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a b s t r a c t 

Blind source separation is an important field of study in signal processing, in which the goal is to esti- 

mate source signals by having mixed observations. There are some conventional methods in this field that 

aim to estimate source signals by considering certain assumptions on sources. One of the most popular 

assumptions is the non-Gaussianity of sources which is the basis of many popular blind source separa- 

tion methods. These methods may fail to estimate sources when the distribution of two or more sources 

is Gaussian. Hence, this study aims to introduce a new approach in blind source separation for nonlinear 

and chaotic signals by using a dynamical similarity measure and relaxing non-Gaussianity assumption. 

The proposed approach assumes there are dynamical stability in source signals and dynamical indepen- 

dence between them. The efficiency of the proposed approach is evaluated by synthetic simulation. Also, 

to evaluate the ability of the method in real-world applications and featuring its flexibility, the proposed 

approach is employed in epileptic seizure prediction by using EEG signals. The results show the potential 

and ability of the proposed method in nonlinear and chaotic signal processing. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Blind source separation (BSS) is an important problem in sig- 

al processing with applications across science and engineering. 

he ‘cocktail party problem’ is a classic example of the BSS prob- 

em where the goal is to recover the voices of individuals speak- 

ng simultaneously using recordings from ambient microphones 

laced throughout the room [1] . In the BSS problems, very lit- 

le information about the underlying source signals is known and 

ifferent methods attem pt to solve the problem by considering 

ome assumptions. One of the most common methods in the BSS 

s Independent Component Analysis (ICA) which uses statistical 

ndependence of the sources as a criterion for solving the un- 

ixing problem. The ICA is used in many application domains 

2,3] , particularly in neuroimaging, in which the goal is to decom- 

ose electroencephalographic (EEG) data in temporally indepen- 

ent sources [4] and functional magnetic resonance imaging (fMRI) 

ata into spatially independent brain networks [5] . Maximum- 

ikelihood [6] , minimization of the between-component mutual in- 
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ormation [7] and neural network method (infomax [8,9] ) are three 

f the most commonly used algorithms for ICA. 

ICA meets the problem once Gaussian sources exist in the mix- 

ng procedure. The unmixing matrix loses uniqueness because of 

he rotational invariance of the Gaussian subspace; with only non- 

aussian sources uniqueness is preserved [10] . Therefore, once two 

r more Gaussian sources are present in the source signal mix- 

ure, ICA will result in spurious sparse sources because it can no 

onger separate those sources and ignores them. The main assump- 

ion of the ICA method is non-Gaussianity and mutually statisti- 

al independence of the sources. As a result, ICA is not able to 

nmix the Gaussian sources. On the other hand, in many cases, 

here is not any information about non-Gaussianity or mutually 

tatistically independency of mixed sources. In this situation, the 

nmixing problem must be solved by considering other assump- 

ions for sources. There are studies where methods were devel- 

ped for blind or semi-blind source separation based on the dif- 

erent assumptions on the sources or the mixing process. Based 

n the assumptions and the approaches of the solutions, differ- 

nt techniques can be used to find the unmixing matrix includ- 

ng the derivative-based iterative methods [11–13] and searching 

lgorithms [14–16] . In this study nonlinear and chaotic signals are 

onsidered as sources where there is not any assumption about 

aussianity. Certain assumptions are defined based on nonlinear 
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ynamics of signals and an approach is introduced to define a cost 

unction suitable for blind or semi-blind situations. Since the pro- 

osed cost function is not differentiable. Therefore, a metaheuristic 

earch algorithm is used to find the best unmixing matrix which 

inimizes the cost function. 

