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a b s t r a c t 

Tensors are valuable tools to represent Electroencephalogram (EEG) data. Tucker decomposition is the 

most used tensor decomposition in multidimensional discriminant analysis and tensor extension of Lin- 

ear Discriminant Analysis (LDA), called Higher Order Discriminant Analysis (HODA), is a popular tensor 

discriminant method used for analyzing Event Related Potentials (ERP). In this paper, we introduce a new 

tensor-based feature reduction technique, named Higher Order Spectral Regression Discriminant Analy- 

sis (HOSRDA), for use in a classification framework for ERP detection. The proposed method (HOSRDA) 

is a tensor extension of Spectral Regression Discriminant Analysis (SRDA) and casts the eigenproblem 

of HODA to a regression problem. The formulation of HOSRDA can open a new framework for adding 

different regularization constraints in higher order feature reduction problem. Additionally, when the di- 

mension and number of samples is very large, the regression problem can be solved via efficient iterative 

algorithms. We applied HOSRDA on data of a P300 speller from BCI competition III and reached average 

character detection accuracy of 96.5% for the two subjects. HOSRDA outperforms almost all of other re- 

ported methods on this dataset. Additionally, the results of our method are fairly comparable with those 

of other methods when 5 and 10 repetitions are used in the P300 speller paradigm. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Tensors are natural representations of data containing informa-

tion in higher order modes. In the recent years, tensor-based signal

processing [1,2] and dimensionality reduction methods [3–14] have

achieved tremendous popularity for analyzing multidimensional

data. Working with such data in the “flat-world” of matrices may

prevent us from making full use of the information provided in

each mode and also the interactions among them. As a matter of

fact, tensor decompositions are tools that exploit the multidimen-

sional nature of tensor data to discover the hidden information and

interactive relations among different modes. Electroencephalogram

(EEG) data is one example, for which tensors are good representa-

tions: EEG naturally includes information in different modes of tri-

als, time, frequency, channel, etc. [2] and various trends in decom-

posing EEG data with tensor decomposition tools have emerged in

recent decade [15] . 

The spectrum of popularity of using tensor tools for EEG

data extends to a wide range of applications, from epileptic EEG

analysis [16–21] , to Brain-Computer Interface [22] , and to Event

Related Potential (ERP) analysis. BCIs use ERP, Steady State Vi-
∗ Corresponding author. 
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ual Evoked Potential (SSVEP), or Event Related Desynchroniza-

ion/Synchronzation (ERD/ERS), such as motor imagery. In [23,24] ,

ensor decomposition has been used for motor imagery EEG. Ad-

itionally, decomposing the data of SSVEP-based BCIs has been

idely experimented. Various tensor extensions of Canonical Cor-

elation Analysis (CCA) have been adapted to optimize the refer-

nce signals of the CCA for SSVEP frequency recognition [25–28] .

inked component analysis methods and their tensor extensions

ave been thoroughly reviewed in [29] and their application on

iomedical data, such as SSVEP-based BCIs, has been illustrated. 

Almost all the related studies of assessing ERP have exploited

hether Canonical Polyadic (CP) decomposition, also called Parallel

actor Analysis (PARAFAC), or Tucker decomposition [15] . Although

he very first attempts at applying CP decomposition to ERP data

oes back to the late 1980s with the name of topographic compo-

ent analysis [30–32] , in recent years many researches have used

P and its variants as powerful tools for analyzing and feature re-

uction of ERP data [33–39] . 

Due to its flexible nature, Tucker decomposition has been

idely used as a powerful tool for tensor-based discriminant anal-

sis methods, and with application for ERP data. Higher Order Dis-

riminant Analysis (HODA) [7] , also called DATER [8] , is a tensor

xtension of conventional Linear Discriminant Analysis (LDA) fea-

ure reduction and is one of the most popular tensor discriminant

http://dx.doi.org/10.1016/j.patcog.2017.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.05.004&domain=pdf
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nalysis methods. Recently the application of HODA in ERP-based

CI has been shown. Onishi et al. have applied HODA on data of a

300 speller and reported a good performance [40] . Also, Spatial-

emporal Discriminant Analysis (STDA), which is a special form of

ODA, is introduced to be applied on data of P300-based paradigm

41] . To the best of our knowledge, STDA is the state-of-the-art

ultiway discriminant analysis method used for feature reduction

n ERP-based BCIs. 

In this paper we introduce a new tensor-based feature reduc-

ion technique. Due to this main direction, we hesitate to discuss

ensor decomposition algorithms [2,42–44] . Our proposed method

s named Higher Order Spectral Regression Discriminant Analysis

HOSRDA), which is a tensor extension of Spectral Regression Dis-

riminant Analysis (SRDA) [45] . SRDA is a variant of LDA that casts

he eigenvalue problem of LDA to solving a set of linear equations.

OSRDA benefits from all the advantages of SRDA over LDA: HOS-

DA solves the problem of HODA by solving a set of linear equa-

ions, thus it can provide the ability to impose different regular-

zations on the subspace basis factors. Furthermore, HOSRDA can

enefit from low complexity algorithms for solving linear equa-

ions and therefore omit the need for computationally demanding

igenvalue decomposition. Additionally, in the cases that the scat-

er matrices of HODA are ill-conditioned (specially in the early it-

rations [7] ), the eigenvalue decomposition does not have stable

olution; HOSRDA does not suffer from this, since it uses regres-

ion as a building block that can be utilized in order to overcome

he stability problem. 

