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Objective: Epileptic seizure detection is a key step for epilepsy assessment. In this work, using the
pentylenetetrazole (PTZ) model, seizures were induced in rats, and ECoG signals in interictal, preictal, ictal,
and postictal periods were recorded. The recorded ECoG signals were then analyzed to detect epileptic sei-
zures in the epileptic rats.
Methods: Two different approaches were considered in this work: thresholding and classification. In the
thresholding approach, a feature is calculated in consecutive windows, and the resulted index is tracked
over time and compared with a threshold. The moment the index crosses the threshold is considered as
the moment of seizure onset. In the classification approach, features are extracted from before, during, and
after ictal periods and statistically analyzed. Statistical characteristics of some features have a significant dif-
ference among these periods, thus resulting in epileptic seizure detection.
Results: Several features were examined in the thresholding approach. Nonlinear energy and coastline fea-

tures were successful in epileptic seizure detection. The best result was achieved by the coastline feature,
which led to a mean of a 2-second delay in its correct detections. In the classification approach, the best result
was achieved using the fuzzy similarity index that led to Pvalueb0.001.
Conclusion: This study showed that variance-based features were more appropriate for tracking abrupt
changes in ECoG signals. Therefore, these features perform better in seizure onset estimation, whereas
nonlinear features or indices, which are based on dynamical systems, can better track the transition of neural
system to ictal period.
Significance: This paper presents examination of different features and indices for detection of induced epi-
leptic seizures from rat's ECoG signals.
© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Epilepsy is a bewildering neurological disorder that may cause
brief electrical disturbances in the brain producing changes in
sensation, awareness and behavior [1]. Epileptic seizures reflect
the clinical signs of an excessive and hyper-synchronous activity of
neurons in the brain [56]. Epilepsy is a neurological disease that
directly affects 50 million people worldwide [57]. In about two thirds
of patients with epilepsy, seizures can be satisfactorily controlledwith
currently available antiepileptic drugs [58]. Another 8% can benefit
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from epilepsy surgery. Unfortunately, seizures in the remaining 25%
of patients with epilepsy cannot be treated sufficiently by any avail-
able therapy [2]. Epileptic seizure detection would help these people
to have a convenient life. Since an epileptic seizure is related to the
electrical activity of brain, the electroencephalogram (EEG) signal is
a useful biosignal for epileptic seizure detection. Indeed, epilepsy is
characterized by recurrent seizures that are observable in the EEG
signal [3]. When an epileptic focal seizure is generated, synchronized
epileptic brain activity is initially observed in a small area of the
brain. From this focus, the activity spreads to other brain areas [4].
This process is reflected in the recorded EEG. However, there is very
little confirmed knowledge of the exact mechanism(s) by which this
occurs [5]. Conventional seizure detection methods such as visual in-
spection of the EEG by a trained neurologist are challenging because
of the presence of myogenic artifacts. Furthermore, visual inspection
of the EEG data has not been found to be reliable in detecting the char-
acteristic changes that precede seizure onsets [4]. Over the years,
many researchers have attempted to develop algorithms for automatic
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analysis of EEGs to recognize epileptiform transients and to efficiently
process data produced by long-term EEG recordings [6,7].

The early methods of automatic EEG processing were simple analy-
sis of EEG signals in the time or frequency domain. Mimetic techniques
have been widely used for detecting epileptiform discharges [6,8,9].
They were based on breaking the EEG signal into half-waves and mea-
suring duration, amplitude, and sharpness (second derivative) of the
peaks relative to the background. These measures were then combined
to decidewhether a half-wave is a potential spike or sharp wave or not.
Detecting the spikes and sharpwaves is possible when the signal has no
artifacts. However, artifacts caused by electromyogram (EMG) activity
and other EEG activities resembling spikes caused these methods to
fail [10].

Spectral approach is another approach based on earlier observations
that the EEG spectrum contains characteristic waveforms clustered in
four distinct frequency bands. Such methods have been proved benefi-
cial for EEG characterization, but earlier methods based on fast Fourier
transform (FFT) suffer from large noise sensitivity [38]. Newer paramet-
ric methods for power spectrum estimation such as the autoregressive
(AR) technique reduce the spectral loss issues and give better frequency
resolution [11]. However, since EEG signals are non-stationary, para-
metric methods are not suitable for frequency decomposition of these
signals [39]. Time-frequency and wavelet transforms were also used
to analyze EEG signals of patients with epilepsy [12].