One of the most important challenges in nonlinear and chaotic 

ignal analysis is how to consider the dynamics of signals. In this 

ontext, dynamics are related to the global behavior of the signal 

nd its wholeness. The global behavior of signals may be taken into 

onsideration with different concepts. For example, some dynamics 

uantifiers aim to quantify a specific dynamical behavior of signals 

r trajectory of signals in phase space like Lyapunov exponents, 

ractal dimensions (box counting dimension [17] , correlation di- 

ension [18] , Higuchi dimension [19] , etc) and entropies (approxi- 

ate entropy (ApEn) [20] and Sample entropy (SampEn) [21] ) that 

haracterizes the rate of separation of infinitesimally close trajec- 

ories [22] , space-filling capacity and the amount of regularity and 

he unpredictability, respectively. On the other hand, some meth- 

ds aim to quantify dynamics without considering a specific be- 

avior and they globally measure the similarity of dynamics of sig- 

als like fuzzified statistical behavior of local extrema (FSBLE) [23] . 

he FSBLE method is used as a dynamic similarity measure that 

uantifies dynamical similarity by using the information of ampli- 

ude and time of local extrema of signals. This study introduces a 

SS method by considering the importance of dynamics in nonlin- 

ar and chaotic signals and employes some assumptions related to 

ynamics and dynamical similarity of signals. 

It is important to evaluate a new proposed computational 

ethod in real-world and practical situations. In a practical sit- 

ation, different aspects of the environment and system includ- 

ng external disturbances, modeling errors, and uncertainties can 

mpact the performance and efficiency of the method. Different 

tudies tried to cope with these problems and also handle the 

utliers to be efficiently applicable in real-world applications [24–

8] . This study considered an electroencephalogram (EEG) based 

pplication, epileptic seizure prediction, to evaluate the proposed 

ethod in a real-world application. The EEG signal stems from a 

ighly nonlinear and multidimensional system [29] . Thus, analysis 

f changing EEG dynamics are considered in many studies for de- 

ection or prediction of different states of the brain [30–36] . For 

pileptic patients, there are four main dynamical states: normal 

far from seizure), pre-ictal (before seizure), ictal (seizure interval), 

nd post-ictal (after seizure). There are many studies which aim 

o classify these states or predict seizure onset [37–39,41–43,40] . 

his study assumes that there is a dynamical source which causes 

r produces epileptic seizures. Based on this assumption, using the 

stimated source signal of epileptic seizures may help other avail- 

ble methods to increase the efficacy of the prediction systems. 

The rest of this paper is organized as follows: Section 2 intro- 

uces the proposed method for the BBS problem and its assump- 

ions. Section 3 presents the results for evaluating the method 

n synthetic data and its application on epileptic seizure pre- 

iction. Section 4 discusses the method limitations and finally 

ection 5 concludes the paper. 

. The method 

The simplest model used in the BSS problem is a linear mixture 

f the sources S in the determined case (the number of sources N s 

s equal to the number of observations N o ) ( Eq. (1) ). 

 = AS (1) 

here S is mixed by the mixing matrix A (which is full rank) and

bservation matrix X is produced. X is N o × N matrix, A is N o × N s 

atrix, S is N s × N matrix and N is the number of samples. 
2 
The goal is to estimate S as ˆ S by having only the observation 

atrix. Thus, the unmixing matrix B must be found to obtain 

ˆ S 

sing Eq. (2) . 

ˆ 
 = BX (2) 

here unmixing matrix B is N s × N o and 

ˆ S is an N s × N matrix. 

Some assumptions must be considered to obtain B matrix from 

bservations. If the source signals are considered as chaotic or non- 

inear with stable dynamics, the dynamics of the signals can be 

njected into the problem, to find the proper B matrix. here, two 

ssumptions made to estimate B matrix are as follows: 

(A) Each source signal has the highest dynamical similarity to 

itself. 

(B) Each source signal has the lowest dynamical similarity to 

other source signals. 

Assumption (A) refers to the dynamical stationarity of the 

ource signals, which means the dynamical properties of the 

ource signals are static over time. Assumption (B) refers to the dy- 

amical independency of the source signals which is used to meet 

he most separability of the source signals. 

The proposed approach for the BSS problem looks for the un- 

ixing matrix B which produces the source signals that satisfy 

hese two assumptions. First of all, the dynamical similarity must 

e quantified. This study uses the Fuzzified statistical behavior of 

ocal extrema (FSBLE) as a dynamical similarity measure which is 

escribed in Appendix A . FSBLE quantify dynamical similarity of 

wo signals s 1 (t) and s 2 (t) as Sim F SBLE (s 1 (t) , s 2 (t)) . 

