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Abstract—In this paper, we present a novel framework for the
coupled hidden Markov model (CHMM), based on the forward
and backward recursions and conditional probabilities, given a
multidimensional observation. In the proposed framework, the in-
terdependencies of states networks are modeled with Markovian-
like transition laws that influence the evolution of hidden states
in all channels. Moreover, an offline inference approach by maxi-
mum likelihood estimation is proposed for the learning procedure
of model parameters. To evaluate its performance, we first ap-
ply the CHMM model to classify and detect disturbances using
synthetic data generated by the FitzHugh–Nagumo model. The
average sensitivity and specificity of the classification are above
93.98% and 95.38% and those of the detection reach 94.49%
and 99.34%, respectively. The method is also evaluated using
a clinical database composed of annotated physiological signal
recordings of neonates suffering from apnea-bradycardia. Differ-
ent combinations of beat-to-beat features extracted from electro-
cardiographic signals constitute the multidimensional observations
for which the proposed CHMM model is applied, to detect each
apnea bradycardia episode. The proposed approach is finally com-
pared to other previously proposed HMM-based detection meth-
ods. Our CHMM provides the best performance on this clinical
database, presenting an average sensitivity of 95.74% and speci-
ficity of 91.88% while it reduces the detection delay by −0.59 s.

Index Terms—Apnea-bradycardia (AB), coupled hidden
Markov model (CHMM), electrocardiography (ECG), forward-
backward (FB) algorithm, hidden Markov model (HMM).

I. INTRODUCTION

E PISODES of apnea-bradycardia (AB), consisting of a res-
piratory pause (apnea) accompanied by oxygen desatu-
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ration and a significant drop in heart rate (bradycardia), are
commonly observed during the first weeks of life of preterm
newborns. These episodes compromise tissue perfusion, affect-
ing the normal development of the neurological and cardiovas-
cular systems of the preterm infant and may even be lethal [1],
[2]. The detection and characterization of AB episodes during
continuous cardio-respiratory monitoring in neonatal intensive
care units is thus of primary importance.

Although many methods have been presented in the liter-
ature for the detection of adult apnea events [3]–[5], the de-
tection of AB episodes on preterm infants requires specific
processing, integrating an analysis of the dynamics of heart
rate through the event. The most common approaches for heart
rate characterization in this context are simply based on the
detection of bradycardia, by applying a fixed or an adaptive
threshold on heart rate time-series [6], [7]. In our previous
works, we have proposed different methods to improve the
characterization of heart rate dynamics of AB episodes us-
ing abrupt-change detection methods [8], and different kinds
of unidimensional hidden Markov models (HMM) [9]–[11]. In
this paper, we present a significant improvement of our previ-
ous methods, by proposing a new methodological framework
for the characterization of multivariate time-series dynamics,
based on a particular kind of Bayesian network (BN), called
the coupled hidden Markov model (CHMM). We also present
a novel AB detection method for preterm infants, integrating
a phase of multivariate feature extraction from the ECG, and
a phase of time-series characterization through the proposed
CHMM.

HMM is a particular type of BN, in which it is assumed that
a sequence of discrete hidden states generates a sequence of ob-
servations of the same length. The topology of the state network
and their probabilistic pattern rule the transition from one state
to another. The state transition and initial state distribution gov-
ern the evolution of the unobserved hidden states, whereas the
observation probability controls the observation data, for a given
state sequence [12]. Although HMMs are, by definition, single-
process models, different approaches have been proposed to use
them for the analysis of multivariate data. One common ap-
proach is to consider the observation data as a multidimensional
random variable. Although these approaches provide interest-
ing results in some applications [13], [14] and [10], the single-
process nature of HMM can not be adapted easily to other cases,
where observations are indeed generated by distinct underlying
processes, such as in vision, speech recognition [15] or forensic
analysis [16].
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In order to overcome these limitations, CHMM has been
proposed by Brand in [15], [17] as a generalization of HMM.
In a CHMM, each channel (Markov chain) is associated with
an univariate observation to represent its underlying generation
process, and transition probabilities depend on the current state
of all channels. However, this structure implies that the state
space grows exponentially with respect to the number of chan-
nels [17]. In order to cope with this complexity, Brand proposed
a simplification, considering a factorization of the transition
matrix

P (Sς
t |S1

t−1 , S
2
t−1 , . . . , S

C
t−1) =

C∏

c=1

P (Sς
t |Sc

t−1) (1)

where Sc
t denotes the state of channel c at time t. According to

Brand’s assumption, the state conditional probability in the left
side of (1) is substituted by the product of all marginal condi-
tional probabilities. This model has been successfully applied
in the field of sensor fusion, such as in forensic electronics [16],
genetics [18], audio-visual speech recognition systems [19] and
target tracking [20].

In another study, Rezek et al. computed the forward-backward
(FB) parameters without considering Brand’s assumption in (1)
and derived the maximum likelihood (ML) estimators for the
CHMM parameters using the expectation maximization (EM)
algorithm [21]. They considered the CHMM as a one-channel
HMM with an ordered C-fold state formed by (S1 , S2 , . . . , SC ),
with a state space of N =

∏C
c=1 nc and a transition matrix

of dimension N × N . The algorithm’s complexity reaches
O(TM 2C ) with M = nc . Zhong et al. proposed another ap-
proach in [22], [23], in which the transition probability is ex-
pressed under the form of a weighted sum of marginal condi-
tional probabilities, associated with a rather complex estimation
method for the model parameters considering the normalization
of weights.

All the previous methods are based on the recursive rela-
tions of FB variables, for which the learning procedure can
be complicated and time consuming, such as in [22]. In this
paper, we propose an original framework for CHMM with a
considerable reduction in the complexity of the FB algorithm.
Section II presents the methodological contributions regarding
the proposed CHMM framework, addressing the problems of
likelihood evaluation, state sequence optimization and model
parameter learning. Section III presents the strategy of applying
the proposed framework for detection of AB. In Section IV,
the proposed method is quantitatively compared with Rezek’s
approach [21], as well as with classical HMM and its generaliza-
tion, hidden semi Markov model (HSMM) [24], using simulated
and a real database. Finally, Section V presents the conclusions
of this study.

