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Abstract
In this paper, a method for apnea bradycardia detection in preterm infants is presented based on coupled hidden semi Markov
model (CHSMM). CHSMM is a generalization of hidden Markov models (HMM) used for modeling mutual interactions
among different observations of a stochastic process through using finite number of hidden states with corresponding resting
time. We introduce a new set of equations for CHSMM to be integrated in a detection algorithm. The detection algorithm was
evaluated on a simulated data to detect a specific dynamic and on a clinical dataset of electrocardiogram signals collected
from preterm infants for early detection of apnea bradycardia episodes. For simulated data, the proposed algorithm was able
to detect the desired dynamic with sensitivity of 96.67% and specificity of 98.98%. Furthermore, the method detected the
apnea bradycardia episodes with 94.87% sensitivity and 96.52% specificity with mean time delay of 0.73 s. The results
show that the algorithm based on CHSMM is a robust tool for monitoring of preterm infants in detecting apnea bradycardia
episodes.

Keywords Coupled hidden semi Markov model (CHSMM) · Coupled hidden Markov model (CHMM) ·
Forward-Backward (FB) algorithm · Electrocardiography (ECG) · Apnea bradycardia (AB)

1 Introduction

Apnea of prematurity is a common complication in preterm
infants born prior 37 weeks of gestation. Apnea of prematurity
is associated with repetitive long (> 15 − 20 s) interruptions
in respiratory airflow, which cause drop in blood oxygen
saturation and occurrence of an arrhythmia called bradycar-
dia characterized by reduction in heart rate [1]. According
to the American Academy of Pediatrics, an episode of apnea
of prematurity is defined as a pause in breathing for 20
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s or more, or shorter accompanied by bradycardia (less
than 100 beats per minutes) [2]. Monitoring and treatment
of apnea bradycardia require hospitalization that increases
healthcare costs. If not treated, apnea bradycardia leads to
higher risk of infant mortality [3] and in case of survival, can
cause adverse neurobehavioral deficits during childhood
[4]. Monitoring of preterm infants in neonatal intensive care
unit (NICU) and early detection of apnea episodes prevent
the fatal cardiorespiratory and neurobehavorial outcomes of
apnea bradycardia.

The detection of apnea bradycardia has been investigated
in a few studies. The primary approach for apnea bradycar-
dia detection was to use a fixed or an adaptive threshold to
mark drop in heart rate [5, 6]. The thresholding approach
was further improved by developing algorithms for detect-
ing abrupt changes in heart rate [7]. However, these methods
detect the apnea episodes with delay and are sensitive to
the amplitude of heart rate. The heart rate signal can be
affected by motion artifacts and noises that generate false
alarm. Thus, recent studies have improved the accuracy of
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apnea bradycardia detection through using algorithms that
learn the dynamic of cardiac activity. The learning algo-
rithm extensively investigated to detect apnea bradycardia is
hidden Markov model (HMM) [8–10].

HMM represents the dynamics of a system using a set
of hidden states [11]. Transition to a state is related to the
previous state and the transition probabilities. At each time
instant, system transits to a state and generates an obser-
vation, based on a probability density function (Fig. 1a).
Several generalizations have been proposed for HMM. For
example, the behavior of a system can be explained by a
hidden semi-Markov model (HSMM) [12, 13], in which
the system can rest in a state for several time instants
(resting time) (Fig. 1b). Alternatively, systems with sev-
eral interacting components can be modeled by coupled
hidden Markov model (CHMM) [14, 15]. In CHMM, it is
assumed that each observation recorded from the system
is generated by a component, which can be modeled by a
set of hidden states. In each component, the transition from
one state to another depends on its state transition proba-
bilities as well as the current states of other components
(Fig. 1c).