The solution in the proposed method in this study can be con- 

erted to an optimization problem which has two main factors as 

ollows: 

• Dynamical stationarity factor: Satisfaction of assumption (A) 

which is interpreted as maximizing StaF ac function. 
• Dynamical independency factor: Satisfaction of assumption (B) 

which is interpreted as maximizing IndF ac function. 

The dynamical stationarity factor aims to maximize the dy- 

amical stationarity of each estimated source signal separately. To 

uantify dynamical stationarity, each estimated source signal is di- 

ided into D segments where D ≥ 2 and StaF ac is calculated as 

q. (3) . 

taF ac = 

1 

N s 

N s ∑ 

i =1 

{ 1 

D ∗ (D − 1) 

D ∑ 

k =1 

D ∑ 

l =1 ,l � = k 
Sim F SBLE ( ̂  S k i , ̂

 S l i ) } (3) 

here ˆ S k 
i 

is the k th segment of the i th estimated source signal. 

he StaF ac function calculates the average similarity of all pair seg- 

ents of each signal across all estimated signal sources. 

The dynamical independency factor aims to maximize indepen- 

ency of the estimated source signals. Maximization of the inde- 

endency can be interpreted as minimizing dynamical similarity 

etween each pair of source signals. Therefore, IndF ac is defined 

o quantify the dynamical similarity between D segments of all es- 

imated source signals as Eq. (4) . 

ndF ac = − 1 

N s ∗ (N s − 1) 

N s ∑ 

i =1 

N s ∑ 

j =1 , j � = i { 

1 

D ∗ (D − 1) 

D ∑ 

k =1 

D ∑ 

l =1 ,l � = k 
Sim F SBLE ( ̂  S k i , ̂

 S l j ) 

} 

(4) 

q. (4) proposes minus of the dynamical similarity of each subset 

f D segments for two different estimated source signals. 

Eq. (5) is used to combine the two factors as a cost function 

hat must be minimized. 

ostF cn = e −StaF ac ∗ e −IndF ac (5) 
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Table 1 

Pseudo code for the proposed BSS method. 

- Input: N o observation signals 

- Input: Parameters of FSBLE ( n and m ) 

- Input: D 

- Output: Estimated B matrix 

- Output: N s source signals 

start 

1. Generate a population of B matrix randomly. 

2. For each B in generated population: 

Obtain estimated source signals from observation signals by using B . 

Divide each source signal into D segments. 

Calculate StaF ac and IndF ac values. 

Calculate CostF cn . 

3. Find the best B matrix by considering CostF cn values. 

4. If stop conditions are not achieved: 

Generate a new population of B matrix according to the search algorithm. 

Go to 2 

else: 

Return the best B matrix and related set of source signals as output. 

end 
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y minimizing CostF cn both the stationarity and independency fac- 

ors can be satisfied and the best source signals according to the 

ssumptions can be estimated. 

CostF cn is not differentiable because of the FSBLE basis. Hence, 

he present problem (minimizing the CostF cn ) cannot be solved by 

 derivative-based iterative method which is the regular solution 

or many other BSS methods such as FastICA [44] . Therefore, meta- 

euristic search algorithms like genetic algorithm [45] or imperial- 

st competition algorithm [46] can be used to minimize the CostF cn 

unction by searching over the elements of matrix B . 

The proposed solution of the BSS problem is described in 

able 1 as a pseudo code. 

. Method evaluation and results 

Two approaches are considered to evaluate the proposed 

ethod. First, synthetic data are used as the source signals, and 

he ability of the method in estimating the sources is evaluated. 

n the second approach, EEG data as a real-world application are 

sed to predict epileptic seizures and the proposed method tries 

o estimate the epileptic seizure source as a dynamical source in 

he fashion of a semi-blind source separation method. 

.1. Evaluation on synthetic data 

The signals of three common nonlinear models as Lorenz, 

ackey Glass, and Rossler are used in this section as the syn- 

hetic data. The X signals of these systems in the parameter sets 

hat cause chaos are considered as basic source signals. The basic 

ource signals do not have Gaussian distribution. Therefore, com- 

on BSS methods like Fast-ICA can estimate basic source signals 

rom a linear mixture of those. However, if the distribution of the 

asic source signals is transformed into Gaussian using histogram 

atching techniques, ICA-based BSS methods will not be able to 

stimate these Gaussian sources using their linear mixture. 