II. PROPOSED CHMM FRAMEWORK

Let’s note {Sc
1 , S

c
2 , . . . , S

c
M (c)} to be the state space of chan-

nel c in a CHMM and let qc
t and oc

t , t = 1, 2, . . . , T be the
state and the observation of channel c at time t, respectively. C
is the total number of channels in the CHMM model. Also, let
ac ′c

nm = P (qc
t = Sc

m |qc ′
t−1 = Sc ′

n ) denotes the probability of tran-
sition to state m in channel c at time t, subjected to being in state

Fig. 1. BN representation for the proposed CHMM showing the probabilistic
relations among the states and observations for the particular case of a two-
channel CHMM.

n in channel c′ at time t − 1. The probability of the observation
is written as bm (oc

t ) = P (oc
t |qc

t = Sc
m ), where oc

t may be either
discrete or continuous. We also define ot = {o1

t , o
2
t , . . . , o

C
t }.

In this paper, bm (oc
t ) is assumed to be normally distributed,

and characterized by its mean (μc
m ) and standard deviation

(σc
m ). For simplicity, we also note vc

t (m) ≡ {qc
t = Sc

m}, so that
ac ′c

nm = P (vc
t (m)|vc ′

t−1(n)). The structure of the interchannel
coupling is depicted in Fig. 1 for the two-channel case.

In order to define the FB parameters, first consider the prob-
ability of observation of each channel at time t given all the
previous observations

P (oς
t |o1:t−1) =

M (ς )∑

m=1

P (vς
t (m), oς

t |o1:t−1)

=
M (ς )∑

m=1

bm (oς
t )P (vς

t (m)|o1:t−1). (2)

Following [24], we define the forward parameter as

ας
t|x(m) = P (vς

t (m)|o1:x) (3)

where for x = t − 1, t, T , the above quantity is termed as pre-
dicted, filtered and smoothed probability, respectively. The for-
ward recursion based on the predicted probability is determined
by

ας
t|t−1(m) = P (vς

t (m)|o1:t−1)

=
M (1)∑

n1 =1

M (2)∑

n2 =1

. . .

M (C )∑

nC =1

P (vς
t (m), v1

t−1(n1), v2
t−1(n2)

, . . . , vC
t−1(nC )|o1:t−1)

=
M (1)∑

n1 =1

M (2)∑

n2 =1

. . .

M (C )∑

nC =1

P (vς
t (m)|v1

t−1(n1), v2
t−1(n2)

, . . . , vC
t−1(nC ), o1:t−1)

×P (v1
t−1(n1), . . . , vC

t−1(nC )|o1:t−1) (4)
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where the first term can be simply calculated by Brand’s assump-
tion in (1). o1:t−1 can be omitted since knowing all the previous
states, it does not add any information to estimate vς

t (m)

P (vς
t (m)|v1

t−1(n1), . . . , vC
t−1(nC ), o1:t−1)

=
C∏

c=1

P (vς
t (m)|vc

t−1(nc)). (5)

For the second term we show in Appendix B that the states of
channels given the observations o1:t−1 are independent

P (v1
t−1(n1), . . . , vC

t−1(nC )|o1:t−1) =
C∏

c=1

P (vc
t−1(nc)|o1:t−1).

(6)

Substituting (1), (5) and (6) in (4), the following recursion
can be obtained:

ας
t|t−1(m) =

M (1)∑

n1 =1

M (2)∑

n2 =1

. . .

M (C )∑

nC =1

C∏

c=1

P (vς
t (m)|vc

t−1(nc))

×P (vc
t−1(nc)|o1:t−1). (7)

Note that P (vς
t (m)|vc

t−1(nc))�=P (vς
t (m)|vc

t−1(nc), o1:t−1).
Hence, the summations can be exchanged with the product.

ας
t|t−1(m) =

C∏

c=1

M (c)∑

nc =1

P (vς
t (m)|vc

t−1(nc))P (vc
t−1(nc)|o1:t−1)

=
C∏

c=1

M (c)∑

nc =1

acς
nc m αc

t−1|t−1(nc)

=
C∏

c=1

M (c)∑

nc =1

acς
nc m αc

t−1|t−2(nc)b̃c
nc

(ot−1) (8)

where b̃ς
m (ot) is defined as the ratio of the filtered probability,

ας
t|t(m), over the predicted probability ας

t|t−1(m).

b̃ς
m (ot) �

ας
t|t(m)

ας
t|t−1(m)

=
P (ot |vς

t (m), o1:t−1)
P (ot |o1:t−1)

=
P (ot |vς

t (m), o1:t−1)∏C
c=1 P (oc

t |o1:t−1)
. (9)

The last equality is based on the observation decomposition
(cf., Appendix A)

P (ot |o1:t−1) =
C∏

c=1

P (oc
t |o1:t−1). (10)

Assuming the effects of other channels, the nominator of (9) is
summarized as the product of distinct channel effects as follows:

P (ot |vς
t (m), o1:t−1) =

M (1)∑

n1 =1

. . .

M (C )∑

nC =1︸ ︷︷ ︸
C−1 (except channel ς)

P (ot , v
1
t (n1), . . . , vC

t (nC )|vς
t (m), o1:t−1) (11)

=
M (1)∑

n1 =1

. . .

M (C )∑

nC =1︸ ︷︷ ︸
C−1 (except channel ς)

P (o1
t |v1

t (n1))P (o2
t |v2

t (n2)) . . . P (oC
t |vC

t (nC ))

×P (v1
t (n1), . . . , vC

t (nC )|vς
t (m), o1:t−1). (12)

Since the probability calculation of oc
t only needs the corre-

sponding state, i.e., vc
t (nc), we can establish the following equa-

tion:

P (ot |vς
t (m), o1:t−1)

= bm (oς
t )

M (1)∑

n1 =1

. . .

M (C )∑

nC =1︸ ︷︷ ︸
C−1 (except channel ς)

bn1 (o
1
t ) . . . bnC

(oC
t )

×P (v1
t (n1), . . . , vC

t (nC )|vς
t (m), o1:t−1). (13)

For achieving a recursion, we utilize the following simplifi-
cation [also necessary to prove (6)]:

P (v1
t (n1), . . . , vC

t (nC )|o1:t−1) =
C∏

c=1

P (vc
t (nc)|o1:t−1).

(14)

Then we have

P (v1
t (n1), . . . , vC

t (nC )|vς
t (m), o1:t−1) =

∏C
c=1 P (vc

t (nc)|o1:t−1)
P (vς

t (m)|o1:t−1)
=

C∏

c=1,c �=ς

αc
t|t−1(nc).

