﬁ%‘?"(t) > 63, app € {without — Sa0,, with — Sa0,} (4)

otherwise, it was labeled as normal event (0).

2.5. Optimization process of parameters
The extracted recordings were randomly divided into two sets of 100 and 110 recordings, respectively for
optimization and test. Two ways of validation, one sample-based for optimization and the other one
event-based for event detection were applied. The optimization set was used to train the designed LHMM
and find the best values for model parameters. The model parameters including HMM parameters (A7,
B € {Barw> Brar, Buwimh—sa0,}> k € { NO, EV}), the detection thresholds (0,,,» 65,,,> 05 Op
the amount delay for Doy, and Thwithout-sa02 a1d Tawith-sa02 Were optimally determined.

After optimizing the design of the LHMM by the determined parameters, the test set was used to evaluate the
performance of the model in the event-by-event classification by five-fold cross-validation. In each fold, 20% of

without—Sa07? wx'rh—SaOz)’
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Figure 2. Flow diagram of data division.

the data was used for training and the rest remained for test data. The flow diagram of data division in this study
is shown in figure 2.

Out of 100 recordings in the optimization set, 50 recordings were randomly selected and divided into two
subsets 20 and 30 recordings for training and validation in the first layer, respectively. A training phase was
applied to estimate the parameters of each HMM using training observation dataset.

To construct training data in the first layer, segments were synchronously selected from the extracted feature
signals of airflow and movements over the chest and abdomen starting from the onset of the respiratory events
with a duration of T} = 10 s for each event model in the two banks (Bspy, Brar), and segments with a duration
of T} = 10 s were randomly chosen out of event segments from the feature signals for normal models. The
number of selected segments to train the normal model in both banks (Bspw, Brar) was chosen equal to the
number of data in the event model.

A set of number of states, {2,3,4,5}, were investigated to determine the optimal states of each HMM. Then,
the selected segments were used to train event and normal models in relevant banks with different combinations
of states [(2,2), ..., (2,5),(3,2), ...(5,5)]. A range of 301 values from —10 to 50 with interval 0.2 was investigated to
optimize the log-likelihood thresholds (6, 0s,,, ). In each bank, the difference of the two log-likelihoods
generated by the models was compared to the corresponding threshold (equation (3)), and metrics including
recall (equation (5)), precision (equation (6)), and F1 score (equation (7)) were calculated as follows :

Recall = TP/ (TP + FN), (5)
Precision = TP/ (TP + FP), (6)
F1 score = TP/(TP + 0.5 X (FP + FEN), 7)

where TP, FP, and FN denote the number of true positives, false positives, and false negatives, respectively.
Precision-recall curves (PRC) were used to calculate the optimal classification probability threshold and states.
The PRC curves were created for models with different combinations of states and thresholds. For each bank,
states and threshold that resulted in the highest F1 score on the validation dataset with PSG-derived RDI > 5
were chosen as the optimal parameters.

To determine the optimal parameters of HMMs in the second layer, the remaining 50 recordings were
divided into two subsets 20 and 30 recordings for training and finding the optimal parameters (threshold values
and states), respectively. According to each approach (without-Sa0,, with-5a0,) in the second layer, selected
segments relevant to normal and event models were constructed for the training phase. The number of selected
segments for the normal model was chosen equal to the number of data in the event model. The algorithm to
obtain the optimal parameters in the second layer for both approaches was similar to the first one except a range
of 75 values from —0.4 to 7 with interval 0.1 was investigated to optimize the log-likelihood thresholds
(OB, imonn—su02> OBuin-_sa0p)- 11 bOth approaches (without-SaO,, with-Sa05), to determine the sliding window length
in the second layer by greedy search, values from 11 to 29 s with a 2 s step were investigated. To determine the
amount of delay (Do,) in the with-SaO, approach, values from 0 to 25 s with a 5 s step were investigated by
greedy search.
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Table 1. PSG recordings characteristic in this study.

RDI < 5 5 <RDI<15 15 <RDI <30 RDI >30
Sample size (male) 27(14) 48 (26) 84 (63) 51(43)
Clinical features (Data is presented in mean (4-/-standard deviation))
Age (years) 50.85 (+/—17.43) 53.23 (+/—16.15) 56.88 (+/—13.78) 55.35 (+/—14.52)
Recording time (h) 7.71 (+/—0.47) 7.67 (+/—0.74) 7.69 (+/—0.66) 7.58 (+/—0.66)
Sleeping time (h) 6.51 (+/—1.20) 6.56 (+/—0.96) 6.28 (+/—1.13) 5.37 (+/—1.80)
PSG-derived RDI* 2.09(+/—1.61) 10.03 (+/-3.0) 22.70 (+/—4.61) 4421 (+/-14.12)
Number of events
Central apnea 136 762 2290 2580
Obstructive apnea 72 699 3442 3236
Mixed apnea 33 128 618 1570
Hypopnea 51 632 3771 2564
RERA" 81 954 1797 1800

* Respiratory Disturbance Index.
b Respiratory Event Related Arousal.