Some other seizure detection methods are based on artificial neural
networks (ANNs) [13,14,9]. ANNs have offered an attractive solution
for recognition and classification tasks where the rules are not clear
[40]. Nonetheless, ANNs require various training sets to reduce the in-
fluence of artifacts and the training of such networks is troublesome
and unrealistic for real-life systems [9].

Studies in seizure detection vary in their theoretical approaches,
validation of results, and amount of data analyzed. Some relative
weaknesses in this literature are the lack of extensive testing on base-
line data free from seizures, and the lack of technically rigorous valida-
tion and quantification of algorithm performance in many studies. In
recent years, attempts in seizure detection and prediction from EEG
analysis have been mostly based on two approaches: 1) Examination
of the waveforms in the seizure-free EEG to find markers or changes
in neuronal activity such as spikes whichmay be precursors to seizures;
2) Analysis of the nonlinear spatio-temporal evolution of EEG signals to
find a governing rule as the systemmoves from a seizure-free to seizure
state [15]. Recurrence quantification analysis (RQA) [16] and similarity
index methods [17,37] are among the second approach.

To validate seizure detection methods, various animal models are
used. The most popular and widely used models are the maximal elec-
troshock seizure test and the subcutaneous (s.c.) pentylenetetrazole
(PTZ) test [18,45,46,59,60]. Development of various new antiepileptic
drugs is primarily based on these two seizure models [18]. The s.c.
PTZ test is used to find drugs effective against generalized absence sei-
zures [18]. People with absence epilepsy have repeated seizures that
cause momentary lapses of consciousness. These sudden and abrupt
seizures most commonly occur in childhood or adolescence and may
have significant impact on educational development [19].

In [51], seizure-triggered trigeminal nerve stimulation has been
employed to reduce PTZ-induced seizure activity in awake rats. In an-
other recent study, feasibility of an automatic seizure control system
in rats with PTZ-induced seizures was investigated through single and
multiple stimulations [52]. Prior to applying the stimulation, an auto-
matic seizure detector is needed. Several algorithms have been pro-
posed to detect PTZ-induced seizures. A cumulative sum algorithm
was proposed in [44] to detect such seizures. This feature was then
combinedwith the general likelihood ratio test to improve the accuracy
[53]. Among several other features used for PTZ-induced seizure detec-
tion, are cross-bicoherence gain [46] and cross-correlation variance
[50]. In addition to EEG, vagus electroneurogram (VENG) [47], optical
coherence tomography (OCT) [48], and Laplacian EEG [45] were also
used to analyze and detect PTZ-induced seizures in rats. There are also
some studies on the prediction of PTZ-induced seizures in rats. In [49],
a new wavelet-based residual entropy method was employed to mea-
sure entropy of cortical and subcortical field potentials for seizure
prediction.

The goal of this study was to detect clonic seizures in rats with in-
duced by s.c. injection of PTZ. The electrocorticography (ECoG) sig-
nals in interictal, preictal, ictal and postictal periods have been
recorded and analyzed. This paper presents a unified approach for de-
tection of induced seizures in rats using ECoG signals.

2. Dataset

Data used in this study were collected at Pasteur Institute of Iran
from male Wistar rats weighing 200–250 g. These rats were kept in
a controlled environment (6 am/6 pm light/dark cycle; 22±1 °C)
and freely had access to food and water. Two screw electrodes were
inserted into the skull over the frontal and occipital cortex under
ketamine (60 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.) anesthesia.
The epidural electrodes were fixed on the skull using dental acrylic
and an extra screw. The animals were allowed 3 days for recovery
and handled gently to be adapted with the recording procedure.
ECoG was then recorded in the control group for 60 min. For the test
group, ECoG signal was recorded a fewminutes before the administra-
tion of a convulsive dose of pentylenetetrazole (60 mg/kg). PTZ was
injected s.c. to freelymoving rats through a polyethylene tube. Electrical
activity was then recorded for 60 min. All measurements and injections
took place between 10:00 and 15:00 h. ECoG signals were amplified by
an AC differential amplifier (DAM 80, WPI) with gain of 1000 and with
band-pass filter setting of 0.1-1000 Hz. The sampling rate was 10 kHz,
and the analog-to-digital conversionwas performed at 12-bit resolution.
The ECoG dataset was downsampled to 1 kHz, and preprocessed by a
50-Hz notch filter and a low pass 60-Hz filter. The analyzed dataset
consisted of 12 rats in the test group and 15 rats in the control group.
The data of 6 rats in the test group had some issues due to sudden rat
movements, amplifier saturation, and severe noise due to the data ac-
quisition system. Therefore, we had to cut some parts of the starting seg-
ments or ending segments of data from these 6 rats. Nevertheless, for
the remaining parts of data from these 6 rats, the signals were continu-
ous, i.e. excluded segments were always at the beginning or the end of
the signals, not in the middle of them. Data from these 6 rats were not
used in the seizure onset estimation section, because although some
segments of the beginning or the end of these data have been cut,
remaining parts are still too noisy to perform accurate evaluation of
the algorithms. Data from these 6 rats have been used only in the classi-
fication section.