In our previous work [16], we presented a new frame
of equations for implementing the supervised learning of
model parameters and classifying (inference) of unknown
observations based on CHMM assumptions. We evaluated
that model in detecting the apnea bradycardia episodes.
For that purpose, from single channel of electrocardiogram
(ECG), we extracted three observations (features) including
the distance between two consecutive R peaks, and the
width and amplitude of QRS complex. We hypothesized
that there were distinct dynamics and interactions among

a b
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Fig. 1 Structures of the following: a HMM, b HSMM, c CHMM, d
CHSMM. Empty circles represent hidden Markov states, while filled
circles show the observed time series of features

these observations during normal breathing compared to
apnea bradycardia episodes modeled by two different
CHMMs. By comparing the inference of the two CHMMs,
the proposed detection algorithm was able to accurately
detect segments of data, in which apnea bradycardia
episode was occurred. Nevertheless, the structure of the
proposed CHMM can be improved by considering HSMM
assumptions. Incorporating the resting time for the hidden
states reduces the sensitivity of the algorithm to noises and
artifacts. Moreover, each apnea bradycardia can last more
than 15 s, which means the dynamic of the model does not
change at every time instants. Thus, the performance of the
detection algorithm based on CHMM can be improved by
adding another hyperparameter corresponding to the resting
time of hidden states. The new model is the combination
of CHMM and HSMM called coupled hidden semi-Markov
model (CHSMM).

CHSMM was proposed for the first time by Natarajan
et al. [17]. They analyzed the sequence of data in a set of
segments defined as bricks. Each brick was shorter sequence
of data generated by one hidden state. The resting time
of each state was modeled with the length of the brick.
However, implementing the CHSMM using the bricks adds
more complexity and computational costs to the algorithm.

The main goal of this paper was to present a simple set
of equations for CHSMM that can be implemented with
less computational costs to detect apnea bradycardia. The
proposed structure and equations of CHSMM are presented
in Section 2. Section 3 details the detection algorithm
based on CHSMM. The performance of the detection
algorithm was evaluated using a simulated dataset as well
as the clinical data to detect apnea bradycardia in preterm
infants. The performance of the CHSMM is compared to
other HMM-based methods in Section 4. Finally, Section 5
concludes the paper.

2Methods

2.1 CHSMM structure

In the proposed CHSMM, each dimension of observations
(channel) is modeled by a Markovian process with a set
of hidden states. The state transition depends on both
the previous state in that channel and the states of other
channels. The inter-channel coupling relationship can be
simplified using a product format [18]:

P(q
ς
t |q1

t−1, q
2
t−1, · · · , qC

t−1) =
C∏

c=1

P(q
ς
t |qc

t−1) (1)

where q
ς
t is the current state in channel ς at time t and

C is the total number of channels (equal to the number
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of observations). q
ς
t can be one of the hidden states,

S
ς
1 , S

ς
2 , · · · , S

ς

M(ς) in channel ς with M(ς) as the

maximum number of states. Accordingly, a
cς
nm = P(q

ς
t =

S
ς
m|qc

t−1 = Sc
n) is defined as the effect of channel c being in

state n at time t − 1 on the transition to state m in channel ς

at time t . Furthermore, πc
m denotes the initial probability of

state m at t = 1. For the rest of the paper, the superscript of
the state variable is omitted due to simplicity.

For a given channel ς , after each transition, it remains for
d samples of time before the next transition with probability
of p

ς
m(d) = P(q

ς
t :t+d−1 = Sm), for d ∈ {1, 2, · · · , D(ς)}

with D(ς) as the maximum resting time. For simplicity, we
use the notation vc

t (m, d) for the event qς
t :t+d−1 = Sm before

the next transition.
For each time instant t = {1, 2, · · · , T }, ot =

{o1
t , . . . oC

t } is the set including observations of all channels,
where o

ς
t is the sample of observation at time t in channel

ς . The conditional emission probability as in Fig. 1d writes
bm(o

ς
t ) = P(o

ς
t |qς

t = Sm). Based on this structure,
a CHSMM is specified by its model parameters, λ =
{{πς

m}, {pς
m(d)}, {acς

nm}, {bm(o
ς
t )}}. All the probabilities in

the following parts are conditioned on the model parameters
that will be omitted for the rest of the paper for simplicity.