2.6. Validation and statistical analyses

2.6.1. Event detection

For event by event validation, PSG recordings were categorized into four groups based on PSG-derived RDI
values; Normal: RDI < 5;Mild: 5 < RDI < 15; Moderate: 15 < RDI < 30; Severe: RDI > 30. For each
recording, the detected annotation (the output of each bank) was compared to the provided reference
annotations, if there was an overlap between a detected event with an annotated event, the event was marked as
true positive (TP), otherwise, it was false positive (FP). False negative (FN) happened when a reference event was
not detected. Finally, precision, recall, and the F1 score were calculated in each group, in addition, the recall was
reported for the apneas (central, obstructive, mixed), hypopneas, and RERAs separately.

2.6.2. Identifying people at risk

RDI was estimated as the number of detected events per hour of sleep. Based on RDI, each recording was
categorized into five groups of different cutoffs (10, 15, 20, 25, and 30 events/hour). Metrics of the recall,
specificity, precision, and accuracy to group recordings into different RDI cutoffs were calculated. Then, Bland—
Altman plots were used to quantify the difference between estimated and PSG-derived RDI. To assess the
agreement, Pearson and Spearman’s correlation coefficient base on the normality of the data were calculated
between the estimated and PSG-derived RDIL.

2.6.3. Comparison of event detection approaches

To compare the performance of the two event detection approaches (without-SaO, approach and with-SaO,
approach), T-test or Mann-Whitney test was applied based on the normality of the data distribution examined
by Shapiro-Wilk test. The p-value < 0.05 was considered as significant. Statistical analyses were conducted by R
Statistical Software (version 3.6.2).

3. Results

3.1. Subject demographics

The selected population presented includes 210 participants (male = 146) with age: 54.9 £ 15.02 years old, sleep
time: 6.14 £ 1.36 h,and RDI: 22.37 + 16.18. Table 1 shows the demographic information of the included
recordings. Figure 3 shows example traces of PSG recordings of airflow, movements over the chest and
abdomen, and SaO, during various types of respiratory events.

3.2. Results for optimization step

The optimal values of the parameters in the first and the second layer, as well as calculated metrics in these
values, are summarized in table 2. The maximum results of the F1 scores (without-SaO, approach: 0.56 + 0.16,
with-Sa0, approach: 0.62 + 0.14) in the second layer by varying the sliding window length on the optimization
set of the approaches (without-Sa0,, with-Sa0,) were achieved by a 23 s and 21 s sliding window, respectively,
for which we obtained recall and precision 0.64 + 0.17 and 0.53 + 0.20 for without-SaO, approach and

0.67 £ 0.13and 0.61 £ 0.17 for with-SaO, approach, respectively. The best Doy in the with-SaO, approach was
achieved by a 20 s delay. Figure 4 shows the F1 score measured in the second layer by varying the sliding window
length and delay on the optimization set of the with-SaO, approach.
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Figure 3. Example of (a) Central apnea; (b) Obstructive apnea; (c) Mixed apnea; (d) Hypopnea; (¢) RERA marked in a red shaded area.

Table 3 summarizes the overall event-by-event detection performance metrics in each RDI group on the
optimization set for the two approaches (without-SaO,, with-SaQO,). The highest F1 score was obtained
0.72 £ 0.10 for RDI > 30 by without-SaO, approach, and 0.74 £ 0.06 for RDI > 30 by with-SaO, approach.