(15)

Hence, using (2), we have

P (ot |vς
t (m), o1:t−1)= bm (oς

t )
C∏

c=1,c �=ς

M (c)∑

nc =1

bnc
(oc

t )α
c
t|t−1(nc)

= bm (oς
t )

C∏

c=1,c �=ς

P (oc
t |o1:t−1). (16)

Accordingly, b̃ς
m (ot) can be calculated by

b̃ς
m (ot) =

bm (oς
t )

P (oς
t |o1:t−1)

. (17)

Backward parameter is defined in a way that the probability
of being in state m of channel c given all the samples of obser-
vations, i.e., smoothed probability, could be easily calculated by
the product of forward and backward parameters.

ας
t|T (m) = ας

t|t−1(m) × βς
t (m) (18)

which leads to

βς
t (m) � P (vς

t (m)|o1:T )
P (vς

t (m)|o1:t−1)

= b̃ς
m (ot)

P (ot+1:T |vς
t (m), o1:t)

P (ot+1:T |o1:t)
. (19)
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Fig. 2. Block diagram of training procedure. E step: assuming the set of model parameter λ, Λc ′c
t (m′, m) and αt |T (m ) are computed for m, m′ = 1, 2, . . . , M

and t = 1, 2, . . . , T using FB algorithm. M step: calculation of the model parameters using (35) and (37)–(39).

The backward recursion is derived based on the next transition
in channel ς as follows:

βς
t (m) = b̃ς

m (ot)
M (ς )∑

n=1

P (ot+1:T , vς
t+1(n)|vς

t (m), o1:t)
P (ot+1:T |o1:t)

= b̃ς
m (ot)

M (ς )∑

n=1

P (ot+1:T |vς
t+1(n), vς

t (m), o1:t)
P (ot+1:T |o1:t)

×P (vς
t+1(n)|vς

t (m), o1:t). (20)

Considering (19) and P (ot+1:T |vς
t+1(n), vς

t (m), o1:t)=
P (ot+1:T |vς

t+1(n), o1:t), the first term in the summation can
be identified as βς

t+1(n). The second term can be written as

P (vς
t+1(n)|vς

t (m), o1:t)

=
M (1)∑

n1 =1

. . .

M (C )∑

nC =1︸ ︷︷ ︸
exceptς

P (vς
t+1(n), v1

t (n1), . . . , vC
t (nC )|vς

t (m), o1:t)

=
M (1)∑

n1 =1

. . .

M (C )∑

nC =1︸ ︷︷ ︸
except ς

P (vς
t+1(n)|v1

t (n1), . . . , vC
t (nC ), vς

t (m), o1:t)

×P (vc
t (nc), . . . , vC

t (nC )|vς
t (m), o1:t)

= aς ς
mn

C∏

c �=ς

M (c)∑

nc =1

acς
nc nαc

t|t−1(nc)b̃c
nc

(ot). (21)

Thus, the backward recursion is given by

βς
t (m) = b̃ς

m (ot)
M (ς )∑

n=1

{
βς

t+1(n)aς ς
mn

×
C∏

c=1,c �=ς

M (c)∑

nc =1

acς
nc nαc

t|t−1(nc)b̃c
nc

(ot)
}
. (22)

The initial condition of parameters are βc
T (m) = b̃c

m (oT ) and
αc

1|0 = πc
m bc

m (o1).
We resume hereby the three main problems treated in the

context of HMM.

Problem 1: Evaluation of the likelihood of an observation
sequence, given the model parameters

P (o1:T ) = P (o1)
T∏

t=2

P (ot |o1:t−1) (23)

where

P (ot |o1:t−1) =
C∏

c=1

P (oc
t |o1:t−1) (24)

the latter can be calculated by (2).
Problem 2: Finding the optimal state m∗

c that generates the
observations. We can use the maximum a posteriori estimation

m∗
c(t) = arg max

m
P (vc

t (m)|o1:T ) = arg max
m

αc
t|T (25)

to construct the optimal sequence of channel c: Q∗
c =

{m∗
c(1),m∗

c(2), . . . ,m∗
c(T )}.

Problem 3: Learning of model parameters λ =
{ac ′c

m ′m , μc
m , σc

m , πc
m} that best fit the observation {o1:T }.

The Baum–Welch algorithm [25] can be applied, using the
maximum likelihood (ML) criterion. As a special case of the
estimation-maximization (EM) algorithm, the likelihood is
estimated using the FB parameters in the E-step while the
M-step uses expected counts of transitions and observations
to reestimate the parameters λ (see Fig. 2). This procedure is
performed iteratively until convergence.

Liporace generalizes the Baum–Welch algorithm to a larger
class of distributions of observation probability than just Gaus-
sian distribution [26]. In the following, we present a general-
ization of the reestimation method inspired from the Liporace
paper. The likelihood probability of the observations {o1:T }
given the model parameters λ can be written as

Pλ(o1:T ) =
∑

S
Pλ(o1:T ,S) (26)

while Pλ(o1:T ,S) can be written as

Pλ(o1:T ,S) =
C∏

c=1

{πc
1b1(oc

1) ×
T∏

t=2

C∏

c ′=1

ac ′c
mt−1 mt

bmt
(oc

t )}

(27)

where S is the set of the state sequences of all channels. The
objective is to maximize Pλ(o1:T ) over all parameters λ. The
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algorithm starts with an initial guess of λ0 , and then updates
it to ensure that Pλk + 1 (o1:T ) ≥ Pλk

(o1:T ) in each iteration. As
in the EM algorithm structure, an auxiliary function Q(λ, λ̄) is
used, defined by (see [26])

Q(λ, λ̄) =
∑

S
Pλ(o1:T ,S) log(Pλ̄(o1:T ,S)). (28)

Extra normalization conditions include

M (c)∑

m=1

āc ′c
m ′m = 1, and

M (c)∑

m=1

π̄c
m = 1 (29)

for all channels (c) and states of channel (m′). These constraints
are integrated using the Lagrange multiplier method to yield the
maximization problem

λnew = arg max
λ̄

Q(λ, λ̄) +
C∑

c=1

θc

⎛

⎝
M (c)∑

m=1

āc ′c
m ′m − 1

⎞

⎠

+
C∑

c=1

εc

⎛

⎝
M (c)∑

m=1

π̄c
m − 1

⎞

⎠ (30)

where θc , εc are the Lagrange parameters.
A description of the reestimation procedure is detailed as

follows [26].