We summarize here the three assumptions in the current
CHSMM. First, it is assumed that the observed data of
each channel, o

ς
t , depends only on state, q

ς
t . Second, inter-

channel influences are independent as in Eq. 1. Third,
inter-channel state influences only occur upon transition.
In the following, the equations related to model parameter
re-estimation and inference will be derived by generalizing
the coupling version of these methods introduced in our
previous work on CHMM [16], we presented a coupling
version of these equations, which are generalized by
considering the parameter related to resting time in this
paper.

2.1.1 Forward and backward recursions

To establish learning of the model parameters and inferring
the unknown observations in Markovian models, Forward
and Backward variables are required to be defined and
calculated, recursively.

Forward parameter: It is defined as the probability of
being in state m of channel ς between time t and t +
d subjected to the observations of all channels from the
beginning to time x.

α
ς
t |x(m, d) � P(v

ς
t (m, d)|o1:x) (2)

The predicted, filtered, and smoothed definition of the
Forward variable can be formed using x = t − 1, t and T ,
respectively. According to [12], since the Markovian chain

either remains in the current state or transits to another one,
we can write:

α
ς
t |t−1(m, d) = Aς

t (m, d) + Bς
t (m, d). (3)

where Aς
t (m, d) = P(v

ς
t (m, d), τ

ς
t−1 > 1|o1:t−1) for

no transition at t and Bς
t (m, d) = P(v

ς
t (m, d), τ

ς
t−1 =

1|o1:t−1) when the transition occurs. Note that τ
ς
t defines

the remaining time of the current state (q
ς
t ) before transition

to another state or choose to return to the current state at
time t + τ

ς
t . Thus, when τ

ς
t−1 > 1, no transition occurs at t

while τ
ς
t−1 = 1 a transition is forced.

These variables can be calculated as follows:

Aς
t (m, d) = α

ς
t−1|t−2(m, d + 1)b̃ς

m(ot−1) (4)

Bς
t (m, d) = pς

m(d)

M(ς)∑

nς=1

{aςς
nςmα

ς
t−1|t−2(nς , 1)b̃ς

nς
(ot−1)}

×
C∏

c �=ς

∑

nc,dc

{acς
ncm

αc
t−1|t−2(nc, dc)b̃

c
nc

(ot−1)}, (5)

where

b̃ς
m(ot ) �

α
ς
t |t (m, d)

α
ς
t |t−1(m, d)

. (6)

By considering the initialization of this recursion as: α
ς
1|0

(m, d) = π
ς
mp

ς
m(d), the Forward variable can be calculated

recursively.
Backward variable: It is defined as the ratio of the

smoothed over predicted version of Forward variable:

βς
t (m, d) �

α
ς
t |T (m, d)

α
ς
t |t−1(m, d)

. (7)

In case of no transition, Backward variable can be
calculated using:

βς
t (m, d) = b̃ς

m(ot−1)β
ς
t+1(m, d − 1), d �= 1, (8)

and if there is a transition (d = 1), the current state v
ς
t (m, 1)

transits to v
ς
t+1(nς , dς ). Thus, the backward variable can be

recursively updated as follows:

βς
t (m, 1) = b̃ς

m(ot )
∑

nς ,dς

{
βς

t+1(nς , dς )aςς
mnp

ς
nς

(dς )

C∏

c �=ς

∑

nc,dc

acς
ncn

pc
nc

(dc)α
c
t |t−1(nc, dc)b̃

c
nc

(ot )
}

(9)

with the initial value βς
t (m, 1) = b̃

ς
m(oT ) for all values of d .

See Supplementary document sections 1 and 2 for the proof
of these equations.