Eqs. (6) to (8) are Lorenz [47] , Rossler [48] and Mackey Glass 

49] in a parameter set that causes chaos. Fig. 1 a shows sample of

asic source signals and histogram of their amplitudes which are 

pproximation of their distributions. 

dX 

dt 
= 16(X − Y ) 

dY 

dt 
= X Z + 45 . 92 X − Y 

dZ = X Y − 4 Z (6) 

dt p

3 
dX 

dt 
= −Y − Z 

dY 

dt 
= X + 0 . 2 Y 

dZ 

dt 
= 0 . 4 + Z(X − 5 . 7) (7) 

 (i + 1) = X (i ) + 

0 . 2 X (i − r) 

1 + X (i − r) 10 
− 0 . 1 X ( i ) (8)

The new sources are generated by matching the basic sources 

o a histogram of normal distribution using the histogram match- 

ng technique. Fig. 1 b shows the transformed source signals. These 

ransformed signals are considered as the sources and by using a 

andomly selected matrix A ( Eq. (9) ), observation signals are ob- 

ained ( Fig. 2 ). 

 = 

[ 

0 . 9106 0 . 8735 0 . 2118 

0 . 0350 0 . 5249 0 . 3484 

0 . 1741 0 . 3440 0 . 6 6 69 

] 

(9) 

It is obvious that the non-Gaussianity based methods such as 

astICA will fail to estimate normalized sources. Nevertheless, Fig. 3 

hows one example of estimated sources using these methods 

JADE and fast-ICA). 

In Fig. 3 results of estimating both basic and transformed 

ources from observations that are obtained using matrix A are 

hown. As it was expected, both methods are successful in esti- 

ating basic sources (non-Gaussian sources). 

By using the proposed method, Fig. 4 presents the results of 

wo runs of the method to estimate the transformed sources. Run- 

ing the proposed method needs some initial parameters such as 

 and the value of m, n, and S in the FSBLE method. The value 

f these parameters can affect the result, which will be discussed 

n the next section. However, these parameters are practically set 

n this experiment as: D = 2 , m = 3 , n = 3 S = 3 , and imperial-

st competition algorithm is used as the search algorithm. In the 

mperialist competition algorithm the practical number of popula- 

ions, imperialist and maximum number of decades are set to 150, 

0, and 150, respectively. Moreover, other parameters of the im- 

erialist competition algorithm are initialized as the main paper 

uggested [46] , including β = 2 , γ = π/ 4 and ζ = 0 . 1 . 

It can be seen in Fig. 4 that the proposed method is able to es-

imate these sources where common ICA-based methods are not. 

his is because of the independency of the method from the dis- 

ribution of the source signals. To make a comparison between the 

erformance of the proposed method and that of these ICA-based 

ethods, the process of estimating the normalized sources is re- 

eated 200 times and the root mean squared error (RMSE) of the 

stimated sources is considered as the comparison criterion. Fig. 5 

hows the histogram of the estimated source RMSEs for each of 

he sources separately. In the proposed method, there is no order 

or the estimated sources. Therefore, the label of the source with 

he lowest RMSE is considered as the estimated source. In addition, 

MSE is computed between z-score normalized signals. 

Analysis of variance (ANOVA) is used to investigate if the results 

f the proposed method have a significantly lower error. For each 

f the source signals, the RMSE of the proposed method is com- 

ared to each of the fast ICA and JADE methods separately using 

NOVA test. The test results show the proposed method estimated 

he sources with a significantly lower RMSE ( p-value < 0.05). 

.2. Application on epileptic seizure prediction 

Prediction of epileptic seizures is considered as a real-world ap- 

lication of the proposed method for source estimation. This study 
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Fig. 1. The source signals and histogram of their amplitude values. a) Basic source signals obtain from Lorenz, Rossler, and Mackey Glass. b) The transformed source signals 

from a) to Gaussian distribution signals. 