A. Reestimation of Transition Matrices

Differentiate (30) with respect to each āc ′c
m ′m to obtain

∑

S
Pλ(o1:T ,S)

∑

t∈Tc ′c
m ′m

1
āc ′c

m ′m

− θc = 0 (31)

where Tc ′c
m ′m = {t : qc ′

t−1 = Sm ′ , qc
t = Sm}. Interchange the or-

der of summations as in [26] to get

āc ′c
m ′m θc =

T∑

t=1

∑

S∈Sc ′c
m ′m (t)

P (o1:T ,S)

=
T∑

t=1

P (o1:T , qc ′

t−1 = Sm ′ , qc
t = Sm ) (32)

where Sc ′c
m ′m (t) = {S : qc ′

t−1 = Sm ′ , qc
t = Sm} denotes the set

of state sequence having state m′ at time t − 1 and state m at
time t. Summing over all states of channel c, we obtain θc

θc =
T∑

k=1

M (c)∑

m=1

P (o1:T , qc ′

t−1 = Sm ′ , qc
t = Sm ). (33)

Furthermore, we define Λc ′c
t (m′,m) = P (qc ′

t−1 = Sm ′ , qc
t =

Sm |o1:T ) as the conditional smoothed transition probability

Λc ′c
t (m′,m) = P (vc ′

t−1(m
′), vc

t (m)|o1:T )

=
P (vc ′

t−1(m
′), vc

t (m), ot:T |o1:t−1)
P (ot:T |o1:t−1)

= βc
t (m)ac ′c

m ′m αc ′

t−1|t−2(m
′)b̃m ′(oc ′

t−1). (34)

It is then straightforward to achieve the reestimation for the
transition probability

āc ′c
m ′m =

∑T
t=1 Λc ′c

t (m′,m)
∑T

t=1
∑M (c)

m ′′=1 Λc ′c
t (m′,m′′)

. (35)

B. Reestimation of π̄c
m

Adding the appropriate constraint for initial probability of
being in state m to the auxiliary function, we have

∂

∂π̄c
m

{Q(λ, λ̄) − εc(Σ
M (c)
m=1 π̄c

m − 1)} = 0 (36)

∑

S
Pλ(o1:T ,S)

1
π̄c

m

− εc = 0

π̄c
m εc = P (o1:T , qc

1 = Sm )

εc =
M (c)∑

m=1

P (o1:T , qc
1 = Sm ).

Thus, using (18), the reestimation of initial probability is
straightforward

π̄c
m =

αc
1|T (m)

∑M (c)
m ′=1 αc

1|T (m′)
. (37)

C. Reestimation of μ̄c
m and σ̄c

m

As previously mentioned, the density functions of observa-
tions bm (oc

t ) are assumed to be Gaussian functions. Applying
the derivation on auxiliary function with respect to the compo-
nents of μ̄c

m , we can obtain

μ̄c
m =

∑T
t=1 αc

t|T (m)oc
t

∑T
t=1

∑M (c)
m ′=1 αc

t|T (m′)
(38)

σ̄c
m =

∑T
t=1 αc

t|T (m)(oc
t − μ̄c

m )2

∑T
t=1

∑M (c)
m ′=1 αc

t|T (m′)
. (39)

III. EVALUATION METHOD

In this section, we present the method applied in this study to
evaluate the performance of the proposed CHMM framework,
in the contexts of classification and online detection, using both
simulated and real datasets. Quantitative performance evalua-
tion is based on common performance metrics and accomplished
in two steps: 1) training the CHMM models using a train dataset
and 2) performing classification or online detection on the test
dataset. Each channel represents a 1-D observation. To initialize
states parameters, the k-means clustering method is first applied
to the range of observations amplitudes in training data. Each
cluster is represented by a Gaussian distribution to characterize
the observation probability bm (oc

t ) while the number of clusters
is equal to the number of states.

In the following, we describe the proposed approach for ap-
plying the CHMM for the classification of simulated time-series.
Then, we explain how the proposed framework can be applied



532 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 20, NO. 2, MARCH 2016

for online detection. Note that the optimum number of states in
Markovian models are found by Bayesian information criterion
method.

A. Classification

In previous works [13], the problem of classifying a time-
series into one of K classes has been addressed by defining a set
of K competing models (M1 , . . . ,MK ), for which a learning
dataset corresponding to each class (L1 , . . . , LK ) is used to
estimate the model parameters of each model (λ1 , . . . , λK ).
Then, in the test phase, each time-series of the test dataset (O)
is analyzed by calculating the log-likelihood using each model:
log P (O | Q∗, λk ), j ∈ {1, 2, . . . ,K}, where Q∗ represents the
optimal state sequence. The classification result is obtained by
choosing the class corresponding to the model presenting the
maximum log-likelihood.

A similar approach is applied in this paper for the proposed
CHMM. However, in order to cope with the multichannel na-
ture of the CHMM, the overall log-likelihood for a CHMM
corresponding to class k will be obtained by summing the log-
likelihoods in all channels with their optimal state sequence Q∗

c

llk =
C∑

c=1

log{P (oc |Q∗
c , λk )}. (40)

B. Online Detection

The classification application can also be extended to online
detection, as in [13]. The data can be divided into overlapping
moving windows, and the classification procedure is applied to
each window. One of the K classes (i.e., class k) is defined to
represent the event of interest. The difference of log-likelihood
of class k from other classes can be obtained

llkj
total(t) = llk (t) − llj (t) (41)

where j ∈ {1, 2, . . . ,K} − {k}. In case of multiple channels as
in our proposed CHMM, the above equation can be rewritten as

llkj
total(t) =

C∑

c=1

(llck (t) − llcj (t)). (42)

An event corresponding to class k takes place in a window
containing time t if the following condition is satisfied:

llkj
total(t) > δkj (43)

where δkj is a constant threshold that should be optimized.