Furthermore, on the optimization set, the correlation between estimated RDI and PSG-derived RDI was
calculated for two approaches according to sleep time (figure 5). The correlation between estimated RDI and
PSG-derived RDI was (R* = 0.80, p < 0.0001) for the without-SaO, approach, and (R* = 0.85, p < 0.0001) for
the with-SaO, approach. Figure 6 shows the Bland—Altman plots in both approaches, the mean and standard
deviation are 4.6 and 12.63 for the without-SaO, approach, and 0.8 and 8.85 for the with-SaO, approach.
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Table 2. The optimal values of the parameters in the first layer and the second layer and related

metrics.
Performance metrics Barw Brar Byithout—Sa02 Byith—sa02
Optimal states [EV, NO] [2,2] [3,2] [2,3] [2,4]
Recall 0.41 £ 0.15 0.36 + 0.18 0.64 + 0.17 0.67 + 0.13
Precision 0.38 £ 0.20 0.32 £ 0.16 0.53 £+ 0.20 0.61 £ 0.17
F1 score 0.37 £ 0.13 0.33 + 0.15 0.56 + 0.16 0.62 + 0.14
Doy (s) — — — 20
Optimal T, (s) — — 23 21
Table 3. Event detection metrics for different RDI groups on the optimization set.
RDI group Number of subjects Precision Recall F1 score
a) HMM bank related to airflow (Bsgw) in the first layer
5<RDI< 15 10 0.27 £ 0.13 0.33 £ 0.12 0.28 £+ 0.10
15 < RDI < 30 10 0.40 + 0.18 0.47 £ 0.12 0.41 £ 0.11
RDI > 30 5 0.59 £ 0.15 0.48 £+ 0.18 0.48 £+ 0.11
b) HMM bank related to movements over the chest and abdomen (Bt in the first layer
5 < RDI < 15 10 0.21 £ 0.12 0.30 £+ 0.20 0.23 £ 0.14
15 < RDI < 30 10 0.33 £ 0.11 0.35 £ 0.12 0.33 £ 0.10
RDI > 30 5 0.50 + 0.15 0.52 £+ 0.13 0.50 £+ 0.11
¢) Without-SaO, approach in the second layer
5<RDI< 15 7 0.32 + 0.09 0.58 + 0.18 0.39 + 0.10
15 < RDI < 30 11 0.54 £+ 0.13 0.63 £ 0.15 0.56 £+ 0.11
RDI > 30 7 0.73 £ 0.12 0.72 £ 0.14 0.72 £ 0.10
d) With-SaO, approach in the second layer
5 < RDI < 15 7 0.44 + 0.17 0.63 £+ 0.12 0.50 + 0.14
15 < RDI < 30 11 0.62 + 0.10 0.66 + 0.15 0.63 + 0.10
RDI > 30 7 0.77 £ 0.07 0.72 £ 0.11 0.74 £ 0.06

Values are reported as mean =+ standard deviation.
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Figure 5. Correlation between estimated RDI and PSG-derived RDI on the optimization set. (a): HMM bank related to airflow (Borw);
(b): HMM bank related to movements over the chestand abdomen (Bray); (¢): without-SaO, approach; (d): with-SaO, approach. The
blue and red dashed lines show the least-square regression and identity lines respectively. Dashed black lines indicate the 95%
prediction limits and 95% confidence limits consist of the space between the two gray curves.

The accuracy of identifying individuals at risk of sleep apnea based on RDI on the optimization set were 0.88,
0.88,0.84,0.80, 0.72 for the without-SaO, approach, and 0.92, 0.84, 0.80, 0.84, and 0.80 for the with-SaO,
approach, respectively (table 4).

3.3. Results of event-by-event detection
Figure 7 shows example traces of detected annotations compared to the reference ones using without-Sa0O, and
with-SaO, approaches for RDI < 15 (figure 7(a)) and RDI > 30 (figure 7(b)).

Table 5 presents the performance of the proposed model in event detection for both approaches. The highest
F1 score was obtained 0.58 + 0.13 for RDI > 30 by without-SaO, approach, and 0.70 £ 0.08 for RDI > 30by
with-SaO, approach.

Figure 8 shows the correlation between the estimated RDI and the PSG-derived RDI for the two approaches
over the recordings on the test set. Based on these results, strong correlation values were obtained for both
approaches; (R* = 0.85, p < 0.0001) for the without-SaO, approach, and (R* = 0.91, p < 0.0001) for the
with-SaO, approach. The Bland—Altman plots depicted in figure 9 for both approaches indicate the mean and
standard deviation values of 1.29 and 8.9 for the without-SaO, approach and —2.98 and 7.25 for the with-SaO,
approach.

For RDI cut-off thresholds of 10, 15, 20, 25, and 30, the accuracy of identifying individuals at risk of sleep
apnea based on RDI were 0.87, 0.88, 0.83, 0.89, 0.89 for the without-SaO, approach, and 0.86, 0.82, 0.85, 0.86,
and 0.88 for with-SaO, approach, respectively (table 6).