Fig. 2. A sample of observation signals obtained by multiplying the mixing matrix to transformed source signals. 
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ssumes there is a dynamical source which causes seizure for each 

atient. Therefore, by having enough observation signals, this dy- 

amical source can be found. 

In this section, the proposed approach is used as a semi-blind 

ource estimation method which uses some information about the 

bservation signals to estimate a specific dynamical source. It is 

ssumed that the dynamical source which causes seizures behaves 

ifferently in seizure onset from other times. With this considera- 

ion and having the number of C observation signals which are a 

ixture of C sources, the method assumptions will be turned as 

ollows: 

(A) Each of the C − 1 source signals has the highest dynamical 

similarity to itself in normal and seizure onset. 
4 
(B) Each of the source signals has the lowest dynamical similar- 

ity to other source signals, far from seizure onset. 

(C) The Cth source signal has the highest dynamical similarity 

to itself, far from seizure onset. 

(D) The Cth source signal, far from seizure onset, has the lowest 

dynamical similarity to seizure onset. 

These assumptions are made to separate a dynamical source 

hich is inactive in far from seizure onset and is activated dur- 

ng seizure onset, in other words, the dynamic of this source is 

tationary until the seizure onset. 

With these assumptions, a new cost function must be consid- 

red that covers these assumptions. Thus, new IndF ac and StaF ac
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Fig. 3. Result of estimating basic and transformed source signals using JADE and fast ICA. 

Fig. 4. Results of two runs of the proposed method to estimate transformed source signals. 

Fig. 5. Histogram of RMSE of the proposed method, fast-ICA, and JADE for the normalized estimated sources. 

a

S
I

re redefined as Eqs. (10) and (11) . 

taF ac = 

1 

C − 1 

C−1 ∑ 

i =1 

{ 1 

D ∗ (D − 1) 

D ∑ 

k =1 

D ∑ 

l =1 ,l � = k 
Sim F SBLE ( ̂  S k i , ̂

 S l i ) } 

+ 

1 

(D − 1)(D − 2) 

D −1 ∑ 

k =1 

D −1 ∑ 

l =1 ,l � = k 
Sim F SBLE ( ̂  S k C , ̂

 S l C ) (10) 
5 
ndF ac = − 1 

C ∗ (C) 

C ∑ 

i =1 

C ∑ 

j =1 , j � = i 

×
{ 

1 

(D − 1) ∗ (D − 2) 

D −1 ∑ 

k =1 

D −1 ∑ 

l =1 ,l � = k 
Sim F SBLE ( ̂  S k i , ̂

 S l j ) 

} 
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− 1 

D − 1 

D −1 ∑ 

k =1 

Sim F SBLE ( ̂  S k C , ̂
 S D C ) (11) 

The first part of Eq. (10) is related to the first assumption 

nd the second part is related to the third assumption. Maximiz- 

ng StaF ac makes the first C − 1 source signals to have the least 

hanges in dynamic related to seizure over of all times. The second 

nd fourth assumptions correspond to the first and second part 

f the IndF ac equation respectively. Maximizing Eq. (11) makes all 

ources to be dynamically independent and also Cth source has the 

ighest dynamical changes depending on seizure onset. 

In order to use this method according to the mentioned as- 

umptions, first, we need D segments of C channel of EEG signals 

hich D − 1 segments come from the inter-ictal period and one 

egment comes from seizure onset. By minimizing the CostF cn, the 

 matrix for each patient will be achieved. The B matrix will be 

sed to estimate the seizure-related source signal and this signal 

s used to predict epileptic seizures. 

After finding the unmixing matrix for each of the patients, the 

pileptic seizure-related source can be estimated and the same ap- 

roach as [50] is applied on the estimated epileptic-related source 

o predict epileptic seizures using the FSBLE method. Shortly, the 

SBLE similarity between each 30 s window of the estimated 

pilepsy-related source signal and the same length of signal be- 

onging to ten minutes before is calculated. Then, by using a 

hreshold-based detection system, seizures are predicted. 