2.1.2 Definingmore variables

In addition to Forward and Backward variables, four more
variables are required for the implementation of model
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parameters learning (re-estimation). The first variable is
the smoothed Forward variable as α

ς
t |T (m, d) = α

ς
t |t−1

(m, d)βς
t (m, d). By summing α

ς
t |T (m, d) over d , we can

define γ
ς
t (m). Furthermore, the probability of transition to

state m at time t and resting until t + d given the previous
observations:

δ
ς
t (m, d) � P(τ

ς
t−1 = 1, v

ς
t (m, d)|o1:t−1)

= βς
t (m, d)pς

m(d)Bς
t (m, d). (10)

And finally, we introduced the smoothed probability for
channel ς to transit to state m while the channel c is in state
n given the observation of all channels:

ϒ
cς
t (n, m) �

D(ς)∑

d=1

P(qc
t−1 =Sn, v

ς
t (m, d), τ

ς
t−1 = 1|o1:T )

=
D(ς)∑

d=1

βς
t (m, d)acς

mnp
ς
m(d)

D(c)∑

d ′=1

αc
t−1|t−2(n, d ′)b̃c

n(ot−1). (11)

For more information on the extraction of the variables, see
Supplementary document section 3.

2.2 Re-estimation

The closed form of re-estimation equations to learn model
parameters are summarized as follows:

āc′c
m′m = 
T

t=1ϒ
c′c
t (m′, m)


T
t=1


M(c)

m′′=1ϒ
c′c
t (m′, m′′)

,

π̄ c
m = 


D(c)
d=1 αc

1|T (m, d)



M(c)

m′=1

D(c)
d=1 αc

1|T (m′, d)
,

p̄c
m(d) = 
T

t=1δ
c
t (m, d)


T
t=1


D(c)

d ′=1δ
c
t (m, d ′)

,

μ̄c
m =

∑T
t=1γ

c
t (m)oc

t∑T
t=1γ

c
t (m)

, σ̄ c
m=

∑T
t=1γ

c
t (m)(oc

t −μ̄c
m)2

∑T
t=1γ

c
t (m)

. (12)

The proof of these equations has been included in
Supplementary document section 4 .

2.3 Inference

Given the parameters of a model, an unknown observation
can be inferred through finding the optimal sequence of
states for each of the channels. For inference, δc

t (m, d) is
calculated for t = 1, 2, · · · , T over all states and durations
in all channels. Then, starting from t0 = 1, the best m∗

and d∗ which maximize δc
t0
(m, d) are found and the optimal

state sequence is assigned as Qc
max(t0 : t0 + d) = m∗. The

same analysis is repeated for the samples after t = d∗ to
t = T .

2.4 Detection algorithm

By establishing the equations for implementing re-
estimation and inference, the CHSMM can be used in
the detection algorithm, as explicitly described in [9, 16].
Briefly, for on-line detection of events, the data of the sub-
jects were randomly categorized into train set and test set.
The train set was segmented into intervals with duration of
TW samples. For each event type, a CHSMM was trained
using segments starting from the onset of the event. In addi-
tion to the CHSMMs trained by the dynamics of different
types of events, another CHSMM was trained using the
segments void of all types of events. For simplicity, the
detection algorithm is explained for two classes.

For each recording in the test set, a window of length TW

moves every samples (t) to choose a segment of data. Each
channel of the chosen segment was analyzed and inferred
separately by the two models, λ1,2. By applying inference
algorithm, a sequence of states (Qc) was assigned to each
channel of segment that was used for calculating likelihood
signals defined as llck(t) = log(P (oc

t :t+TW −1|λk, Q
c)) for

each model (λk, k = 1, 2), where the inside argument can
be computed using:

P(oc
t :t+TW −1|Qc) =

t+TW −1∏

t ′=t

bQc(t ′)(o
c
t ′). (13)

By comparing the likelihood signals of the two competing
models, the segment was classified to the corresponding
class of the model with higher likelihood. To implement
such comparison, total log-likelihood of class 1 compared
to class 2 (lltotal) can be defined as follows:

lltotal(t) =
C∑

c=1

(llc1(t) − llc2(t)). (14)

An event corresponding to class 1 occurred at time t , if the
following condition is satisfied:

lltotal(t) ≥ κ, (15)

where κ is a constant threshold that was optimized using
receiver operation curves (ROC) [19] (for more information
see 2.6).