Table 7 shows the number of and classifier’s recall of each event on the test set for apneas (central,
obstructive, and mixed), hypopneas, and RERAs for both approaches. There were a total of 15 067 respiratory
events (apneas = 5337, hypopneas = 4782, RERAs = 4948).
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Figure 6. Bland—Altman limits of agreement between estimated RDI and PSG-derived RDI on the optimization set. (a): HMM bank
related to airflow (Barw); (b): HMM bank related to movements over the chest and abdomen (Bray); (c): without-SaO, approach;
(d): with-SaO, approach. The black line indicates the average difference and dashed red lines present 95% confidence interval
(mean =+ 1.96 standard deviation) of the difference between estimated RDI and PSG-derived RDI.

Table 8 presents the statistical comparison results of the metrics between the two event detection
approaches. The results indicate that the performance metrics (precision, recall, F1 score) in 5 < RDI were
significantly higher in the with-SaO, approach than in the without-SaO, approach (p < 0.05). In contrast, no
significant differences were found between the performance metrics of the two event detection approaches in
RDI < 5group (p > 0.05).

4, Discussion and conclusion

In this study, a probabilistic heretical model based on HMM was proposed to detect respiratory events including
apnea, hypopnea, and RERA, estimate the severity of sleep apnea, and identify individuals at risk based on RDI.
We were able to successfully: 1—implement the structure of hierarchy of HMMs to detect respiratory events
from the features extracted from airflow, movements over the chest and abdomen, and SaO, channels of PSG, 2
—validate the performance of each layer separately, 3—estimate RDI with high performance (R* = 0.91 when
injecting the feature related to Sa0,), 4—identify the individuals at risk based on different RDI cutoffs.

The proposed method used three signals to monitor sleep apnea: airflow, movements over the chest and
abdomen, and Sa0O,. Reduction of airflow associated with sleep apnea impaired gas exchange in the lungs, which
itself causes a decrease in Sa0,. SaO, signal has been used alone in some studies to estimate an event (Issa et al
1993, Chang et al 2020). This approach worked well as the goal of these studies was to estimate the severity of
sleep apnea without clear validation about the event detection. However, SaO, is not immediately sensitive to the
occurrence of sleep apnea due to the blood circulation delay. Therefore, we used two approaches to specifically
address the event detection. At the first approach (without-SaO, approach), the event detection model was
implemented by airflow, movements over the chest and abdomen, while at the second approach (with-SaO,
approach), in addition to the signals used for the first approach, the feature extracted from SaO, with a delay
was used.
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Table 4. Identifying individuals at risk of sleep apnea based on different RDI
cutoffs on the optimization set.

F1-

Cutoff Recall Specificity Precision score Accuracy
a) HMM bank related to airflow (Bapyw) in the first layer

10 0.50 0.95 0.67 0.57 0.88
15 0.50 0.80 0.63 0.56 0.68
20 0.69 0.67 0.79 0.73 0.68
25 0.67 0.57 0.80 0.73 0.64
30 0.80 0.60 0.89 0.84 0.76

b) HMM bank related to movements over the chest and abdomen (By,; ) in the

first layer

10 1.00 0.95 0.80 0.89 0.96
15 0.60 0.93 0.86 0.71 0.80
20 0.81 0.78 0.87 0.84 0.80
25 0.83 0.86 0.94 0.88 0.84
30 0.80 0.80 0.94 0.86 0.80
¢) Without-SaO, approach in the second layer

10 0.25 1.00 1.00 0.40 0.88
15 0.57 1.00 1.00 0.73 0.88
20 0.63 0.94 0.83 0.71 0.84
25 0.73 0.86 0.80 0.76 0.80
30 0.61 1.00 1.00 0.76 0.72
d) With-SaO, approach in the second layer

10 0.50 1.00 1.00 0.67 0.92
15 0.43 1.00 1.00 0.60 0.84
20 0.75 0.82 0.67 0.71 0.80
25 0.82 0.86 0.82 0.82 0.84
30 0.78 0.86 0.93 0.85 0.80

One of the important features of our detection approach was to detect the individual respiratory events and
report the event-by-event detection results for each layer. Precision, recall, and F1 score were selected for
assessing the performance of the algorithm to eliminate the effect of a high number of true negatives (normal

segments).
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RDI group Number of subjects Precision Recall F1 score
a) HMM bank related to airflow (Bsgw) in the first layer