C. Performance Evaluation

We evaluate the performance of the classifiers and the detec-
tors using the most common metrics found in the literature: the
receiver operating characteristic (ROC) curve and its area under
curve (AUC) defined by sensitivity, and specificity of classifica-
tion. To express how successfully a detector recognizes events
without missing them, sensitivity [SEN = TP/(TP + FN)] is
used. Likewise, specificity [SPC = TN/(TN + FP)] measures
how exclusively it does not detect a wrong event. TP, FP, TN
and FN denote the number of true positives, false positives,
true negatives and false negatives, respectively. False positive

Fig. 3. (a) Simulated signals obtained from the FitzHugh–Nagumo model
(state variables v and r) with a disturbance applied in 300–305 (s) without noise.
(b) Focusing on v dimension with 5-dB additive noise, in the rest condition and
during activations with different dynamics (a1 and a2 ). Note that different
dynamics are obtained when using parameters a1 and a2 , while the amplitude
of the responses are similar.

rate error can also be defined as 1 − SPC. In a classification
task, AC = (TP + TN)/(N + P ), where N = TN + FN and
P = TP + FP, is also calculated to evaluate the accuracy of
the method. Moreover, time delay is another crucial metric for
the overall system performance evaluation in the case of early
detection of a desired event, and is defined as the difference
between the detected onset and the annotated onset of an event.

An ROC is traced using different threshold values in (43). The
point with optimum detection performance and related threshold
are chosen using a criterion called perfect detection (PD) defined
as the maximum product of sensitivity and specificity.

All the methods are executed five times with different records
in the training and test sets, in order to cross-validate the results.
Therefore, the mean and variance over all executions are re-
ported.

D. Evaluation Datasets

1) Simulated Data: The simulated data is generated with the
FitzHugh–Nagumo model, defined by the following differential
equations:

dv

dt
= 3(v − 1

3
v3 + r + I)

dr

dt
= −1

3
(v − a + 0.8r) (44)

where the variables r and v are set to their “rest” values (fixed
point) and disturbances are injected to the system by changing
the value of I from 0 to 1. The dynamics of the system depend
on the value of parameter a, which is assumed in this test to be
a random variable with a uniform probability density function
a1 ∼ U(0.58, 0.62) for the first class and a2 ∼ U(0.78, 0.82)
for the second class. The impact of changing parameter a in the
simulated data is illustrated in Fig. 3. The resemblance between
the time series in class 1 and class 2 makes the classification a
difficult issue. An appropriate classifier for such problem needs
to correctly differentiate the dynamics of these time series and
not only their instantaneous amplitudes. In order to evaluate
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Fig. 4. Example of time series extracted from test real data. The annotated
onset of the AB event is shown by dashed grey line.

the proposed approach, 200 sequences of 400 s duration at a
sampling frequency of 10 Hz are generated with a disturbance
introduced during 300–305 s [see Fig. 3(a)]. 40 segments of
300–310 s are used for training [cf., Fig. 3(b)] and the rest of
them for evaluation.

Concerning online detection, train data is similar to that used
for the classification case. However, the test data contain the
whole 400-s-duration signals and are processed with 10-s sam-
ple by sample sliding window. Finally, a white Gaussian noise
was added to achieve SNR value of 5 dB to all the database.
Moreover, since the range of signal amplitude variations in the
rest condition is lower than in dynamic conditions, the number
of states of the rest class is less.

2) Real Data: For real data analysis, we use a database ac-
quired during our previous works and consisting of 236, one-
lead ECG segments from 32 preterm infants, hospitalized in the
NICU at the University Hospital of Rennes, France [14]. ECG
signals were acquired at 400 Hz. This observational study was
approved by the ethical committee of the University Hospital of
Rennes and a written consent was obtained from the parents of
each infant. All data were anonymized at acquisition.

Each acquired ECG segment was denoised by a combination
of low-pass and notch filters for discarding the baseline and the
noise of 50 Hz, respectively. Individual beats for each segment
were detected using the Pan and Tompkins algorithm [27]. Fi-
nally, three ECG features were extracted in a beat-to-beat basis,
by applying a wavelet-based beat delineator described in detail
in [13]. The first obvious feature is the time interval between
two consecutive beats (RR interval), representing the cardiac
period, or the inverse of the heart rate, since a bradycardia event
is usually observed as a marked increase of cardiac period. The
time series representing the evolution of these cardiac periods
are called the RR series. Furthermore, the amplitude of R-wave
on the ECG (RAMP) has been considered since it is modulated
by the respiratory activity [28]. Some works have also reported
an increase in the duration of the QRS complex (QRSd) pre-
ceding episodes of AB, so this feature has also been extracted
[29]. The total set of features that will be used as observations
to evaluate the CHMM framework are thus: the RR interval,
R-wave amplitude (RAMP) and QRS duration (QRSd). The

TABLE I
COMPARISON OF THE CROSS-VALIDATION RESULTS CORRESPONDING TO

MARKOVIAN METHODS FOR OPTIMAL STATE NUMBER FOR DYNAMICS

CLASSIFICATION

Method Class � States SEN(%) SPC(%) AC(%)

a1 7 55.63 ± 37.30 91.56 ± 18.69 79.58 ± 10.13
HMM a2 7 83.13 ± 37.39 77.50 ± 18.63 79.38 ± 9.96

(v) rest 3 99.38 ± 0.77 100 ± 0 99.79 ± 0.26

a1 3 86.25 ± 5.23 90.63 ± 2.30 89.17 ± 1.59
HMM a2 3 81.25 ± 4.59 92.94 ± 2.52 89.04 ± 1.55
(v/r) rest 2 99.63 ± 0.34 100 ± 0 99.88 ± 0.11

a1 7 67.00 ± 12.67 84.50 ± 3.81 78.67 ± 4.74
HSMM a2 7 69.00 ± 7.62 80.50 ± 6.82 76.67 ± 4.64

(v) rest 3 94.00 ± 3.79 100 ± 0 98.00 ± 1.26

a1 3 100 ± 0 74.44 ± 1.26 82.96 ± 0.84
HSMM a2 3 48.88 ± 2.52 100 ± 0 82.96 ± 0.84

(v/r) rest 2 100 ± 0 100 ± 0 100 ± 0

a1 5 89.56 ± 31.49 96.75 ± 8.65 94.35 ± 11.26
CHMM a2 5 99.69 ± 0.53 93.25 ± 17.80 95.40 ± 11.85

(v/r) rest 3 90.75 ± 16.99 100 ± 0 96.92 ± 5.66

our a1 5 96.04 ± 9.69 97.19 ± 4.04 96.81 ± 3.43
CHMM a2 5 93.98 ± 6.26 95.38 ± 4.49 95.58 ± 4.00

(v/r) rest 3 95.13 ± 2.98 100 ± 0 98.38 ± 0.99

sampling frequency of these extracted signals is transformed to
10 Hz, using well-known interpolation techniques. Fig. 4 de-
picts an example of these features before, during and after an
AB episode.