Seizure onset in each experiment was determined by an experi-
enced experimental scientist by observation of animal behavior in-
cluding head nodding and general clonus of the whole body [20],
which corresponds to the score of 3 (myoclonic jerk) by Racine's sei-
zure scoring system [54]. PTZ initially produces myoclonic jerks,
which subsequently become sustained and may lead to generalized
tonic-clonic seizures [61]. After some minutes, the behavior of rats
becomes normal again and there would be no behavioral signs of
the Racine scale. A return to normal behavior was the criterion for de-
termining the end of the seizure. The injection time, seizure onset
time and seizure end time of experiments for unsheared data are
shown in Table 1.

3. Materials and methods

In this section, various methods for analyzing epileptiform EEG sig-
nals in different approaches are introduced. These methods are also ap-
plicable to ECoG signals. In the first subsection, twomain approaches for
seizure detection are described in detail. Then, in the next subsection, a
wide range of features and indices that vary from simple to complex are



Table 1
The Time Recording of Each Experiment.

Rat no. Injection time Seizure onset Seizure end

1 21:34 29:02 30:35
2 10:33 3:09 16:24
3 6:05 9:18 9:36
4 7:16 20:05 20:36
5 5:55 21:25 22:39
6 5:11 9:59 11:01

The time format is minute:second Starting time is always from 00:00.
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presented. Most of these features and indices have been already used in
the literature for epileptiform EEG analysis. In this study, a few new fea-
tures and indices are also introduced. The aimof this studywas to deter-
mine how each feature or index is suitable for seizure detection of the
acquired data adopting each main approach.

3.1. Different approaches for detection of induced seizures

Recorded EEG of seizure activity can be characterized by four
stages: (1) the ictal stage that starts at the seizure onset and finishes
at the seizure end; (2) the postictal stagewhich is the period following
the seizure end and represents a return to normal background activi-
ty; (3) the interictal stage which is the period between the postictal
stage of one seizure and the moments before the next seizure onset,
and (4) the preictal stagewhich is themoment right before the seizure
onset. In this section, two general approaches for detecting seizures in
EEG signals are introduced.

3.1.1. First approach for seizure detection: Thresholding
In this approach, a feature or index is calculated for each consecu-

tive window of an EEG recording and the moment of seizure onset is
Fig. 1. Continuous multi-channel EEG recordings are analyzed by means of a moving-window
the index of a multivariate characterizing measure. When this index crosses a certain pre-d
estimated by comparing this feature or index with a threshold. Fig. 1
shows the sliding window analysis schematically.

In order to define the threshold in this approach, the first step is to
calculate the mean value μ and standard deviation (S.D.) σ of each
feature or index during the interictal phase. The second step is to de-
termine a pattern for ictal phase detection. A common pattern is a
local rise characterized by height k and duration d. The height of the
rise k can be obtained in units of the S.D. of the baseline epoch, then
the threshold value can be set to (μ+kσ), where its duration d can
be quantified by the time during which the value of a profile rises
over this threshold [31]. During practical implementation of this de-
tection method, a backward moving-average filter is first applied to
smooth the profile of each feature or index to avoid abrupt variations.
Then the time when the smoothed values of each feature or index
exceed the threshold value (μ+kσ) for the first time and remain
over it within duration d is considered as detection point. Decreasing
the parameter k decreases the detection threshold value (μ+kσ) and
therefore increases sensitivity and decreases delay time. On the other
hand, it also leads to more false positives. Considering this trade-off,
sensitivity and delay time should be evaluated in conjunction with
the false detection rate. The parameters k and d govern the mean
height of a rise over a certain time and the threshold for ictal phase
detection. The parameters k and d are optimized for the whole dataset
(including test group and control group) to maximize the detection
performance. The performance Q of the detection method is defined
as [31]:

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Se2 þ Sp2

2

s
ð1Þ

where Se is the sensitivity, defined as fraction of correct detections to
all seizures; Sp is the specificity rate, defined as 1 minus the average
analysis. The data covered by the orange window is transformed into a single value in
efined threshold, an alarm is issued.
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number of false positive detections per hour of interictal EEG in test
and control groups (for more than 1 false positive per hour, Sp is set
to zero).

3.1.2. Second approach for seizure detection: Classification
There are some problemswith seizure detection using thresholding.

Determining a threshold for seizure onset detection is a challenging
problem. The reason is that a seizure is a transient occurrence of signs
and/or symptoms due to abnormal excessive or synchronous neuronal
activity in the brain [41]. This significantly suppresses seizure onset es-
timation accuracy, as the seizure itself is a transient occurrence, not a
binary occurrence. Therefore, most of the time, we try to find a feature
or index the mean of which significantly changes before, during, and
after seizure intervals. In this approach, there is no need to define
threshold and the important requirement is that a valid statistical
analysis shows that the mean variations in these intervals are signifi-
cant. In fact, this issue is a classification problem with two classes,
during seizure class and out of seizure class.

3.2. Features and indices

According to [21], features or indices for epileptiform EEG analysis
can be extracted using time domain techniques, frequency domain
techniques and nonlinear techniques. This does not mean that all
time domain and frequency domain techniques are linear but
means they are not based on the theories of dynamical systems.

3.2.1. Time domain features
Features extracted from time domain techniques are fast and sim-

ple. They have been used in seizure detection and in sleep research as
well [21,42].

3.2.1.1. Local variance. This feature is also called activity and is equal to
the variance of signal in the present window. When the power of
noise is high relative to that of the signal, this feature is not useful
for analysis [22].

3.2.1.2. Mobility. This feature is defined as the standard deviation of
the first derivative of signal to that of the original signal, and mathe-
matically can be expressed as [21]:

mobility ¼ σ s ′

σ s
ð2Þ

where σ is standard deviation and s′(n)=s(n+1)−s(n).

3.2.1.3. Complexity. This feature is defined as the ratio of the mobility
of the first derivative of signal to the mobility of signal [21]:

complexity ¼ σ s″=σ s′

σ s ′=σ s
ð3Þ

3.2.1.4. Coastline. This feature is defined as the sum of the absolute
values of distances from one data point to the next and can be
expressed as [22]:

coastline ¼
XN
n¼2

s nð Þ−s n−1ð Þj j ð4Þ

where |.| presents the absolute value operator and N is the number of
data points in the present window. This feature is based on the fact
that during a seizure, signal is relatively high-amplitude and high
frequency. It fails in case of large amplitude noise. It also fails when
the amplitude of signal during a seizure is less than that of the normal
interval [22].
3.2.1.5. Autocorrelation. Seizures can be detected even when data
points are somehow compressed [22]. In this method, data points of
the present window N are initially divided into n segments, so that
Si is one of these segments. Then i-th high value and i-th low value
are computed as:

HVi ¼ min max Sið Þ; max max Siþ1
� �

; max Siþ2
� �� �� � ð5Þ

LVi ¼ max min Sið Þ; min min Siþ1
� �

; min Siþ2
� �� �� � ð6Þ

Two features can be extracted from this formulation:

XN =

n−2

i¼1

HVi−LVið Þ ð7Þ

and

XN =

n−2

i¼1

HVi−LVi

max Sið Þ−min Sið Þ
� �

ð8Þ

In the case where significant EEG autocorrelation is present, these
two features have large values. Although Eq. (7) is normalized to the
range of the index pixel and hence is more indicative of the actual
autocorrelation, the denominator in the equation may make it more
susceptible to low-amplitude and high-frequency noise, which re-
sults in a significantly decreased specificity [22].

3.2.1.6. Nonlinear energy. This feature is defined as follows:

NE ¼ 1
N−2

XN−1

n¼2

s2 nð Þ−s n−1ð Þs nþ 1ð Þ
	 


ð9Þ

where N is number of data points in the present window.