RDI < 5 14 0.06 £ 0.04 0.26 £+ 0.26 0.09 £ 0.06
5<RDI< 15 22 0.24 £+ 0.07 0.22 4+ 0.10 0.22 4 0.08
15 < RDI < 30 45 0.40 £ 0.16 0.37 £ 0.16 0.36 £+ 0.12
RDI > 30 29 0.53 £+ 0.18 0.33 £+ 0.12 0.38 £+ 0.11
b) HMM bank related to movements over the chest and abdomen (By,) in the first layer

RDI < 5 14 0.04 £ 0.03 0.18 £ 0.09 0.06 £ 0.04
5 < RDI < 15 22 0.12 £+ 0.05 0.19 £ 0.07 0.14 £ 0.06
15 < RDI < 30 45 0.28 £ 0.11 0.31 £ 0.12 0.29 £ 0.11
RDI > 30 29 0.43 £+ 0.12 0.40 £+ 0.19 0.40 £ 0.13
¢) Without-SaO, approach in the second layer

RDI < 5 14 0.09 £ 0.07 0.39 £+ 0.21 0.13 £ 0.08
5 < RDI< 15 22 0.29 £+ 0.12 0.39 £+ 0.15 0.33 £+ 0.13
15 < RDI < 30 45 0.45 £ 0.12 0.45 £ 0.15 0.44 £ 0.12
RDI > 30 29 0.61 £ 0.14 0.57 £+ 0.13 0.58 £+ 0.13
d) With-SaO, approach in the second layer

RDI < 5 14 0.16 = 0.13 0.49 £+ 0.23 0.22 £+ 0.16
5 < RDI < 15 22 0.42 £ 0.10 0.45 £ 0.17 0.43 £+ 0.13
15 < RDI < 30 45 0.63 £ 0.10 0.52 4+ 0.18 0.55 + 0.13
RDI > 30 29 0.79 £ 0.07 0.64 £ 0.10 0.70 £ 0.08

Values are reported as mean =+ standard deviation.

Table 6. Identifying individuals at risk of sleep apnea based on different RDI

cutoffs on the test set.

F1-
Cutoff Recall Specificity Precision score Accuracy
a) HMM bank related to airflow (Bsgw) in the first layer
10 0.67 0.84 0.53 0.59 0.80
15 0.86 0.76 0.63 0.73 0.79
20 0.78 0.61 0.63 0.70 0.69
25 0.88 0.55 0.74 0.81 0.75
30 0.84 0.45 0.81 0.82 0.74

b) HMM bank related to movements over chest and abdomen (B, ) in the first

layer
10 0.33 0.99 0.89 0.48 0.85
15 0.44 0.99 0.94 0.60 0.81
20 0.63 0.88 0.82 0.71 0.76
25 0.83 0.77 0.85 0.84 0.81
30 0.90 0.66 0.88 0.89 0.84

¢) Without-SaO, approach in the second layer

10 0.42 1.00 1.00 0.59 0.87
15 0.81 0.92 0.83 0.82 0.88
20 0.78 0.86 0.83 0.81 0.83
25 0.91 0.86 0.91 0.91 0.89
30 0.90 0.86 0.95 0.92 0.89

d) With-SaO, approach in the second layer

10 0.75 0.90 0.67 0.71 0.86
15 0.86 0.80 0.67 0.76 0.82
20 0.92 0.78 0.78 0.85 0.85
25 0.95 0.73 0.84 0.89 0.86
30 0.98 0.62 0.88 0.92 0.88
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Figure 8. Correlation between estimated RDI and PSG-derived RDI in 110 PSGs on the test set. (a): HMM bank related to airflow
(Barw), (b): HMM bank related to movements over the chest and abdomen (Brap), (¢): without-SaO, approach; (d): with-SaO,

approach. The blue and red dashed lines show the least-square regression and identity lines, respectively. Dashed black lines indicate
the 95% prediction limits and 95% confidence limits consist of the space between the two gray curves.

Table 7. Recall values for detection of each respiratory event type.

Event type Number of events Recall (without-SaO, approach) Recall (with-SaO, approach)
Central apnea 2092 0.42 £ 0.2 0.5 £ 0.29
Obstructive apnea 2964 0.55 + 0.18 0.70 + 0.24
Mixed apnea 281 0.61 £ 0.23 0.67 £ 0.31
Hypopnea 4782 0.53 £ 0.19 0.58 £ 0.21
RERA 4948 0.38 + 0.19 0.45 + 0.27

Values are reported as mean + standard deviation.

Higher performance in the second layer indicates that combining the outputs of the first layer and analyzing
them over alonger course of time can improve the event detection performance.