HOSRDA is accompanied by LDA classifier; the whole package of

eature reduction and classification is noted by “HOSRDA+LDA” and

t is exploited for classification of P300 speller data from BCI com-

etition III-dataset II and compared to STDA, as the state-of-the-art

ensor algorithm in this context. Also, we show that HOSRDA+LDA

utperforms almost all the published methods on this dataset in

erms of character detection accuracy. 

The rest of the paper is organized as follows: In Section 2 we

ill go through the background needed for our work, which

ncludes a brief review on LDA and SRDA. Section 3 gives an

verview on tensor definitions and HODA. The mathematical for-

ulation of the proposed method is presented in Section 4 . The

esults and discussion come on Section 5 . Eventually, the last sec-

ion is the conclusion. 

. Background 

.1. Notations 

In this paper higher order tensors are shown by calligraphic let-

ers (e.g. X is a tensor), matrices are denoted by boldface capital

etters (e.g. X is a matrix), boldface lower-case letters are used to

enote vectors (e.g. x is a vector), and normal letters show scalars

e.g. x or X are scalar). 

� is the set of all indices of training data samples (e.g. if we

ave K training data, � = { 1 , · · · , K} ). We denote the set of indices

f data in the c th class with �c and its size by K c . 

.2. Linear discriminant analysis (LDA) 

LDA is one of the most well-known and common techniques for

ector feature reduction. Let { x 1 , x 2 , . . . , x K } be the set of K data

oints ( x i ∈ R 

m ) from C classes. LDA aims to find a linear transfor-

ation A , which maps the data points to an l -dimensional space

 l < m ), where an adopted class separability criterion is optimized

46] . In this regard, the map of each point x i is y i = A 

T x i . This lin-

ar mapping is obtained by maximizing the Fisher criterion as fol-
ows: 

 = argmax 
A 

tr{ A 

T S b A } 
tr{ A 

T S w 

A } (1) 

In the above optimization problem, S b and S w 

are between-class

nd within-class scatter matrices respectively that are computed as

ollows: 

 b = 

C ∑ 

c=1 

K c 

(
μ( c ) − μ

)(
μ( c ) − μ

)T 
(2) 

 w 

= 

C ∑ 

c=1 

( 

K c ∑ 

k =1 

(
x ( 

c ) 
k 

− μ( c ) 
)(

x ( 
c ) 

k 
− μ( c ) 

)T 

) 

(3) 

here μ( c ) and K c are the mean and the size of the c th class re-

pectively. μ is the mean of all data regardless of their class. 

By defining the total scatter matrix as S t =
 K 
k =1 ( x k − μ) ( x k − μ) T = S b + S w 

, the optimization problem

n (1) can be replaced by: 

 = argmax 
A 

tr{ A 

T S b A } 
tr{ A 

T S t A } (4) 

hose solution is obtained by solving the GEVD problem S b a =
S t a and finding l leading eigenvectors as columns of A . Since S b 

s of rank C − 1 , l ≤ C − 1 should hold [46] . 

An issue in LDA is singularity of S t . Another concern for LDA

s the computation of applying eigendecomposition in the case of

igh number of features. To overcome these concerns, SRDA has

een introduced to solve the problem of LDA with a new formula-

ion [45] . 

.3. Spectral regression discriminant analysis (SRDA) 

In [45] , Cai et al. introduced SRDA, which casts the LDA tech-

ique into a regression problem. SRDA needs only to solve a (reg-

larized) regression problem and omits the need for eigendecom-

osition in discriminant analysis. In the following, we briefly sum-

arize SRDA. 

Having the same definitions as in previous subsection, if for

ach k = 1 , · · · , K C and c = 1 , · · · , C we put x̄ (c) 
k 

= x k − μ and X̄ 

( c ) =
 

x̄ ( 
c ) 

1 
, ̄x ( 

c ) 
2 

, · · · , ̄x ( 
c ) 

K c 

] 
, it can be shown that: 

 t = X̄ X̄ 

T 
, S b = X̄ W X̄ 

T 
(5) 

here X̄ = 

[ 
X̄ 

( 1 ) 
, · · · , X̄ 

( C ) 
] 

and W = blockdiag 
(
W 

( 1 ) , . . . , W 

( C ) 
)
. 

 

( c ) is a K c × K c matrix with all elements of 1/ K c . 

By replacing S b and S t from Eq. (5) in GEVD problem S b a = λS t a

e have: 

¯
 W X̄ 

T 
a = λX̄ X̄ 

T 
a (6) 

It is proved in [45] that if y is the eigenvector of W with eigen-

alue λ (i.e. W y = λy ) and also if X̄ 

T 
a = y holds, then a is an

igenvector of problem in (6) with eigenvalue λ. Therefore, to solve

he eigenproblem of LDA, we should find the eigenvectors of W

nd then solve a set of linear equations. It can be shown that find-

ng the eigenvectors of W does not need eigendecomposition and

hey can be directly found from the Eq. (7) : 

 c = 

⎡ 

⎢ ⎣ 

0 , · · · , 0 ︸ ︷︷ ︸ ∑ c−1 
i =1 K i 

, 1 , · · · , 1 ︸ ︷︷ ︸ 
K c 

, 0 , · · · , 0 ︸ ︷︷ ︸ ∑ C 
i = c+1 K i 

⎤ 

⎥ ⎦ 

T 

, c = 1 , · · · , C (7)

here K c is the size of class c . 
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3. Discriminant analysis for higher order data 

3.1. Tensor operations and notations 

Our notations in tensor algebra are very similar to those of

[2] and [7] . Suppose that Y ∈ R 

I 1 ×···×I N is an N-th order tensors.