The objective here is to detect, with the maximum detection
performance and the lowest detection delay, all events of AB of
the database. Two datasets are constructed for the learning phase,
consisting of segments of 7 s duration: LS1: composed of 30 seg-
ments taken randomly and beginning with a bradycardia event.
LS2: consisting of 30 segments taken randomly from the normal
parts of the series (without any AB event). The length of these
segments (7 s) corresponds to the average time measured from
the beginning of the bradycardia to the peak RR value within the
bradycardia episodes [9]. Two models are trained, correspond-
ing respectively to bradycardia and normal segments. Then, the
evaluation of the trained models for detecting the onset of brady-
cardia is applied with a sliding window of size T = 7 s. The test
dataset includes 40 sets of RR-RAMP-QRSd time-series includ-
ing mostly normal activity and one or more AB events.

IV. RESULTS

In this section, we report both the classification results on sim-
ulated data and the results of detection of disturbance in simu-
lated data and bradycardia arrhythmia in preterm infants. Com-
parisons are made with respect to existing Markovian-based
models such as HMM [12], HSMM [24] and the CHMM pro-
posed by Rezek et al. [21].

A. Classification of Dynamics in Simulated Data

A classification is performed on simulated data, by defining
three classes: a1 , a2 and a rest condition. We further assume that
the number of states of the two competing models is equal and
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Fig. 5. Examples of simulated responses for state variables of the FitzHugh–Nagumo model (observations) (b) v and (d) r, and the fitted Gaussian pdf bm (oc
t )

obtained for each state [(a) and (c), respectively] after the training phase. m different Gaussians can be observed in each case, each one characterizing one state of
the corresponding model. In (a) and (c) black, light grey and dashed dark grey kernels belong to states of rest, a1 and a2 models, respectively. Circles show the
source of error around rest conditions.

is more than that of the model for learning the rest condition.
The SEN, SPC and AC metrics are calculated for various num-
bers of states to find its optimum. Classification performance is
presented in Table I, including the results of univariate obser-
vation of HMM using just dimension v. All results are reported
with optimal state numbers. According to this table, coupling
approaches are more efficient in distinguishing the two dynam-
ics from each other compared with HMMs. Although our pro-
posed CHMM apparently shows superior performance in terms
of SEN and AC to separate dynamics related to a1 and a2 , it
fails to detect dynamics from rest condition accurately. Fig. 5
illustrates the source of this problem. This figure depicts two
dimensions of an observation, as well as their fitted Gaussian
probability density functions (pdf), each of which corresponds
to a state m of channel c of a model (bm (oc

t )). Focusing on
dark circles in the figure, we can observe that for a few samples
of the rest condition, the probability of observation generated
by one of the dynamic models is more than its probability in
rest model. This problem can be suppressed by increasing the
number of states in rest model, which leads to slow execu-
tion rate. So we accept some errors in classifying rest class
in order to separate dynamics from each other accurately and
rapidly.

B. Detection of Dynamics in Simulated Data

The detection of dynamic a1 is accomplished with first de-
tecting the disturbance from rest condition using a threshold

on ll
{a1 }{rest}
total . If a disturbance is detected, then using second

threshold on ll
{a1 }{a2}
total , we are able to determine which dynamic

(a1 or a2) has generated the observation. The disturbance which
is generated with a2 is not analyzed since it does not provide
any additional information. Similar to classification, we assume

the same number of states for dynamic models and the model
of rest condition has less states. The results corresponding to
the optimal number of states are reported in Table II where all
the metrics are related to the PD of the corresponding ROC. An
interesting result happens while using more than one dimen-
sion of observation, since multivariate HMM achieves better
SEN and SPC than univariate HMM. Moreover, coupling the
dimensions leads to better results than even multivariate HMM
because in CHMM, each dimension is processed by a Markov
chain and the coupling between them can extract the informa-
tion more efficiently than using these dimensions in multivariate
way in a single HMM. The SEN and SPC of our proposed model
reached 94.32% and 99.34%, respectively, and the time delay is
0.98 ± 0.16 s which are superior than the other methods.

C. Detection of AB in Real Data

For real data analysis, we construct LS1 and LS2 training data
for obtaining the parameters of the models corresponding to nor-
mal and bradycardia episodes and calculate the metrics on 40
test data. This process is repeated five times for cross-validation
with different, randomly chosen records, on the training and
evaluation datasets. However, prior to this procedure, since the
RAMP data are modulated by respiration activities [29] and the
effect of apnea will first appear in the RAMP feature, we apply
a synchronization time delay (τ ), whose possible values are ob-
served around 4.5 s. The exact values of τ are also optimized and
reported in Table III and in Fig. 6. This study is performed using
RR and RAMP features while considering five states for both
models (bradycardia and normal). The best results are achieved
with τ = 4 s which corresponds to typical values described in
clinical studies [2].
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TABLE II
COMPARISON OF THE CROSS-VALIDATION RESULTS CORRESPONDING TO MARKOVIAN METHODS FOR OPTIMAL STATE NUMBER FOR DYNAMIC a1 DETECTION

Method � States SEN(%) SPC(%) Mean Delay(s) Std Delay(s)

HMM (v) 2-5-5 61.38 ± 2.65 89.73 ± 2.41 0.40 ± 0.02 1.01 ± 0.41
HMM (v/r) 2-4-4 86.61 ± 6.56 85.31 ± 3.78 0.24 ± 0.21 1.05 ± 0.19
HSMM (v) 3-5-5 90.78 ± 2.39 98.81 ± 0.36 2.84 ± 0.71 0.11 ± 0.04

HSMM (v/r) 3-5-5 94.99 ± 0.02 99.45 ± 0.01 1.59 ± 0.01 0.07 ± 0.01
CHMM (v/r) 2-4-4 94.38 ± 0.09 99.42 ± 0.01 1.78 ± 0.03 0.07 ± 0.04

Our CHMM (v/r) 2-5-5 94.49 ± 0.50 99.34 ± 0.12 0.98 ± 0.21 0.16 ± 0.15

TABLE III
SUMMARY OF THE RESULTS OF PROPOSED CHMM USING VARIOUS

SYNCHRONIZATION TIME DELAYS FOR RAMP

Synchronization Delay(s) SEN(%) SPC(%) Mean Delay(s)

0 86.44 96.38 2.63 ± 2.50
0.5 80.53 89.89 4.52 ± 4.57
1 86.69 86.99 1.21 ± 3.62

1.5 76.66 65.29 − 4.67 ± 2.45
2 84.71 96.55 1.84 ± 2.38

2.5 92.41 92.60 0.25 ± 2.85
3 92.82 91.67 0.95 ± 2.99

3.5 89.34 91.25 1.12 ± 3.55
4 93.45 97.25 − 0.15 ± 2.09

4.5 92.38 85.84 − 0.59 ± 5.39

Fig. 6. (a) SEN and SPC obtained by various synchronization time delay. (b)
Corresponding mean and variance of the delayed time to detect the bradycardia.