3.2.2. Frequency domain features
These techniques include features of frequency domain using

Fourier transform. These features are relatively more complicated
than time domain features and are usually used for seizure-related
EEG classification.

3.2.2.1. Spectral skewness. Skewness (or normalized skewness) is a
measure in statistics and is defined as:

skewness ¼ E S−ηð Þ3
σ3 ð10Þ

where E(x) is the mathematic expectation of random variable x and
S represents the amplitude of FFT coefficient of EEG signal in the
present window. η and σ are mean and standard deviation of S, re-
spectively. Skewness is a measure of the asymmetry of the probability
distribution of a real-valued random variable.

3.2.2.2. Spectral kurtosis. Kurtosis (or normalized kurtosis) is another
measure in the statistics and is defined as:

kurtosis ¼ E S−ηð Þ4
σ4 ð11Þ

Kurtosis is a measure of the peakedness of the probability distri-
bution of a real-valued random variable. Higher kurtosis means that
the variance is mostly the result of infrequent extreme deviations,
as opposed to frequent modestly sized deviations.

3.2.2.3. Spectral entropy. In information theory, entropy is a measure
of the uncertainty associated with a random variable. For calculating
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spectral entropy, first the amplitude spectrum obtained from FFT has
to be normalized. Then using the classical Shannon entropy [23], the
spectral entropy is defined as:

Entropy ¼ −
XN
i¼1

S ið Þj j log2 S ið Þj j ð12Þ

3.2.3. Nonlinear features
Recent studies suggest that EEG signals are multivariate time

series that stem from highly nonlinear and multidimensional systems
[24]. As a result, one of the most important recent approaches for
analyzing epileptiform EEGs is using nonlinear methods for analysis
of the nonlinear spatio-temporal evolution of the EEG signals to find
a governing rule as the system moves from a seizure-free to seizure
state [15]. Nonlinear techniques are more complicated than time
domain and frequency domain techniques and are usually used for
seizure-related EEG classification and seizure detection and predic-
tion [43]. A single record from a dynamic system is the outcome of
all interacting variables of the system and thus, in principle, should
contain information about the dynamics of all significant variables in-
volved in the operation of the system [25]. Dynamic systems can be
described by a set of states and transition rules, which specify how
the system may proceed from one state to another. Each state is the
state of all independent variables involved in operation of the system
that is defined as a vector. Vectors of different states make a vector
space called phase space. Then the dynamics of the system can be
studied by examining the dynamics of the corresponding vectors in
the phase space [21]. However, in experimental situations, not all rel-
evant components to construct the state vector are known or measur-
able. Often a discrete-time measurement of only one observable
quantity is available. This yields scalar discrete-time series si=
s(iΔt). In such a case, the phase space has to be reconstructed.
A frequently used method for the reconstruction is the time delay
method proposed by Takens [26], inwhich phase space is reconstructed
by its trajectories:

xk ¼ sk; skþτ ;…; skþ m−1ð Þτ
	 


; ð13Þ

where k=1, 2,…, N−(m−1)τ, N is the total number of data points in
the present window, m is embedding dimension, and τ is time delay.

For finite and noisy datasets like EEG recordings, m and τ of
the trajectories should be carefully determined. The most common
method for choosing a proper time delay is based on the detection
of the first local minimum of the mutual information (MI) function
[27], since the first minimum of the MI(τ) portrays the time delay
where the signals (sT,sT+1, …,sL−τ) and (sT+τ,sT+τ+1, …,sL) have
the minimal overlapping information. After the selection of the opti-
mum lag, the minimum embedding dimension was determined
based on Cao's method. The method was applied repeatedly starting
with a low value of the embedding dimension m and then increasing
it until the number of false neighbors decreases to zero [28].

3.2.3.1. Recurrence quantification analysis. The recurrence of states is a
fundamental property of a dynamical system [29]. Recurrence plots
(RP), proposed by Eckmann et al. [30], can describe the recurrence
property of a dynamical system. The key step of RP is to calculate
the following N×N matrix:

Ri;j εð Þ ¼ Θ ε−‖xi−xj‖
	 


ð14Þ

where Θ(x) is the Heaviside function [55] and ||.|| is the norm (e.g.,
Euclidean norm) operator. The cutoff distance ε defines a sphere cen-
tered at xi and determines if xj falls within this sphere. In this work,
ε=1.5 was chosen (in unit of standard deviation σ) [16]. The recur-
rence plot of each dynamical system has its own topology [26]. This
topology can be quantified by RQA. Measures of RQA are based on re-
currence point density, the diagonal line structures and the vertical
line structures.