2.5 Initialization

For each competing model (λ1,2), parameters a
cς
nm and π

ς
m

were initialized based on uniform probabilities. To initialize
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the observation probability (bm(oc
t )), k-means clustering

was applied to the observation of each channel. The number
of clusters was assumed equal to the number of hidden states
dedicated for the corresponding channel. Each cluster was
characterized by a Gaussian distribution that initialized μc

m

and σc
m.

The number of states for each channel was chosen based
on Bayesian Information Criterion (BIC) algorithm [20],
which was applied on the train set selected in the first round
of cross-validation. BIC can be defined as:

BIC = −2 log(L) + ν × log(T ), i = {1, 2}, (16)

where L and ν are likelihood and the number of states,
respectively. In this paper, for L, the difference of aver-
age value of lltotal during event from that of normal status
was calculated. Then, the number of states, which gen-
erated lower BIC was selected. BIC prevents overfitting
through maintaining a trade-off between the complexity of
the model quantified as the number of hidden states and the
increase in the likelihood. The average value of the likeli-
hood signal in each class and the total number of states used
in each model were used to calculate BIC. Finally, a grid
search is applied on specific intervals (see Section 3) and
for each grid point, the BIC value was calculated. The con-
figuration presenting the optimal BIC (minimum) value was
selected.

2.6 Evaluationmetrics

To evaluate the performance of the detection algorithm, we
performed cross-validation with 5 folds. Sensitivity (SEN
= TP/(TP + FN)) and specificity (SPC = TN/(TN + FP))
were calculated. TP, FP, FN, and TN denote the number
of true positives, false positives, true negatives, and false
negatives, respectively. TP occurs when a detection falls
within a window with a length equal to the moving window
and centered at a given annotation. The classification of the
segments was compared to the reference annotations.

To optimize κ in (15), ROC and the area under the ROC
curve (AUC) were tracted. In this curve, the optimum κ is
the related treshold of the perfect detection (PD), defined as
PD = argmax{SEN × SPC}. Also, the distance to PD noted
as

√
(1 − SEN)2 + (1 − SPC)2 [9] was calculated from the

average ROC. Moreover, we compute the detection time
delay (TD) [9, 16], defined as the time elapsed from the
detected to annotated onsets. Also, for clinical data, Positive
Windows (PW) [16] was calculated as the ratio of the
number of detections occurring before the annotated onset,
over the total number of detected apnea bradycardia. The
lower values of PW (below 50%) signify the prediction of
episodes.

2.7 Datasets

2.7.1 Simulated data

For evaluation of the proposed CHSMM, a simulated data
was generated from the Fitzhugh-Nagemo model [21]. It is
a generic model consisting of two state variables, used to
describe an excitable system (such as a neuron) from the
following equations:

dv

dt
= 3(v − 1

3
v3 + r + I )

dr

dt
= −1

3
(v − a + 0.8r), (17)

where v is the membrane potential (fast variable), r is the
recovery variable (slow variable), I is the value of the exci-
tation (goes from 0 to 1 during excitation). The generated
simulated data included rest condition and two excitations
with 10-s duration, with different dynamics defined as a1,
and a2 (Fig. 2). The difference between the two dynam-
ics was in their morphologies, while the range of their
amplitude were similar. For more information about the
simulation data, see [9, 16]. Same dataset has been used
for evaluation of previously proposed HMM-based models.
Thus, better comparison between CHSMM and other meth-
ods can be provided by the simulated dataset. Moreover,
the generated data includes two patterns of excitations from
rest status, which can assess the performance of the pro-
posed CHSMM in detecting a dynamic from resting status
as well as differentiating between two different dynamics.

Using the simulated data, the training data included 40
10-s segments for each dynamic and rest condition. The
segments corresponding to the dynamics were chosen from
the beginning of the excitation. The test data were ana-
lyzed sample by sample using a moving 10-s window. D(c),
the maximum value of resting time in channel c, was con-
sidered as 5 samples of time for simulated data analysis.
First, using a threshold on ll

{a1}{rest}
total (where j ≡ {rest}

and i ≡ {a1} according to Eq. 14), a disturbance was
detected. Then, second threshold on ll

{a1}{a2}
total differentiated

the dynamics a1 and a2. Due to narrow range of changes
in rest status, the number of hidden states was kept lower
in the related model compared to that of the two dynam-
ics. Accordingly, BIC was calculated for each member
of the set, {rest-a1-a2|2-3-3, 2-4-4, 2-5-5, 2-6-6, 2-7-7, 3-4-
4, 3-5-5, 3-6-6, 3-7-7, 4-5-5, 4-6-6, 4-7-7}, and the one with
the lowest BIC was selected for each model.