The performance for the bradycardia detection and the de-
tection delays are detailed in Table IV. The comparison of the
proposed CHMM with the other methods is reported in various
combinations of the three features: (RR-QRSd), (RR-RAMP)
and (RR-RAMP-QRSd). In the cross-validation approach, the
reported metrics of this table are related to the PD point of
the ROC curves obtained by averaging the SENs and SPCs
achieved by an identical threshold. Furthermore, three other
metrics are also calculated: 1) the distance to PD defined as√

(1 − SEN)2 + (1 − SPC)2 , 2) AUC of the averaged ROC
curve and 3) positive windows (PW) which is defined as the ratio
of the number of detections occurring after the annotated onset,
over the number of detected AB episodes, for all executions. PW
illustrates the ability of an algorithm in AB prediction. Lower
values of PW (below 50%) is an indication of the detection
performance that can be reached by a given detection method,
when configured optimally (optimal threshold). Similarly, lower
values of this metric indicates a better performance.

The best results of our proposed CHMM in terms of AUC and
time delay criteria are achieved by (RR-RAMP-QRSd) combi-
nation, for which the average SEN and SPC reach 95.74% and
91.88%, respectively. Our method has an average time delay
of −0.59 s with average standard deviation of 2.79 s. Its PW
shows that more than the half of the detections occur earlier than
the clinically-annotated onset of bradycardia which implies that
AB events are better predicted with the proposed method. As
illustrated in Fig. 7, the coupling of all the available features pro-
vides the higher detection rates. Moreover, our proposed method
obtains nearly better results in the three-channel configuration
than the two-channels, since we can observe the improvement
in all metrics except SPC. The optimum number of states per
model is also reported in Table IV.

V. DISCUSSION AND CONCLUSION

A novel Bayesian framework is proposed for modeling in-
terdependences of temporal signal features as a generalization
of the HMM in order to AB detection. The model attributes a
channel to each 1-D signal feature and the state transitions in
each channel are controlled by the current states in all channels.
We proposed solutions to the three common problems of HMM
based on the recursions of the novel forward and backward
variables which are reproduced for each channel using the con-
ditional probabilities. Accordingly, the reestimation equations
are modified based on the proposed FB algorithm as well as the
ML estimator for the model parameters. To train the model pa-
rameters, the variables Λc ′c

t (m′,m) and αc
t|T are defined using

smoothed probabilities and are also useful in finding the optimal
state sequences.

Moreover, the evaluation is also performed on the online de-
tection of AB episodes in preterm infants. The results of the pro-
posed CHMM are promising and provide accurate bradycardia
detection, with an average sensitivity of 95.74% and specificity
of 91.88% using three features extracted from the observed ECG
(RR-RAMP-QRSd). This approach also provides the best per-
formance in terms of detection delays with −0.59 s, i.e., our
CHMM predicts the occurrence of AB events, with respect to
the clinicians’ annotations. Note also that these performances
are achieved without employing large numbers of states and
complex state transition networks.

The proposed CHMM framework is affected by the initial val-
ues of the state vector and the density function of observations.
Hence, an automated k-means clustering procedure for reliable
initialization is proposed. The recursive structure of the frame-
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TABLE IV
SUMMARY OF THE CROSS-VALIDATION RESULTS OF PROPOSED CHMM COMPARED WITH OTHER FRAMEWORKS USING DIFFERENT CONFIGURATIONS OF FEATURES

Features Method � States SEN(%) SPC(%) Mean Delay(s) Std Delay(s) PW(%) AUC Distance to PD

RR HMM 6 85.82 ± 6.81 88.34 ± 2.21 0.77 ± 0.97 2.14 ± 0.98 64.30 0.94 0.18
RAMP HSMM 3 93.74 ± 0.40 91.86 ± 0.23 0.56 ± 0.07 1.49 ± 0.03 60.00 0.95 0.10

CHMM 4 87.59 ± 0.18 88.05 ± 0.24 1.10 ± 0.03 1.67 ± 0.03 69.23 0.94 0.18
Our CHMM 5 87.64 ± 0.94 92.13 ± 6.44 0.59 ± 0.01 3.11 ± 1.94 47.29 0.95 0.15

RR HMM 2 82.28 ± 16.87 85.32 ± 3.78 1.81 ± 0.84 4.10 ± 4.09 73.72 0.89 0.23
QRSd HSMM 5 84.74 ± 0.36 91.33 ± 0.18 2.93 ± 0.03 3.08 ± 0.03 87.50 0.93 0.18

CHMM 2 84.99 ± 0.26 94.80 ± 0.51 3.43 ± 0.01 2.89 ± 0.03 90.00 0.95 0.17
Our CHMM 5 87.04 ± 3.78 95.31 ± 1.36 2.51 ± 0.93 3.02 ± 0.18 83.22 0.93 0.14

RR HMM 2 91.02 ± 0.64 93.47 ± 0.08 6.55 ± 0.69 2.29 ± 0.79 63.13 0.97 0.11
RAMP HSMM 7 86.83 ± 25.62 93.77 ± 4.44 1.10 ± 2.74 1.64 ± 1.18 44.10 0.96 0.16
QRSd CHMM 3 84.42 ± 0.27 92.21 ± 0.32 7.27 ± 0.02 4.26 ± 0.02 60.53 0.94 0.18

Our CHMM 2 95.74 ± 0.82 91.88 ± 0.31 -0.59 ± 0.21 2.79 ± 0.06 44.23 0.98 0.09

Fig. 7. Comparing the performance of our CHMM for AB detection with other frameworks. (a)–(c) ROC curves. (d)–(f) Time delay curves versus error. (a), (d):
RR and QRSd. (b), (e): RR, QRSd and RAMP. (c), (f): RR and RAMP.

work coming from the nature of standard HMM and sample
by sample windowing process makes the algorithm computa-
tionally tractable, and hence, suitable for real-time applications.
Moreover, the computational cost of our proposed FB algorithm
is O(TMC ) to be compared with that of the CHMM proposed
by Rezek (O(TM 2C )).