Winterhalder et al. [51] proposed a framework for evaluating 

pileptic seizure prediction methods, which is used in this study. 

ased on this framework, two time margins need to be defined 

s seizure prediction horizons (SPH) and seizure occurrence period 

SOP). SPH is defined as a time interval which starts when the pre- 

iction system forecasts an upcoming epileptic seizure by raising 

n alarm and it is expected there will not be any seizure during 

his time margin. SOP is defined as the period during which the 

eizure is supposed to occur. Therefore, a prediction alarm is a true 

ositive (TP) if there will be no seizure after the alarm and dur- 

ng the SPH, and the seizure will occur inside the SOP. Any alarms 

n different situations would be false positive (FP) and the rate of 

P in an hour is defined as the false positive rate (FPR). Based on 

hese definitions and for an applicable prediction system in a real- 

orld situation, SPH and SOP are two parameters that need to be 

et. Ideally, a small value of SOP and a large value of SPH is desir-

ble which means the system can predict seizures very early, and 

lso it can specify a narrow period for seizure occurrence. Also, 

hen there is a tuning parameter such as the threshold in the 

roposed method, it is important to compare different systems by 

onsidering both rate of TP (sensitivity) and FPR. FPR-Sensitivity di- 

grams can be used to show the performance of a method. Also, 

or comparing sensitivities of different methods, it important to 

ake the comparison in the same value of FPR. 

.2.1. Dataset 

The Freiburg EEG database 2007 [52] is used in this study to 

valuate the performance of the proposed method. This dataset 

ontains invasive EEG recordings of 21 patients suffering from 

edically intractable focal epilepsy. The data were recorded at the 

pilepsy Center of the University Hospital of Freiburg. The EEG 

ata are available on 6 channels at a 256 Hz sampling rate. 

For each of the patients, there are datasets named “ictal” and 

interictal”, the former containing files with epileptic seizures and 

t least 54 min of pre-ictal data and the latter containing approx- 

mately 24 h of EEG-recordings without seizure activity. Therefore, 

n this study SOP+SPH is considered smaller than 54 min. 
6 
.2.2. Results 

The sensitivity of the prediction method is considered as the 

ain measure of the performance. Therefore, the results should 

onsider SPH, SOP, and FPR as parameters or variables. First, SPH 

nd SOP are set to 600 and 1800 s respectively and Fig. 6 shows

he diagram of FPR-Sensitivity based on different thresholds on the 

SBLE similarity values. 

The result which is presented in Fig. 6 is achieved by setting the 

 value of 5 and in the FSBLE method m, n, and S are practically 

onsidered as 3. Also, as the dataset contains 6 channels of EEG 

ignals. In order to have the most number of achievable sources, C

s considered as 6. In this figure, the result is compared to periodic 

nd random methods which aim to predict seizure periodically or 

andomly respectively [50] . 

To investigate the effect of SPH and SOP on the performance of 

he method, the sensitivity of the system is calculated at an ap- 

roximately fixed FPR (FPR ≈0.33) with different values of SPH and 

OP. Fig. 7 shows the sensitivity of the proposed method in a fixed 

alse positive rate and different SPH and SOP values. 

As it is expected, increasing the SOP at a fixed SPH can only 

ncrease the sensitivity. However, there is not the same relation- 

hip between SPH and sensitivity in a fixed SPH. Table 2 reports 

he result of a number of studies which used the same approach 

o evaluate their results as a basis for a comparison with the pro- 

osed method. All of the Table 2 studies used the threshold tech- 

ique to predict epileptic seizures and did not use any part of the 

ataset, especially the ictal recordings, to train a system or esti- 

ate any parameters. This paper only considered the studies for 

omparison which have used the same dataset and the same ap- 

roach of evaluation and prediction. As we described in [50] , there 

re at least two different approaches to design an epileptic seizure 

rediction system. In the first approach, interictal and ictal data 

f patients are used in system design to train a classifier. On the 

ther hand, in the second approach, the decision is usually made 

y a threshold-based technique on a measure. Therefore, there is 

o need for ictal data and this approach is more suitable for real- 

orld applications. This study considered some studies with the 

econd approach for comparison. 