2.7.2 Real clinical data

Thirty-two preterm infants with birth weight of 1.23 (1.07–
1.36) kg, 31 (29–32) weeks of gestational age and postnatal
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Fig. 2 a A generated simulated
data by the FitzHugh-Nagumo
model (state variables v and r),
while a disturbance is applied
during 300–305 s without noise.
b v dimension with 5-db additive
noise of different dynamics. The
dynamics (a1 and a2) are chosen
from 300 to 310 s. The rest
condition is taken from other
intervals (200–210 s) and
plotted for comparison. (y axis is
the normalized amplitude)

50 100 150 200 250 300 350

a time(s)

 

 
v
r

301 302 303 304 305 306 307 308 309 310

b time(s)

 

 

rest
a1
a2

age of 12 (7–20) days, hospitalized in NICU at the
University Hospital of Rennes, France, were participated
in this study [9]. The study was approved by the ethical
committee.

The parents of each included infant signed a consent
form. From the participating infants, 148 single-channel
ECG signals (400 Hz) with 26 ± 11-min length were
recorded. These records were processed using a notch
filter for removing 50-Hz noise. Then, Pan and Tompkins
algorithm [22] was applied for R peak detection of ECG
signals. Three features including the RR interval (RR), R-
waveform amplitude (RAMP), and QRS duration (QRSd)
were extracted from each detected heart beat, leading to a
feature matrix of dimension 3 × T , where T is the length
of the recording [23]. The extracted features were then
upsampled using spline interpolation technique to 10 Hz.

Figure 3 depicts an example of these features before, during
and after an apnea bradycardia episode.

One clinical expert manually annotated all bradycardia
episodes from the whole database, leading to two annotated
classes (bradycardia or not bradycardia). Overall, the
database includes 233 annotated episodes of bradycardia
with a mean duration of 21.5 ± 6.1 s. The rest of the data
was considered into the “no bradycardia” class. Each infant
presented between 0 and 39 (median of 4) bradycardia
episodes.

The dataset was divided into train and test dataset based
on 5-fold cross-validation. As described in [16], from train
dataset, 30 7-s segments starting from the apnea bradycardia
onset and 30 7-s segments void of events were randomly
selected. The length of these segments (7 s) is chosen based
on the average time measured from the beginning of the

Fig. 3 A segment of feature
time series (shown separately) in
real data, which includes an AB
episode. a RR (feature of RR
intervals). b QRSd (feature
associated with the duration of
QRS complex). c RAMP (R-
waveform amplitude). Grey dash
line shows AB episode onset
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Table 1 The cross-validation
results of dynamic a1 detection
in simulated data using optimal
state number comparing to
models

Model � states (rest-a1-a2) SEN (%) SPC (%) Mean delay(s) std delay(s)

HMM 2-4-4 85.23±6.74 99.68±0.48 10.83±5.11 0.38±0.52

HSMM 3-5-5 87.25±1.56 97.47±2.36 6.08±4.71 1.42±1.75

CHMM 2-5-5 93.43±3.48 99.66±0.09 1.59±0.09 0.16±0.06

CHSMM 2-5-5 96.34±0.22 99.71±0.49 1.72±0.09 0.30±0.50

bradycardia to the peak RR value within the bradycardia
episodes [9].