The mode-n matricization (unfolding) of Y is shown by Y ( n ) ∈

R 

I n ×( 
∏ N 

i =1 
i � = n 

I i ) 

and the mode-n product of Y and A ∈ R 

J n ×I n is denoted

by Z = Y ×n A ∈ R 

I 1 ×···×J n ×···×I N and Z ( n ) = A Y ( n ) . Additionally, Z =
Y ×1 A 

( 1 ) ×2 · · · ×N A 

( N ) and Z = Y ×1 A 

( 1 ) ×2 · · · ×n −1 A 

( n −1 ) ×n +1 

A 

( n +1 ) ×n +2 · · · ×N A 

( N ) are written in summarized form as Z =
Y × { A } and Z = Y ×−n { A } respectively. In addition, it is defined

Z = 〈 Y , Y 〉 −n = Y ( n ) Y 
T 
( n ) ∈ R 

I n ×I n . 

To the knowledge of the authors, the Tucker decomposition is

the most exploited tensor decomposition method in discriminant

analysis for higher order data. It decomposes a tensor into a core

tensor multiplied by a matrix along each mode [44] . Tucker de-

composition of rank-( J 1 , ���, J N ) (for J n ≤ I n ) is formulated as: 

Y ≈ G × { U } = G ×1 U 

( 1 ) ×2 · · · ×N U 

( N ) (8)

where U 

( n ) ∈ R 

I n ×J n are orthogonal factor matrices (or basis factors)

of the decomposition. The core tensor G ∈ R 

J 1 ×···J N can be served as

a compressed version of Y . The core tensor can be obtained from

tensor Y as below: 

G = Y × { U 

T } = Y ×1 U 

( 1 ) 
T ×2 · · · ×N U 

( N ) 
T 

(9)

3.2. Problem formulation: classification of tensor data 

Suppose that we have the training dataset {X 

( k ) ∈
R 

I 1 ×I 2 ×···×I N , k = 1 , · · · , K} along with their labels { c k , k =
1 , · · · , K} from C classes. We shall find a subspace where the

separability of the classes is maximized, so that the labels of

testing data can be predicted with minimum error. 

The general model of high dimensional classification exploiting

Tucker decomposition [7] aims to find the subspace spanned by

{ U 

( n ) ∈ R 

I n ×J n , n = 1 , · · · , N} , in which the data samples X 

( k ) are

represented as G ( k ) ∈ R 

J 1 ×J 2 ×···×J N in such a way that the data of dif-

ferent classes are better separated. As defined, a sample X 

( k ) and

its projection G ( k ) are related as follows: 

X 

( k ) = G ( k ) × { U } (10)

It can be shown [7] that if we concatenate all data tensors

along the mode-(N+1) in the tensor X ∈ R 

I 1 ×I 2 ×···×I N ×K (i.e. X =
cat 

(
N + 1 , X 

( 1 ) , · · · , X 

( K ) 
)
), we have: 

X = G ×−( N+1 ) { U } = G ×1 U 

( 1 ) ×2 · · · ×N U 

( N ) (11)

where the projections of training data are concatenated in the

mode-(N+1) of G. 

Eq. (11) represents the Tucker-N decomposition of the (N+1)th

order tensor X (it decomposes X to a core tensor and N factor

matrices.). 

In fact, if we obtain the subspace basis factors via optimizing

a discriminant cost function, then we can say that each core ten-

sor G ( k ) contains the discriminant features of X 

( k ) in the subspace

spanned by { U 

( n ) ∈ R 

I n ×J n , n = 1 , · · · , N} . 
When the basis factors are found, each test data can be pro-

jected onto this subspace by Eq. (9) and after vectorizing the ob-

tained tensor features (the projections), they can be passed to a

classifier trained by the projections of training data. In this study

we have used LDA classifier. 

3.3. Higher order discriminant analysis (HODA) 

HODA [7] is a tensor extension of LDA, introduced in 2005 by

Yan, et al., which is first called DATER [8] . HODA obtains the basis
actors U 

( n ) of Eq. (11) via maximizing the Fisher ratio between the

ore tensors G ( k ) defined as follows [7] : 

 = argmax 
U ( 1 ) , ··· , U ( N ) 

∑ C 
c=1 K c || ̄G ( c ) − ¯̄G|| 2 F ∑ K 

k =1 ||G ( k ) − Ḡ ( c k ) || 2 
F 

s.t. U 

( n ) T U 

( n ) = I , n = 1 , · · · , N 

(12)

here ¯̄G = 

1 
K 

∑ K 
k =1 G ( k ) is the mean of all the training feature ten-

ors and Ḡ ( c ) = 

1 
K c 

∑ 

k ∈ �c 
G ( k ) is the mean of the feature tensors of

he training data in class c . Also Ḡ ( c k ) is the mean of the feature

ensors of the data in the same class with the kth training sample.

Since the optimization problem in (12) cannot be solved di-

ectly, alternating solution is used. In this approach the cost func-

ion is optimized for each U 

( n ) , while it is assumed that all other

asis factors U 

( 1 ) , · · · , U 

( n −1 ) , U 

( n +1 ) , · · ·U 

( N ) are fixed. In [7] it is

hown that the learning rule for a fixed n can be found via solving

he below optimization problem: 

 

(n ) = argmax 
U (n ) 

tr[ U 

(n ) T S −n 
b U 

(n ) ] 

tr[ U 

(n ) T S −n 
w 

U 

(n ) ] 
, s.t. U 

( n ) T U 

( n ) = I (13)

In (13) the between-class scatter matrix S −n 
b 

is defined as fol-

ows: 

 