The results in Table 2 show that the proposed method can 

chieve a competitive sensitivity at the same FPR, SPH, and SOP 

alues. The higher sensitivity in the same FPR values means the 

ethod predicts more seizures than others with the same rate 

f false prediction. Also, the results are presented in SPH time of 

00–1450 s, which means the patients have more than 20 min 

o be ready for the seizure and avoid dangerous situations. The 

roposed method has higher sensitivity in comparison to most of 

hese studies in the same parameters and even in higher SPH and 

ower SOP. 

. Discussion 

This paper aims to present a new approach for blind or semi- 

lind signal source separation based on the dynamics of signals 

sing the FSBLE similarity index. Using FSBLE as the core of the 

roposed method needs initialization of some parameters such as 

, n, and S. These parameters must be set by considering com- 

utation time and impact of those as it is described in [23] . Also, 

ecause of using FSBLE for dynamical similarity measurement, the 

roposed cost function is not differentiable. Therefore, it is neces- 

ary to find the minimum of the cost function by using a search 

lgorithm. Using metaheuristic search algorithms can reduce com- 

utation time. In this study, the imperialist competition algorithm 

s chosen practically because of faster convergence. Although the 

ethod tries to reach the global minimum, it is possible that the 

earch algorithm cannot find the minimum because of the limita- 

ion of such methods. Fig. 8 shows the cost function value based on 



H. Niknazar, A.M. Nasrabadi and M.B. Shamsollahi Signal Processing 183 (2021) 108045 

Fig. 6. FPR-Sensitivity diagram of the proposed method to predict epileptic seizure in comparison of random and periodic methods. 

Fig. 7. Sensitivity of the proposed method in different SPH and SOP and FPR = 0.33. 

Table 2 

Comparison of the results of studies with same evaluation approach. 

Method SOP SPH FPR Sensitivity Number of 

(Sec) (Sec) ( 1 
hour 

) (%) patient 

SBLE [50] 3060 180 0.33 63.75 21 

Lag Synchronization index [53] 1800 600 0.3 ∼ 75 21 

Dynamical Similarity Index [54] 1800 5 0.33 ∼ 57 21 

Effective Correlation Dimension [54] 1800 5 0.33 ∼ 39 21 

Phase synchronization [55] 1800 600 0.33 ∼ 80 10 

This study 1450-1800 600-1450 0.33 76.60 21 

t
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o

l
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t

s

s

m

s

n

l

m

wo elements of unmixing matrix for observation signals in Fig. 2 . 

lxrunonpara 

The proposed cost function is designed practically to meet two 

ain assumptions. Different cost functions can be defined based 

n assumptions, which should be defined based on the prob- 

em and the application. For example, in Section 3.2 the main 

ssumptions and the cost function were adapted to the epilep- 

ic seizure prediction application to estimate a specific dynamical 
7 
ource. Also, the proposed method can be used as a semi-blind 

ource separation by using existing information and changing the 

ain assumptions. 

The proposed method needs longer signals in comparison to 

ome other methods such as ICA. In such methods, lengths of sig- 

als must be selected by considering stationarity of signal and 

arge enough for reliable estimation [56] . However, the proposed 

ethod needs the consideration of dynamical stationarity between 
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Fig. 8. The CostF cn values based on two elements of unmixing matrix. 
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ach of the D segments. Because of the undifferentiability limi- 

ation and using search algorithms, the proposed method works 

lower than the derivative-based iterative methods. For example, 

he computation time of 200 repeated estimates of the sources 

n Section 3.1 was 364 ± 42 s for the proposed method which 

s significantly higher than fast-ICA and JADE ( < 0.01 s) on the 

ame machine. The computation time and convergence of the 

ethod are directly related to the parameters of the selected 

earch method, and the search method and its parameters should 

e chosen based on the application. On the other hand, the pro- 

osed method has the ability to estimate Gaussian source signals 

nd also is flexible to be adapted with specific applications. In 

ection 3.2 , the proposed method was used to find the seizure- 

elated dynamical source by adapting the assumptions to the prob- 

em. This approach may also be useful to find other dynamical 

ources in other applications. For example, in the field of EEG sig- 

al processing, it can be used to estimate dynamical sources of a 

pecific state of the brain such as sleep stages or emotions states. 