3.2.3.1.1. Measures based on the recurrence density. The simplest
measure of the RQA is the recurrence rate (RR):

RR ¼ 1
N2

XN
i;j¼1

Ri;j εð Þ ð15Þ

which is a measure of the density of recurrence points in the RP.
In the limit N→∞ RR is the probability that a state recurs to its
ε-neighborhood in phase space [26].

3.2.3.1.2. Measures based on diagonal lines. These measures are
based on the histogram P(l) of diagonal lines of length l. Processes
with uncorrelated or weakly correlated, stochastic or chaotic behav-
ior cause none or very short diagonals, whereas deterministic pro-
cesses cause longer diagonals and less single, isolated recurrence
points [26]. Therefore, the ratio of recurrence points that form diago-
nal structures (of at least length lmin) to all recurrence points is intro-
duced as a measure for determinism (or predictability) of the system:

DET ¼ ∑N
l¼lmin

lP lð Þ
∑N

l¼1lP lð Þ
ð16Þ

The threshold lmin excludes the diagonal lines, which are formed
by the tangential motion of the phase space trajectory. However, we
have to take into account that the histogram P(l) can become sparse
if lmin is too large, and, thus, the reliability of DET decreases. Thereby,
as in [19], we adopted lmin=2 in our study.

A diagonal line of length l means that a segment of the trajectory is
rather close during l time step to another segment of the trajectory at
a different time; thus, these lines are related to the divergence of the
trajectory segments. The average diagonal line length is the average
time that two segments of the trajectory are close to each other,
and can be interpreted as the mean prediction time:

L ¼ ∑N
l¼lmin

lP lð Þ
∑N

l¼lmin
P lð Þ

ð17Þ

The measure entropy refers to the Shannon entropy [23] of the
probability p=P(l)/Nl to find a diagonal line of exactly length l in
the RP:

ENTR ¼ −
XN
l¼lmin

p lð Þ lnp lð Þ ð18Þ

ENTR reflects the complexity of the RP with respect to the diagonal
lines, e.g. for uncorrelated noise the value of ENTR is rather small, indi-
cating its low complexity.

3.2.3.1.3. Measures based on vertical lines. These measures are
based on the histogram P(v) of vertical lines of length v. The ratio
between the recurrence points forming the vertical structures and
the entire set of recurrence points is called laminarity:

LAM ¼ ∑N
v¼vmin

vP vð Þ
∑N

v¼1vP vð Þ
ð19Þ

The computation of LAM is realized for those v that exceed a min-
imal length vmin in order to decrease the influence of the tangential
motion. For recurrence maps, vmin=2 is an appropriate value [26].
LAM represents the occurrence of laminar states in the system with-
out describing the length of these laminar phases. It will decrease
if the RP consists of more single recurrence points than vertical
structures.
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The average length of vertical structures is called trapping time:

TT ¼ ∑N
v¼vmin

vP vð Þ
∑N

v¼vmin
P vð Þ

ð20Þ

TT estimates the mean time that the system will abide at a specific
state or how long the state is trapped.

It is worth noting that RQA does not require any assumption about
noise, linearity, stationarity and length of signal [24].

3.2.3.2. Fractal dimension. The fractal dimension can be a measure of
signal complexity. The degree of complexity of a signal increases
with the dimension [21]. In this study, Higuchi's algorithm was used
for calculating the fractal dimension [32]. From a given time series,
s(n), n=1, …, N, first xmk for m=1, 2, …k is constructed as:

xkm ¼ sm; smþk; smþ2k…; smþ N−m
k½ �k

	 

ð21Þ

where the notation [.], means rounding the argument down to the
nearest integer. Then Lm(k) can be defined as the length of each xm

k :

Lm kð Þ ¼ 1
k

XN−mð Þ=k½ �

i¼1

s mþ ikð Þ−s mþ i−1ð Þkð Þj j n−1
N−m

k

� �
k

ð22Þ

For each time interval k the length of the corresponding curve,
L(k), is defined to be the mean of the values Lm(k) for m=1, …k. If
L(k) is proportional to k−D, then the curve is fractal-like with the
dimension D.