−n 
b = 

C ∑ 

c=1 

〈
Ž 

( c ) −n , Ž 

( c ) −n 

〉
−n 

= 

〈
Ž 

−n , Ž 

−n 
〉
−n 

(14)

here 

ˇ
 

( c ) = 

√ 

K c 

(
X̄ 

( c ) − ¯̄X 

)
, X̌ = cat 

(
N + 1 , X̌ 

( 1 ) , · · · , X̌ 

( C ) 
)

(15)

ˇ
 

( c ) −n = X̌ 

( c ) ×−n { U 

T } , Ž 

−n = X̌ ×−( n,N+1 ) { U 

T } (16)

nd 

¯̄
 = 

1 

K 

K ∑ 

k =1 

X 

(k ) (17)

¯
 

(c) = 

1 

K c 

∑ 

k ∈ �c 

X 

(k ) , c = 1 , · · · , C (18)

he within-class scatter matrix S −n 
w 

in (13) is defined as follows: 

 

−n 
w 

= 

K ∑ 

k =1 

〈
˜ Z 

( k ) −n , ˜ Z 

( k ) −n 

〉
−n 

= 

〈
˜ Z 

−n , ˜ Z 

−n 
〉
−n 

(19)

here 

˜ 
 

( k ) = X 

( k ) − X̄ 

( c k ) , ˜ X = cat 
(
N + 1 , ˜ X 

( 1 ) , · · · , ˜ X 

( K ) 
)

(20)

˜ 
 

( k ) −n = 

˜ X 

( k ) ×−n { U 

T } , ˜ Z 

−n = 

˜ X ×−( n,N+1 ) { U 

T } (21)

n above equations, c k is the class of X 

(k ) and X̄ 

( c k ) is the mean of

he data in class c k . 

The problem of Eq. (13) can be solved via a GEVD problem, i.e.

olumns of U 

( n ) can be found as the J n leading left eigenvectors of

roblem S −n 
b 

u = λS −n 
w 

u . Since S w 

can be very ill-conditioned in the

arly updates [7] , some sort of regularization is needed, e.g. sub-

tituting S w 

by S w 

+ αI , where α ≥ 0 and I is the identity matrix. 

In [41] , Zhang et al. introduced Spatial-Temporal Discriminant

nalysis (STDA), which is composed of a feature reduction stage

ollowed by an LDA classifier. The formulation of feature reduction

tage of STDA is the same as HODA for N = 2 and J 1 = J 2 . They used

he below stop criterion for the iterative algorithm: 

rror = || U 

( n ) ( i ) − U 

( n ) ( i − 1 ) || < ε, n = 1 , 2 (22)

here U 

( n ) ( i ) is the estimated factor matrix of mode-n in the iter-

tion number i . 
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.3.1. Computational complexity of HODA 

For assessing the computational cost of HODA algorithm, we

ount the number of flops that the algorithm requires. Each flop

onsists of one addition, subtraction, multiplication, or division

47] . Since HODA is an iterative algorithm, we first compute the

umber of flops for each iteration. The HODA algorithm needs to

ompute the tensors in Eqs. (14) –(21) and solve a GEVD problem.

ssume I = max (I 1 , I 2 ) . Eqs. (15) , (17), (18), (20) need O ( KI 2 ) flops,

hile (16) and (21) require O ( LKI 2 ) flops, in which L is the num-

er of iterations needed for the algorithm to converge. Computing

he scatter matrices of Eqs. (14) and (19) also require O ( LKI 2 ) flops.

dditionally, solving the GEVD problem requires O ( LI 3 ). Therefore,

ODA requires O (LKI 2 + LI 3 ) flops. 

. Higher order spectral regression discriminant analysis 

HOSRDA) 

To investigate HOSRDA formulation, we need to reformulate

he scatter matrices of HODA. In this regard, we rewrite the Eq.

14) and find a new formulation for between-class scatter matrix

f tensor data as follows: 

 

−n 
b = 

C ∑ 

c=1 

〈
Ž 

( c ) −n , Ž 

( c ) −n 

〉
−n 

= 

C ∑ 

c=1 

1 

K c 

〈 ∑ 

i ∈ �c 

H 

( c ) −n 
i 

, 
∑ 

i ∈ �c 

H 

( c ) −n 
i 

〉 

−n 

(23) 

here for i ∈ �c , H 

( c ) −n 
i 

= 

(
X 

( i ) − ¯̄X 

)
×−n { U 

T } . Therefore we

ave: 

 

−n 
b = 

C ∑ 

c=1 

1 

K c 

( ∑ 

i ∈ �c 

H 

( c ) −n 
i ( n ) 

) ( ∑ 

j∈ �c 

H 

( c ) −n 
j ( n ) 

) 

= 

C ∑ 

c=1 

H 

( c ) −n 
( n ) W 

( c ) H 

( c ) −n 
T 

( n ) (24) 

here H 

( c ) −n = cat 

(
N + 1 , H 

( c ) −n 
1 

, · · · , H 

( c ) −n 
K c 

)
and W 

( c ) is a KP n × KP n 

lock matrix whose all blocks are P n × P n identity matrices with

 n = 

∏ N 
m =1 
m � = n 

J m 

as follows: 

 

( c ) = 

1 

K c 

⎡ 

⎢ ⎢ ⎣ 

I P n I P n · · · I P n 
I P n I P n · · · I P n 

· · · · · · . . . 
. . . 