. Conclusion 

This study proposes a new approach for blind source separation 

ase on dynamical similarity. The proposed method can be used 

or nonlinear and chaotic source signals estimation. The method 

ses the FSBLE similarity measure to quantify dynamical stabil- 

ty and independency of estimated sources. Because of using FS- 

LE, it was necessary to search for the unmixing matrix and this 

tudy used the imperialist competition algorithm as a metaheuris- 

ic search algorithm. Unlike many other methods such as ICA-based 

ethods, the proposed method, in its function field (nonlinear and 

haotic signals), does not force any constraint to sources and their 

istribution. Also, if we consider the proposed approach without 

xed assumptions, as it is used in Section 3.2 , the approach has the

exibility to be adapted for more complex situations to estimate a 

pecific source signal. The results show the ability and potential of 

he approach. In the real-world application of the epileptic seizure 

rediction, it was shown that by using the proposed approach we 

an be closer to an efficient system. 
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ppendix A. Fuzzified statistical behavior of local extrema 

The fuzzified statistical behavior of local extrema is a dynamical 

imilarity measure which was developed for nonlinear signal anal- 

sis. The FSBLE method in [23] is described in detail. This method 

stimate dynamical similarity in five main steps as it is presented 

n Fig. A.9 as follows: 

Step 1. In the first step, local extrema (LEs) of two signals are 

found. The amplitude and time difference of consecutive 

local extrema is used in the next steps. 

Step 2. The possible value of the amplitude and time difference 

of consecutive LEs are divided into m and n intervals by 

using the histograms of their values. After calculating the 

histograms, the boundaries of the intervals are selected 

with the condition of making the same area of m and n 

segmented separately. 

Step 3. The selected values of boundaries are used to define m + 

1 and n + 1 membership functions on amplitude and time 

difference of consecutive local extrema values respec- 

tively. Hence, for each LE the m f m matrix is constructed 

by using the value of membership into each membership 

function for amplitude and time difference using Eq. (A.1) . 

m f m i = 

⎡ 

⎣ 

LEi A 1 ,T 1 . . . LEi A 1 ,T (n +1) 

. . . 
. . . 

. . . 
LEi A (m +1) ,T 1 . . . LEi A (m +1) ,T (n +1) 

⎤ 

⎦ 
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Fig. A.9. The five steps in FSBLE method to measure dynamical similarity between two signals [23] . 
, LEi Ao,T p = m f Ao (Amp(LEi )) ∗ m f T p (T D (LEi )) (A.1) 

where LEi Ao,T p is the value of the membership of i th LE 

to m f Ao and m f T p membership functions. m f Ao and m f T p 
are oth and pth membership function of amplitude (Amp) 

and time difference (TD) respectively. Thus, each signal is 

transferred into a sequence of m f m matrices. 

Step 4. For a sequence with length of s the number of � (s ) 

( Eq. (A.2) ) features ( V ) are extracted from the sequence 

of m f m matrices using Eq. (A.3) . 

� (s ) = ((m + 1) . (n + 1)) s (A.2) 
9 
V (a 1 ,b1) 1 ,..., (as,bs ) s 

= 

1 

N − s 
[ 

N−s ∑ 

i =1 

m f m i (a 1 , b1) ∗ ... ∗ m f m i + s (as, bs )] 
1 
s (A.3) 

where N is the length of the signal. 

For each signal V 
signal 
S 

is constructed by changing s from 

one to S ( Eq. (A.4) ). 

V 

signal 
S 

= 

{
V (1 , 1) , ..., V (m +1 ,n +1) , V (1 , 1) , (1 , 1) ,V (1 , 1) , (1 , 2) , ..., 
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(A.4) 

This vector has dynamics information of sequential local 

extrema and will be used in similarity measurement. 

Step 5. As the final step, V 
signal 
S 

of two signals are used to 

calculate dynamical similarity using cosine distance as 

Eq. (A.5) . 

Similarity (V 

1 
S , V 

2 
S ) = 

〈 V 

1 
S , V 

2 
S 〉 

‖ V 

1 
S 
‖ . ‖ V 

2 
S 
‖ 

(A.5) 

where ‖ V ‖ is norm of V and 〈 V 1 
S 

, V 2 
S 
〉 is inner product of

V 1 
S 

and V 2 
S 

. 
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