The effect of apnea can be observed in the RAMP fea-
ture before the start of the bradycardia event due to the
modulation between the RAMP feature signal and respira-
tory activities [24]. Hence, there is a time delay between
the RAMP and the other features, which can be compen-
sated by a synchronization time delay (Tsync). According
to the underling physiological association between cardiac
and respiratory activities [25], the delay was optimally cho-
sen between 3 and 4.5 s for each HMM-based method. To
choose the optimal Tsync, two models with 2 states at each
channel were trained using RR and RAMP with different
time shifts. Each model was separately optimized using the
training set of the first round of cross-validation. The time
shift with the best performance was selected for Tsync. D(c)

was considered as 10 samples of time. We explored the
set, {2, 3, 4, 5, 6, 7}, as the number of hidden states with
same number of states in different channels to optimize the
number of hidden states.

3 Results

3.1 Detection of dynamics of simulated data

The results are presented for detection of dynamic a1, which
assesses the performance of the model to first detect an
excitation from rest status and then identify dynamic a1

from a2. Accordingly, the results related to the detection
of a2 reflect similar capacity and thus were excluded.
Table 1 compares the performance of the CHSMM with
HMM [11], HSMM [12], and CHMM [16]. The proposed
CHSMM demonstrated the best performance in terms of
SEN (96.34%) and SPC (99.71%) compared to other
models. Also, in coupling methods, lower average TD was
obtained (1.72 s in CHSMM and 1.59 s in CHMM vs. 4.71
s in HSMM and 5.11 s in HMM). An example of optimizing
number of hidden states for the CHSMM using BIC is
shown in Fig. 4. Similar approach was used for the rest of
the models applied to simulated data as well as those to real
data.

3.2 Detection of apnea-bradycardia in real data

In Fig. 5, the ROC of different models are traced for
different subset of features as {RR-RAMP}, {RR-QRSd-
RAMP}, and {RR-QRSd}. The time delay is also shown in
terms of (1−SPC) for each model. As illustrated, CHSMM
method demonstrated the best performance in terms of AUC
in all combination of features. The optimal thresholds (PD)
of the ROCs are reported in Table 2 . These best results were
obtained based on Tsync = 4.5 s for CHSMMs and HSMMs,
and Tsync = 4 s for HMMs and CHMMs.

The results of apnea bradycardia detection are detailed
in Table 2 for different feature combinations. The results
compared CHSMM with the other Markovian models.
Extracted from ROCs, the reported values for SEN and SPC

Fig. 4 An example of
optimization analysis for
determining the number of
hidden states based on BIC for
the CHSMM trained by
simulated data. The best number
of states is associated with the
lowest BIC value, marked by red
square
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Fig. 5 The performance of the proposed CHSMM in AB detection compared to other frameworks. a–c ROC curves. d–f Time delay curves versus
error. a, d RR and QRSd. b, e RR, QRSd, and RAMP. c, f RR and RAMP

of the PD points were averaged over five iterations of cross-
validation. Also, among the CHSMMs, the one that was
trained with {RR-QRSd-RAMP} resulted in higher accuracy
(95.69%) compared to {RR-RAMP} and {RR-QRSd} with
accuracy of 94.91% and 91.48%, respectively. The accuracy
of CHSMM trained with {RR-QRSd-RAMP} was also
higher than 93.81% for CHMM, 90.30% for HSMM, and
92.24% for HMM. Compared to the other models, CHSMM
showed the least distance to PD and the highest AUC in

all feature combinations. PW was lower for CHSMM than
other models showing that most events were predicated.

4 Discussion and conclusion

In this study, a new HMM-based algorithm was presented to
detect apnea bradycardia using single channel ECG in preterm
infants. The main findings of the study are as follows: (1)

Table 2 The cross-validation results of CHSMM in different configurations of features compared to other frameworks

Features Method optimal � states SEN (%) SPC (%) Mean delay(s) std delay(s) PW (%) AUC Distance to PD