3.2.3.3. Approximate entropy. Like all entropies, approximate entropy
describes the amount of regularity in the data. A smaller value of ap-
proximate entropy indicates behavior that is more regular. In this
study, the algorithm presented by Pincus et al. [33] based on the
Kolmogorov–Sinai entropy was used. First, vector xi for 1≤ i≤N−
m+1 is constructed from s(n), n=1, …, N:

xi ¼ s ið Þ;…; s iþm−1ð Þð Þ ð23Þ

Then using a fixed real positive number r, for each index i a corre-
lation sum Ci

m(r) is constructed as:

Cm
i rð Þ ¼

number of xj such that d xi; xj
	 


≤r

N−mþ 1
ð24Þ

where d(xi,xj) means the distance between two vectors; the Euclidean
norm is used as a distance measure in this study. Next Φm(r) is de-
fined as:

Φm rð Þ ¼ 1
N−mþ 1

XN−mþ1

i¼1

lnCm
i rð Þ ð25Þ

and finally the approximate entropy is:

ApEn ¼ Φm rð Þ−Φmþ1 rð Þ ð26Þ

In this study, parameter r has been chosen as suggested by Pincus
et al. [33], meaning that the value of r was 0.2σs, where σs is the
standard deviation of the s.

3.2.3.4. Maximal Lyapunov exponent. The Lyapunov exponents provide
a possible way to measure chaos. If the system exhibits sensitive de-
pendence on initial conditions, then after a slight disturbance the sys-
tem follows a different path than it would have followed without the
disturbance. In the case of a positive Lyapunov exponent, these paths
diverge exponentially [21]. There are many different methods for cal-
culating Lyapunov exponents in the literature. The method used in
this study is based on the algorithm presented by Kantz and Schreiber
[34]. In this algorithm, a point in the phase space is chosen and all its
neighbors closer than a positive constant value are selected. Then
the average distance over all neighbors is computed as a function of
time. Now the logarithm of the average distance is an expansion rate
over that time. Repeating this process for many different starting
times and taking an average, we get a value, which we denote by
S(Δt). Since the minimum embedding dimension or the optimal
neighborhood size may be unknown for a given dataset, the values
S(Δt) have to be calculated for several embedding dimension and
neighborhood size pairs to see if for some time range ofΔt the function
S(Δt) exhibits a linear increase. If this is the case, then the slope is the
estimate for the maximal Lyapunov exponent per time step [21].

3.2.3.5. Dynamical similarity index. One of the most common nonlinear
methods that analyzes the nonlinear spatio-temporal evolution of the
EEG signals to find the transition from a seizure-free to seizure state is
called dynamical similarity index [35] based on nonlinear time series
proposed by Baulac and Varela [34]. The method consists of the re-
construction of EEG dynamics that uses time intervals between two
positive zero crossings and the measurement of similarity between
dynamics from a reference windowed state Sref and a present one St.
Reference windows should be recorded during an interval quite dis-
tant in time from any seizure. Then trajectory matrix is constructed
from the vectors in the phase space that contains the complete record
of patterns that have occurred within a window. For example, given a
time series xn, where n=1, 2,…, Nn, the trajectory or augmented ma-
trix A may be constructed as:

Aij ¼ xjþ i−1ð Þr ð27Þ

where 1≤ i≤m and 1≤ j≤N=Nn−(m−1)r. m is the dimension of
the phase space and r, a natural number is the time difference between
the elements. The trajectory matrix has dimensionsm by N. To reduce
noise, the trajectorymatrices A(St) of the slidingwindow and A(Sref) of
the reference window are projected on the principal axes of the refer-
ence window, yielding X(St) and A(Sref), respectively, by means of a
singular value decomposition (SVD) of the reference window [17].
To achieve a significant reduction in the volume of data without loss
of potentially valuable dynamical information, a random selection
Y(Sref) of X(Sref) in the phase space is selected [17]. In this study, the
size of Y(Sref) was chosen equal to the size of X(St). The second step
is to compare Y(Sref) with X(St) using the cross-correlation integral:

CXY rð Þ ¼ 1
Nref Nt

XNref

i¼1

XNt

j¼1

Θ r−‖Yi Sref
	 


−Xj Stð Þ‖
	 


ð28Þ

Here, ||.|| denotes the Euclidian norm, and Θ the Heaviside step
function. Nref and Nt are the number of points in the phase space of
the reference and sliding windows, respectively. The distance r is usu-
ally defined as the 30% quintile of the cumulative neighborhood dis-
tribution of the reference window [36]. In order to further improve
the discriminatory power between two dynamics, the autocorrelation
integral CXX(r) and CYY(r) are used, the dynamical similarity index γXY

is thus written as [17]:

γXY ¼ CXY
. ffiffiffiffiffiffiffiffiffiffiffi

CXYCYY

p ð29Þ

Dynamical similarity index provides a sensitive measure of closeness
between two dynamics. If the reference and present window share
the same underlying dynamics, the value of γXY is around 1, otherwise
it goes down to 0.