I P n I P n · · · I P n 

⎤ 

⎥ ⎥ ⎦ 

(25) 

Now if we define H 

−n = cat 

(
N + 1 , H 

( 1 ) −n , · · · , H 

( C ) −n 

)
and W =

lockdiag 
(
W 

( 1 ) , . . . , W 

( C ) 
)
, the between-class scatter matrix can

e formulated as: 

 

−n 
b = H 

−n 
( n ) W H 

−n T 

( n ) (26) 

n the same way, it can be shown that the within-class scatter ma-

rix can be written as: 

 

−n 
w 

= H 

−n 
( n ) L H 

−n T 

( n ) (27) 

here L = I KP n − W ( I KP n is a KP n × KP n identity matrix). Thus, we

an define 

 

−n 
t = H 

−n 
( n ) H 

−n T 

( n ) = S −n 
w 

+ S −n 
b (28) 

Now, instead of solving the optimization problem of (13) , we

an solve the problem below: 

 

(n ) = argmax 
U (n ) 

tr[ U 

(n ) T S −n 
b U 

(n ) ] 

tr[ U 

(n ) T S −n 
t U 

(n ) ] 
, s.t. U 

( n ) 
T 

U 

( n ) = I (29) 

he solution of above optimization problem is a matrix whose

olumns are J n leading eigenvectors of the below GEVD problem:

 

−n u 

( n ) = μS −n 
t u 

( n ) (30) 
b 
With the same approach as discussed in Section 2.3 , we can

laim that if y is an eigenvector of W with eigenvalue λ and also

e have H 

−n T 

( n ) 
u 

( n ) = y , then u 

( n ) is a solution of the GEVD problem

30) with μ = λ. Thus to find the columns of factor matrix U 

( n ) ,

ather than solving a GEVD problem, we can find the J n leading

igenvectors of W and put them in the columns of matrix Y and

hen solve the linear system of equations H 

−n T 

( n ) 
U 

( n ) = Y for U 

( n ) . 

We show that the eigenvectors of W can be obtained analyti-

ally without eigendecomposition. Since W is a block-diagonal ma-

rix, its eigenvalues and eigenvectors can be obtained from the

igenvectors and eigenvalues of its blocks. Therefore, we first seek

or the eigenvectors/eigenvalues of W 

( c ) for an arbitrary c . 

Suppose that y ( c ) is an eigenvector of W 

( c ) corresponding to

igenvalue λ (i.e. W 

( c ) y ( c ) = λy ( c ) ). If we break y ( c ) to blocks of

ectors of length P n as y ( c ) = 

[ 
y ( 

c ) T 

1 
, · · · , y ( 

c ) T 

K c 

] T 
, then we have: 

 

( c ) y ( c ) = 

1 

K c 

⎡ 

⎢ ⎢ ⎣ 

I P n I P n · · · I P n 
I P n I P n · · · I P n 

· · · · · · . . . 
. . . 

I P n I P n · · · I P n 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

y ( 
c ) 

1 

y ( 
c ) 

2 
. . . 

y ( 
c ) 

K c 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

1 

K c 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∑ K c 
k =1 

y ( 
c ) 

k ∑ K c 
k =1 

y ( 
c ) 

k 
. . . ∑ K c 

k =1 
y ( 

c ) 
k 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= λ

⎡ 

⎢ ⎢ ⎢ ⎣ 

y ( 
c ) 

1 

y ( 
c ) 

2 
. . . 

y ( 
c ) 

K c 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(31) 

hus, for each p = 1 , · · · , K c we have y ( 
c ) 

p = 

1 
λK c 

∑ K c 
k =1 

y ( 
c ) 

k 
. If we

efine a � y ( 
c ) 

p , ∀ p, it can be easily concluded that a � y ( 
c ) 

p =
1 

λK c 
K c a = 

a 
λ

and therefore λ = 1 . 

For an arbitrary c , it is clear that the rank of W 

( c ) is P n . Thus,

 

( c ) has P n eigenvalues of value one with eigenvectors having the

orm of y ( c ) = 

[
a 

T 
P n 

, · · · , a 

T 
P n 

]︸ ︷︷ ︸ 
K c 

T 
, where a P n is an arbitrary vector

f length P n . 

To find the eigenvectors of W , it should be noted that the

igenvalues of a block-diagonal matrix is the union of eigenval-

es of its blocks and the eigenvectors can be constructed from

he eigenvectors of the blocks. Since one is the eigenvalue of all

he blocks of W , for any set { y (1) , ���, y ( C ) } of eigenvectors of

locks of W , an eigenvector of W can be defined with the form

 � 

[
y ( 1 ) 

T 
, · · · , y ( C ) 

T 
]T 

, corresponding to eigenvalue one. Conse-

uently, we have: 

 y = 

⎡ 

⎢ ⎢ ⎣ 

W 

( 1 ) 0 · · · 0 

0 W 

( 2 ) · · · 0 

· · · · · · . . . 
. . . 

0 0 · · · W 

( C ) 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

y ( 1 ) 

y ( 2 ) 

. . . 

y ( C ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

W 

( 1 ) y ( 1 ) 

W 

( 2 ) y ( 2 ) 

. . . 

W 

( C ) y ( C ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

y ( 1 ) 

y ( 2 ) 

. . . 

y ( C ) 

⎤ 

⎥ ⎥ ⎦ 

= y 

(32) 

ow that we have shown W has CP n eigenvectors (corresponding

o eigenvalue one), which can be constructed using random vec-

ors, the factor matrices of Tucker decomposition can be obtained

hrough solving a linear system of equations (i.e. H 

−n T 

(n ) 
U 

(n ) = Y for

 

( n ) ). Fig. 1 depicts a block diagram of classification a framework

sing HOSRDA. Algorithm 1 is the pseudocode of proposed HOS-

DA. In this pseudocode function Gram-Schmidt applies a gram-

chmidt orthogonalization process to the columns of its input ma-
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Fig. 1. The block diagram of classification framework with HOSRDA as the feature reduction stage. 
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1 http://www.bbci.de/competition/iii/. 
trix. The two functions rand and repmat work the same as the