For recordings with RDI > 30, the F1 score was the highest for both approaches (0.58 + 0.13 for the
without-SaO, approach, and 0.70 + 0.08 for the with-SaO, approach). The results indicate that the two
approaches can accurately detect the majority of the events in patients with severe sleep apnea. Thisisa

population in which accurate diagnosis of events is very important to assess the pathophysiology of sleep apnea
at different stages (Saha et al 2020). For recordings with low RDI, the F1 score was the least (0.13 £ 0.08 for
without-Sa0, approach, 0.22 £ 0.16 for with-SaO, approach), as there were a few respiratory events that make
the data highly imbalanced. Therefore, small false negatives will largely affect precision and recall values.
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Figure 9. Bland—Altman limits of agreement between estimated RDI and PSG-derived RDI in 110 PSGs on the test set. (a): HMM bank
related to airflow (Bapw), (b): HMM bank related to movements over the chest and abdomen (Bray), (¢): without-SaO, approach; (d):
with-Sa0, approach. The black line indicates the average difference and dashed red lines present 95% confidence interval (mean +
1.96 standard deviation) of the difference between estimated RDI and PSG-derived RDI.

Table 8. Comparison statistical analyses of two event detection approaches.

RDI Group Performance metrics Without-SaO, approach With-SaO, approach p-value (cut off value=0.05)
RDI < 5 Precision 0.09 £ 0.07 0.16 &+ 0.13 0.1857
Recall 0.39 £ 0.21 0.49 £+ 0.23 0.1581
F1-score 0.13 £ 0.08 0.22 + 0.16 0.1053
5<RDI< 15 Precision 0.29 £ 0.12 0.42 £+ 0.10 0.0009215
Recall 0.39 £ 0.15 0.45 £+ 0.17 0.02031
Fl-score 0.33 £ 0.13 0.43 + 0.13 0.016 14
15 < RDI < 30 Precision 0.45 + 0.12 0.63 £+ 0.10 1.067e-10
Recall 0.45 £ 0.15 0.52 £ 0.18 0.04753
Fl-score 0.44 + 0.12 0.55 £ 0.13 6.515e-05
RDI > 30 Precision 0.61 £+ 0.14 0.79 £+ 0.07 5.931e-08
Recall 0.57 £ 0.13 0.64 £ 0.10 0.01196
Fl-score 0.58 + 0.13 0.70 £ 0.08 2.233e-05

Values are reported as mean =+ standard deviation.

No significant differences were observed in the performance metrics (precision, recall, and F1 score) of the
two event detection approaches for recordings with RDI < 5 (normal). However, the with-SaO, approach
provided higher performances than the other approach for recordings with RDI > 5 (mild, moderate, and
severe) presumably due to injecting the feature related to SaO, in the second layer.

By counting the detected events by the detection algorithms, we estimated the RDI, which was strongly
correlated with the RDI reported from the PSG (R* = 0.85 for without-SaO, approach, and R* = 0.91 for
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with-SaO, approach). In a previous study by Ayappa et al (2000), the intra-class correlation coefficient reported
0.96, however they didn’t report the event by event detection results. More importantly, we found high
performances for all the RDI cut-offs to diagnose sleep apnea, which indicates the robustness of the proposed
algorithm for the clinical diagnosis of sleep apnea.

The recall of detecting RERA was 0.38 £ 0.19 for the without-SaO, approach, and 0.45 & 0.27 for the
with-SaO, approach, which is higher than the results reported by Nassi (2021) with recall of RERA; 29%.

One of the limitations of our work was that PSG channels available in this data were collected from one site
and one equipment setup and the algorithm was validated on low sample size. For future work, a new model
with the same architecture could be trained on more data from different sites and equipment to develop a model
that can be generalized accordingly. Another limitation that can be explored in future work was to modify the
model to distinguish the type of respiratory events, especially RERA’s.

In conclusion, in this study, a hierarchical structure based on HMM was developed to detect respiratory
events including RERAs, and to estimate RDI based on airflow, movements over chest and abdomen, and SaO,.
Two approaches were considered. Results showed that the first approach (without-SaO, approach), using
features of airflow and movements over the chest and abdomen, was able to provide a satisfactory event
detection performance, however, injecting the feature related SaO, in the second layer (with-SaO, approach)
further improved the performance of the proposed algorithm in event detection. Automatic detection of RERAs
together with other respiratory events (apneas and hypopneas) provide additional information on a patient’s
sleep quality and can also improve the quality of treatment.
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