RR HMM 6 85.82 ± 6.81 88.34 ± 2.21 0.77 ± 0.97 2.14 ± 0.98 64.30 0.94 0.18

RAMP HSMM 3 93.74 ± 0.40 91.86 ± 0.23 0.56 ± 0.07 1.49 ± 0.03 60.00 0.95 0.10

CHMM 5 87.64 ± 0.94 92.13 ± 6.44 0.59 ± 0.01 3.11 ± 1.94 47.29 0.95 0.15

CHSMM 3 95.99 ± 0.31 93.84 ± 0.24 −1.11 ± 0.04 2.56 ± 0.03 35.00 0.97 0.07

RR HMM 2 82.28 ± 16.87 85.32 ± 3.78 1.81 ± 0.84 4.10 ± 4.09 73.72 0.89 0.23

QRSd HSMM 5 84.74 ± 0.36 91.33 ± 0.18 2.93 ± 0.03 3.08 ± 0.03 87.50 0.93 0.18

CHMM 5 87.04 ± 3.78 95.31 ± 1.36 2.51 ± 0.93 3.02 ± 0.18 83.22 0.93 0.14

CHSMM 5 89.97 ± 0.21 92.99 ± 0.31 1.85 ± 0.03 3.14 ± 0.04 78.95 0.95 0.12

RR HMM 2 91.02 ± 0.64 93.47 ± 0.08 6.55 ± 0.69 2.29 ± 0.79 63.13 0.97 0.11

RAMP HSMM 7 86.83 ± 25.62 93.77 ± 4.44 1.10 ± 2.74 1.64± 1.18 44.10 0.96 0.16

QRSd CHMM 2 95.74 ± 0.82 91.88 ± 0.31 −0.59 ± 0.21 2.79 ± 0.06 44.23 0.97 0.09

CHSMM 4 94.87 ± 3.18 96.52 ± 0.64 0.73 ± 0.60 2.45 ± 0.69 35.00 0.98 0.06
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presenting a new set of equations for implementation of
CHSMM in a supervised learning algorithm; (2) the CHSMM
learning algorithm was integrated in a detection algorithm;
(3) the detection algorithm was successfully validated on
a simulated dataset; and (4) the detection algorithm was
able to improve the accuracy of apnea bradycardia detection
using the extracted features from ECG.

The proposed CHSMM was successfully applied in
detecting apnea bradycardia episodes in preterm infants
with the highest accuracy compared to other HMM-based
models that were presented for this purpose. Previously,
we presented a set of equations for CHMM [16], which
expanded the HMM structure to model coupling among
different observations of a system. In this study, the
CHMM was further generalized by incorporating the resting
time to the characteristics of hidden states. According to
the CHSMM structures, the Forward-Backward variables
a long with other variables were re-defined and used
to implement the re-estimation and inference. The re-
definition of equations for CHSMM was inspired by
[12], where they were calculated based on the conditional
probability of states subjected to observation. In contrast,
in the CHSMM structure proposed by Natarajan [17], the
equations were derived through using joint probability in
the definition of bricks, which adds more complexity to the
computations.

In our CHSMM, the Forward variable required TMDC
calculations for Bς

t (m, d) and Aς
t (m, d), which include

4 + MD + (MD + 2)(C) and MD + 1 multiplications,
respectively. Hence, the order of calculations in this step
is O(T M2D2C2). This computational cost was lower
than the one that was reported in Natarajan’s CHSMM
[17], as (O(T M2C2D3)). The recursive structure of the
equations and sample by sample windowing process make
the CHSMM computationally tractable, and suitable for
online applications. The proof of the equations has been
reported in Supplementary file for better flow.

The better performance of CHSMM and CHMM
compared to HSMM and HMM implies that the coupling
approach outperforms in learning the dynamics of the
signals. In a study by Altuve et al. [9], it was shown
that HSMM improved the accuracy of apnea bradycardia
compared to HMM. This study showed that CHSMM
demonstrated higher performance compared to CHMM in
terms of detection accuracy.

In summary, we presented a new set of equations for
implementing CHSMM. The detection algorithm based on
CHSMM was evaluated on a simulated data with two
different dynamics and a clinical data for automatic on-
line detection of apnea bradycardia in premature infants.
Such accurate detection algorithm can be implemented as a
monitoring and alarm system in NICU for early detection

of respiratory events to prevent the adverse outcomes of
undiagnosed and untreated apnea of prematurity.

Funding This work has been supported by the Center for Interna-
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