MATLAB 

© functions with the same names. rand ( P n , J n ) produces a

P n × J n matrix of uniformly distributed random numbers between

0 and 1 and repmat ( A , 1 , m ) = [ A , · · · , A ] ︸ ︷︷ ︸ 
m 

. Also the following ten-

sors in the pseudocode are defined as: 

ˆ X = cat 
(
N + 1 , ˆ X 

( 1 ) , · · · , ˆ X 

( C ) 
)

ˆ X 

( c ) = cat 

(
N + 1 , ˆ X 

( c ) 
( 1 ) , · · · , ˆ X 

( c ) 
( K c ) 

)
(33)

ˆ X 

( c ) 
( k ) = X 

( k ) − ¯̄X , k ∈ �c 

Note that since W is from rank CP n , HOSRDA forces the up-

per band of CP n to J n , i.e. J n ≤ CP n . Also, it’s worth discussing

the initialization of factor matrices. In most of algorithms based

on Tucker decomposition, the initialization of factor matrices is

done via HOSVD algorithm [44] . In HOSVD, nth factor matrix U 

( n ) 

is computed as the J n leading left singular vectors of X ( n ) (where

X ( n ) is the mode-n unfolding of tensor X ). 

4.1. Computational complexity of HOSRDA 

With the same assumptions as in Section 3.3.1 , we compute the

number of flops per iteration for HOSRDA. The computational load

of HOSRDA is related to lines 2, 3, 6, 12, and 13 of Algorithm 1 .

Lines 2 and 3 require O (3 KI 1 I 2 ) flops. For the remaining computa-

tions, referring to the for loop of line 5 and assuming m = 3 − n,
ines 6, 12, and 13 require 2(I m 

− 1) I n KJ m 

, 2 J m 

KI n (I n + 1) , and 2 I n J 
2
n 

ops. Note that for solving the linear regression problem in line

2, QR solver is used. Thus, the cost of HOSRDA is simplified as

 (LKI 2 + L (J 2 
1 

+ J 2 
2 
) I) , where I = max (I 1 , I 2 ) and L is the number of

terations of the loop in line 4 of Algorithm 1 . 

. Results and discussion 

In this study, Tensor Toolbox [4 8,4 9] , by Bader and Kolda, is

sed for tensor operations in MATLAB codes. 

.1. Dataset 

Our dataset is data of a P300 speller from BCI Competition III-

ataset II, provided by Wadsworth center, Albany, NY, USA. 1 The

xperiment is recorded according to the paradigm of Donchin et al.

n [50] , originally by [51] . 

In this paradigm a 6 × 6 table of alphanumeric characters is

resented to the subject. While the rows and columns of the ta-

le are successively and randomly intensified at a rate of 5.7 Hz,

he subject is supposed to focus on a specific character, which is

rescribed by the investigator. Among all 36 intensifications, one

articular row and one particular column contain the target char-

cter, causing the recorded responses to these two intensifications

e different from the columns/rows that do not contain the desired

http://www.bbci.de/competition/iii/
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Algorithm 1: Higher Order Spectral Regression Discriminant 

Analysis (HOSRDA). 

Input : K training data {X k ∈ R 

I 1 ×... ×I N , k = 1 , · · · , K} along 

with their labels { c k , k = 1 , · · · , K} , J n , n=1,… ,N 

Output : U 

( n ) : N orthogonal basis factors I n × J n , n=1,… ,N. 

1 Initialize U 

( n ) , n = 1 , · · · , N. 

2 ¯̄X = 

1 
K 

∑ K 
i =1 X i . 

3 Calculate ˆ X according to equations (33). 

4 repeat 

5 for n = 1 to N do 

6 H 

−n = 

ˆ X ×−( n,N+1 ) { U 

T } . 
7 P n = 

∏ N 
m =1 
m � = n 

J m 

. 

8 for c = 1 to C do 

9 Y ( c ) = repmat ( rand(P n , J n ) , K c , 1 ) . 

10 end 

11 Y = 

[
Y ( 1 ) ; · · · ;Y ( C ) 

]
. 

12 Solve H 

−n T 

( n ) 
U 

( n ) = Y for U 

( n ) . 

13 U 

( n ) = Gram − Schmidt 
(
U 

( n ) 
)
. 

14 end 

15 until Stop Criterion is met; 
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Fig. 2. The HOSRDA learning algorithm is executed for data of 10 randomly selected 

subsets of train set (data of 45 characters). Each line represents the convergence 

curve of one execution. It is apparently seen that the convergence trend does not 

depend on the specifications of the set used to train the learning stage. 
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haracter. We call the latter intensifications target stimulations and

now that their responses contain a P300-like evoked potential

50] , which is not present in the former intensifications ( non tar-

et stimulations ). Therefore a specific character can be determined

hrough detecting the row and column with the largest P300 re-

ponses corresponding to the target stimulations. Each column/row

ntensifies 15 times. For each character we have 12 × 15 = 180 in-

ensifications, from which 2 × 15 = 30 stimuli are target. For more

nformation on the paradigm (e.g. inter-stimuli interval, duration

f intensification, etc.) see [52] . 