The main contributions of this paper can be summarized as:
1) the introduction of a novel framework for CHMM as a gen-
eralization of HMM to address the analysis of N-dimensional
coupled signal features, 2) the derivation of the FB variables
and solutions to the standard problems of the Markovian mod-
els according to the proposed framework, and 3) the application
of the proposed framework to AB detection, based on the log-
likelihoods of competing models.

Future works include incorporating a resting time for the
states into the coupled model to provide a more accurate repre-
sentation of the dynamics of the observed time-series. Since the
proposed CHMM approach is completely generic, we plan to
apply it to other clinical applications such as adult apnea event
detection, using specific datasets coupling different cardiores-
piratory signals.

APPENDIX

For better understanding, consider Fig. 1, which depicts a
minor loop of the two coupled chains at times t − 1, t and
t + 1. We simplify the predicted joint probability of states
P (v1

t (m1), v2
t (m2)|o1:t−1) by P (v1

t (m1)|o1:t−1) × P (v2
t (m2)
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|o1:t−1), i.e., v1
t (m1) and v2

t (m2) are conditionally independent.
We generalize it to more than two channels as follows:

P (v1
t (m1), . . . , vC

t (mC )|o1:t−1) =
C∏

c=1

P (vc
t (mc)|o1:t−1).

(45)

This simplification helps us to prove other statements like (6)
and (10). The following proofs are presented in two channels
for simplicity.

APPENDIX A
JOINT PROBABILITY ESTIMATION OF CHANNELS OBSERVATIONS

During the parameters definition and for obtaining more com-
pact and simpler relation for forward and backward parame-
ters, we need to estimate the joint probability of observations
P (o1

t , o
2
t |o1:t−1) [see (10)]. One estimation is to use mean-field

assumption of joint probability of the two observations, i.e., the
joint probability is calculated by the product of the probability of
each variable, which means they are conditionally independent
[30].

P (o1
t , o

2
t |o1:t−1) = P (o1

t |o1:t−1) × P (o2
t |o1:t−1). (46)

Other estimations are uniform and weighted. In uniform
case, the joint probability P (o1

t , o
2
t |o1:t−1) is calculated by the

summation of the conditional probability of each observation,
P (o1

t |o1:t−1) + P (o2
t |o1:t−1), which seems to be incorrect from

the weighted point of view as follows.
Weighted case is a more general form. The joint probability

of the observations of channels can be expressed as follows [30]:

P (o1
t , o

2
t |o1:t−1) = P (o1

t |o2
t , o1:t−1)P (o1

t |o1:t−1)

P (o1
t , o

2
t |o1:t−1) = P (o2

t |o1
t , o1:t−1)P (o2

t |o1:t−1).

So, it is correct to have

P (o1
t , o

2
t |o1:t−1) = [0.5P (o1

t |o2
t , o1:t−1)]P (o1

t |o1:t−1)

+[0.5P (o2
t |o1

t , o1:t−1)]P (o2
t |o1:t−1)

= w1P (o1
t |o1:t−1) + w2P (o2

t |o1:t−1).

As we know, it is difficult to estimate P (o1
t |o2

t , o1:t−1) or
P (o2

t |o1
t , o1:t−1). Also, mean-field assumption for the observa-

tions seems to be correct, since although they are correlated,
they give us no information about each other given the previous
observations and it is widely used in other works (see [17] and
[22]). This is what we have used in definition of b̃.

Moreover, using (14), we can prove the mean-field assump-
tion as follows:

P (ot |o1:t−1) =
∑

m 1

∑

m 2

P (ot , v
1
t (m1), v2

t (m2)|o1:t−1)

=
∑

m 1

∑

m 2

P (ot |v1
t (m1), v2

t (m2), o1:t−1)

×P (v1
t (m1), v2

t (m2)|o1:t−1). (47)

Then we have

P (ot |o1:t−1) =
∑

m 1

∑

m 2

2∏

c=1

P (oc
t |vc

t (mc), o1:t−1)

×
2∏

c=1

P (vc
t (mc)|o1:t−1)

=
2∏

c=1

∑

mc

P (oc
t |vc

t (mc), o1:t−1)

×P (vc
t (mc)|o1:t−1)

=
2∏

c=1

∑

mc

P (oc
t , v

c
t (mc)|o1:t−1)

=
2∏

c=1

P (oc
t |o1:t−1) (48)

where it can be generalized for C > 2.

APPENDIX B
FILTERED JOINT PROBABILITY OF FORWARD PARAMETERS

In this part a prove for (6), the filtered joint probability of
states given the observations, is presented by using (45) and
(46). Therefore, we start with adding the observations at time t
to the states

P (v1
t , v2

t |o1:t) =
P (v1

t , v2
t , ot |o1:t−1)

P (ot |o1:t−1)

=
P (o1

t |v1
t )P (o2

t |v2
t )P (v1

t , v2
t |o1:t−1)

P (ot |o1:t−1)
. (49)

On the other hand, we can write

P (v1
t |o1:t)P (v2

t |o1:t) =
P (v1

t , ot |o1:t−1)P (v2
t , ot |o1:t−1)

P (ot |o1:t−1)2

=
P (o1

t |v1
t )P (v1

t |o1:t−1)
∑

v 2
t
P (o2

t |v2
t )P (v2

t |o1:t−1)

P (ot |o1:t−1)

×
P (o2

t |v2
t )P (v2

t |o1:t−1)
∑

v 1
t
P (o1

t |v1
t )P (v1

t |o1:t−1)

P (ot |o1:t−1)

(50)

with some simple manipulation, we can derive the term
P (v1

t , v2
t |o1:t) and simplify the statement above as follows:

P (v1
t |o1:t)P (v2

t |o1:t) = P (v1
t , v2

t |o1:t)

×
∑

v 1
t

∑
v 2

t
P (o1

t , v
1
t |o1:t−1)P (o2

t , v
2
t |o1:t−1)

P (ot |o1:t−1)

= P (v1
t , v2

t |o1:t) ×
P (o1

t |o1:t−1)P (o2
t |o1:t−1)

P (ot |o1:t−1)

(51)
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where the second term is equal to 1 based on (46). Thus, we
have

P (v1
t |o1:t)P (v2

t |o1:t) = P (v1
t , v2

t |o1:t). (52)
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