The 64 channel EEG data were acquired at sampling frequency

f 240 Hz and bandpass filtered in the band 0.1–60 Hz. The train-

ng set for each of the two subjects contains the EEG data of 85

haracters and the test set includes 100 characters. The true char-

cters of the test dataset is published with the results of competi-

ion in the competition website. 2 

For each channel, we have extracted the samples of 667 ms af-

er each intensification onset as a trial. Each trial was bandpass

ltered between 0.1 and 10 Hz with 8-order Chebyshev type I fil-

er and then decimated to 20 Hz. In this way each trial consists of

4 samples (the same preprocessing has been done in [53] ). Now

he data should be tensorized: we have samples of K trials from 64

hannels, each containing14 samples; so we can construct a third

rder tensor of size 64 × 14 × K , where its modes are Channel

Time × Trials . This way of tensorizing EEG data including ERP

as been used previously in [36,37] . For this kind of tensorization,

ach trial is a second order tensor (matrix) and all trials are con-

atenated in a third order tensor. 

.2. Selecting number of features 

In this part we will provide our experimental analysis of find-

ng best, smallest subspace dimension on data of P300 speller.

o find the minimum dimension of HOSRDA subspace we assume

 � J 1 = J 2 and select the smallest J between 1 and 5. For this pur-

ose, we have used Hold Out cross validation method [46] . For each
2 http://bbci.de/competition/iii/results/index.html. 

 

t  

t  
, we select 45 random characters from the training set and call its

ata hold out train set , the data of remaining 40 characters build

he cross validation test set (which we call hold out test set ). Then

e will run the Algorithm 1 with hold out train set and learn the

OSRDA subspace factor matrices, on which the hold out train and

est set are mapped to get the discriminant features. Next, the ac-

uracy of character detection in hold out test set is computed. For

ach J we repeat this procedure 10 times. Among the values for J

ith largest mean accuracy, the smallest one with smaller standard

eviation, will be selected.The best values of J have been selected

o be 3 for both subjects. 

.3. Convergence and stability 

Like all iterative algorithms, HOSRDA needs a stop criterion,

hich guarantees a stable convergence of the algorithm. Different

top criteria have been proposed in literature of tensor-based algo-

ithms [41,44,54] 

Since our algorithm maximizes the Fisher ratio, we propose the

ollowing stop criterion: 

rror = | F isher Ratio ( i ) − F isher Ratio ( i − 1 ) | < ε (34)

here FisherRatio ( i ) is the Fisher ratio of training data that is pro-

ected on the HOSRDA subspace basis factors in the i th iteration.

n other words, this criterion causes to break the iterative loop

f learning when the class separability of training data projections

oes not change any more. 

Inspired by [41] , we have conducted an experiment for data of

ubject B of P300 speller dataset to check the convergence and sta-

ility of this stop criterion on our data: we executed the HOSRDA

earning algorithm for trials of 10 randomly selected subsets of

rain set (each subset contains data of 45 randomly selected char-

cters) and plotted the graph of Error vs. Iteration number ( Fig. 2 ).

ccording to this graph, we can experimentally claim that the con-

ergence trend does not depend on the specifications of the train-

ng set. Note that in our next experiments we selected ε = 0 . 0 0 05 .

.4. Character detection performance 

For a P300 speller, the most important result to be reported is

he character detection performance: It means how many charac-

ers of test data can be truly predicted and it is in direct relation

http://bbci.de/competition/iii/results/index.html
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Table 1 

The accuracy of character detection of different methods applied on two subjects of dataset II of BCI com- 

petition III, when R repetitions per intensification is used. Dashes indicate that the related reference has not 

reported any results in that field. 

SubjectA SubjectB mean Subject 

5 10 15 5 10 15 5 10 15 R 

HOSRDA + LDA 63 84 96 82 94 97 72.5 89 96.5 

eSVM [53] 72 83 97 75 91 96 73.5 87 96.5 

CNN-1 [55] 61 86 97 79 91 92 70 88.5 94.5 

MCNN-1 [55] 61 82 97 77 92 94 69 87 95.5 

EFLD [56] 65 82 93 78 93 97 71.5 87.5 95 

SRDA 54 86 95 71 89 95 62.5 87.5 95 

STDA 56 82 95 80 93 95 68 87.5 95 

HODA + LDA 49 79 92 74 93 96 61.5 86 94 

SWLDA [57] – – – – – – – – 92.5 

Reg. + HODA+LDA [40] – – – – – – – – 92 
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t  
with P300 detection performance. We have applied our proposed

algorithm for character detection in dataset II of BCI competition

III and has reached mean accuracy equal to 96.5%, 89%, and 72.5%

for 15, 10, and 5 repetitions per intensification, respectively. This

result is comparable to other reported results on this dataset in

Table 1 , where R is the number of repetitions per intensification

(note that the first R repetition of each intensification is used from

the dataset.). It can be seen that for subject B, HOSRDA outper-

forms all the previously reported methods, while for subject A, its

results are fairly comparable with other methods. 

The winner group of the competition [53] has reported 96.5%

of accuracy (average for the two subjects). They have used Ensem-

ble of SVM classifier along with sequential channel selection. Ce-

cotti et al. [55] proposed seven classifiers based on convolutional

neural network (CNN) with the best result of 95.5% for a multi-

classifier CNN (MCNN). Salvaris et al. [56] used discrete-wavelet

transform (DWT) for feature reduction and an Ensemble of Fishers

Linear Discriminants (EFLD) for classification and achieved average

accuracy of 95% for the two subjects. Krusienski et al. [57] intro-

duced the use of Stepwise Linear Discriminant Analysis (SWLDA)

and reported accuracy of 92.5% . Onishi et al. exploited HODA

for feature reduction from tensor of polynomial approximations of

each trial [40] ; they reached an average accuracy of 92% on this

dataset (in Table 1 this method is cited as Reg.+HODA+LDA, in

which “Reg.” stands for “Regression” and indicates that the data

tensors are built by using regression approximations of each trial).

Note that we have included the results reported in original pa-

pers in Table 1 ; for having more information about the parameters

and structures of the methods, we refer the readers to the original

references. 

We have also compared our proposed method with STDA

[41] and HODA [7] , as the state-of-the-art tensor-based discrim-

inant analysis methods used for data of P300 speller paradigm.

STDA is implemented by authors, and HODA is implemented us-

ing NFEA toolbox [58] , by imposing the assumption of J 1 = J 2 .

From Table 1 it is clear that HOSRDA+LDA outperforms STDA and

HODA+LDA in character detection. As explained before, STDA is a

special formulation of HODA. The differences in performance of

STDA and HODA+LDA may be due to some differences in imple-

mentations or stop criteria used for them due to the fact that NFEA

is not an open source toolbox. 

Comparing the performance of SRDA and HOSRDA, we can ob-

serve that HOSRDA has a better performance. 3 However, It is well

known that tensor-based discriminant analysis avoids the curse of

dimensionality and does not suffer from Small Sample Size (SSS)

problem [8,41] and therefore, the superiority of HOSRDA over SRDA
3 Note that to implement SRDA in MATLAB the source codes provided by the first 

author of [45] on his website ( http://www.cad.zju.edu.cn/home/dengcai/ ) are used. 

s  

c  

o  

l  
ecomes crystal clear when facing SSS problem, where small num-

er of training samples are available. For comparing the perfor-

ance of SRDA and HOSRDA in SSS problem, the character detec-

ion performances of HOSRDA and SRDA are computed when the

umber of training characters are varied from a small number to

 rather large one, and the graphs in Fig. 3 are plotted. It can be

een that HOSRDA has a significantly better performance in facing

SS problem. 

By comparing the proposed method with the other algorithms

n terms of runtime complexity, the following results are obtained.

he method of the winners (eSVM) have exploited advance en-

emble of SVMs classification with channel selection [53] , which

as hours of training time. Additionally, from the Table 1 we can

ee that convolutional neural network’s performance is very good.

owever, it has also a complex and high computational training

rocedure. Besides, the approach of tensor construction used in

40] is a time consuming process, while we construct our tensor

rom the raw data (bandpass filtered only). Generally, the tensor-

ased feature reduction techniques such as HOSRDA, HODA, and

TDA require a very short training time to learn the subspace ba-

is factors, for example, HOSRDA+LDA training stage takes 2.55 s

n average for the two subjects in this P300 speller dataset. This

an be regarded as a great advantage of HOSRDA+LDA over other

omplex methods, since it can extremely reduce the time of train-

ng stage of the BCI system. One may claim tensor techniques are

omplex tools; however, with a more precise glance at tensor al-

ebraic operations, it will turn out to be simple concatenation of

ectors and matrices and matrix multiplications. 

.5. Spatial projections of HOSRDA 

An interesting point is the relation between spatial basis fac-

ors and the spatial properties of P300. Fig. 4 (a) depicts the three

patial factor matrices of subject B. To evaluate how much these

patial projections are meaningful, we use [53] as a benchmark,

here the importance of channels are marked on a scalp to-

ography due to their ranking in a channel selection sequen-

ial procedure ( Fig. 4 (b)). Comparing Fig. 4 (a) and (b), it is clear

hat HOSRDA has been successful in selecting the most important

hannels. 

.6. Complexity analysis 

According to Sections 3.3.1 and 4.1 , one can see in the case that

he number of training samples is significantly large in compari-

on with the sizes of training data dimensions (i.e. I 1 and I 2 ), the

omputational complexity of HOSRDA and HODA are in the same

rder. However, if we are dealing with a small sample size prob-

em, where the number of training samples are smaller than the

http://www.cad.zju.edu.cn/home/dengcai/
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Fig. 3. Character detection performance of HOSRDA and SRDA for subject (a) A and (b) B in terms of number of training characters. 

Fig. 4. (a) Spatial basis factors of HOSRDA for Subject B. (b) The results of channel ranking in [53] for Subject B. The darker the circle around a channel, the higher ranked 

the channel. (For interpretation of the colors of color bars, the readers are referred to the online version of the article.) 
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6

 

c  
umber of features, the computational complexity of HOSRDA will

e considerably smaller due to the factor O ( LI 3 ) in complexity of

ODA. Additionally, it is worth noting that if we exploit compu-

ationally low-cost, iterative algorithms for solving the least square

roblem (such as LSQR [59] as cited in [45] ), it will need first order

umber of flops (instead of second order) in the L iterations of the

terative algorithm. This results in a notable drop in the computa-
ional complexity of HOSRDA even in the case when the number

f training samples is large. 

. Conclusion 

In this paper a new tensor-based feature reduction technique,

alled HOSRDA was proposed. HOSRDA is the higher order ex-
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tension of SRDA and solves problem of eigendecomposition in

HODA (higher order extension of LDA) via a regression problem.

We exploited our proposed algorithm as a tool for feature re-

duction of P300 Speller data from BCI competition. HOSRDA+LDA

reaches an accuracy of character detection of 96.5% (average for

the two subject), which is better than almost all the published re-

sults on this dataset. We also compared the performance of HOS-

RDA+LDA with the state-of-the-art tensor-based discriminant anal-

ysis method used for classification in P300-based BCI, STDA, and

showed that the proposed method outperforms it. The proposed

methods’ learning stage is in average 2.55 s for each subject, which

is extremely less that other methods (for example eSVM needs

hours of training). Since HOSRDA solves mainly a regression prob-

lem, further studies can be done to accompany regularization tech-

niques (e.g. sparsity of factor matrices) with HOSRDA and its ap-

plications in other scopes of data analysis. Additionally, since the

features extracted by HOSRDA are tensors, some tensor based clas-

sifiers may result in a better performance. 
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