3.2.3.6. Fuzzy similarity index. Fuzzy similarity index was extracted
from dynamical similarity index by Ouyang et al. [17]. The concept
of dynamical similarity index is hard or binary according to the
Heaviside function. As a result, the data just outside the hyper sphere
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are not accounted and all of the data inside the hyper sphere are
treated equally. In the fuzzy similarity index, a Gaussian function is
employed to replace the Heaviside function in the dynamical similar-
ity; consequently, the hard boundary in the dynamical similarity
becomes soft. The Gaussian function represents a fuzzy similarity be-
tween the neighbors and the points around. After replacing Heaviside
function with Gaussian function, the correlation integral becomes:

CF
XY rð Þ ¼ 1

Nref Nt

XNref

i¼1

XNt

j¼1

exp −‖Yi Sref
	 


−Xj Stð Þ‖2 =r2
� �

ð30Þ

Fuzzy similarity index is then defined as:

γF
XY ¼ CXY

F. ffiffiffiffiffiffiffiffiffiffiffi
CF
XXC

F
YY

p ð31Þ

Similar to the Dynamical similarity index, if the reference and
present window share the same underlying dynamics, the value of
fuzzy similarity index is around 1, otherwise it goes down to 0.

3.2.3.7. Bhattacharyya based dissimilarity index (BBDI). In [10], a new
dissimilarity index was proposed by the authors by inspiration of dy-
namical and fuzzy similarity indices and is referred to as BBDI in this
paper. The concept of dynamical similarity index is hard or binary
according to the Heaviside function. Fuzzy similarity index has been
proposed to overcome this problem using Gaussian function instead
of Heaviside function. However, both dynamical and fuzzy similarity
indices need to determine a radius scale chosen according to the cu-
mulative neighborhood distribution of the reference set that is chal-
lenging in these methods. In [10] the BBDI was proposed to overcome
both the above-mentioned problems. The novelty of this method was
the use of the Bhattacharyya distance. Bhattacharyya distance was
employed to measure dynamical dissimilarity. BBDI can demonstrate
the temporal distribution of changes from the epileptiform EEGs. The
method consists of the reconstruction of EEG dynamics and the
Fig. 2. Top: The long-term ECoG recordings of a rat in the test group. Bottom: The smoothe
present seizure onset and end, respectively and green line presents alarm time. For this rat
measurement of dissimilarity between dynamics from a reference
state and a present one (windowed EEG). Using the Bhattacharyya dis-
tance to calculate the dynamical dissimilarity index of the data points is
neither hard nor binary and does not require adopting a proper radius
scale because there is no radius scale in BBDI. Moreover, BBDI is compu-
tationally faster.

In this method, Bhattacharyya distance of X(St) and X(Sref) can be
written as:

DB X Stð Þ; Y Sref
	 
	 


¼ 1
8

mX Stð Þ−mY Srefð Þ
	 
T

P−1 mX Stð Þ−mY Srefð Þ
	 


þ1
2
ln

det Pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det PX Stð Þ

	 

det PY Srefð Þ

	 
r
0
BB@

1
CCA ð32Þ

where mX Stð Þ and mY Srefð Þ are mean values of columns of the matrices

X(St) and Y(Sref), and PX Stð Þ and PY Srefð Þ are covariance matrices of the

matrices X(St) and Y(Sref), and P ¼
PX Stð ÞþP

Y Srefð Þ
2 .

If the reference and present window share the same underlying
dynamics, BBDI has low values; otherwise, it increases.

4. Results

In this section, the results of analyzing the above-defined features
and indices applied to the described dataset are presented.

4.1. First approach for detection (Thresholding)

ECoG signals of 6 rats in the test group and 15 rats in the control
group were divided into segments; duration of each sliding window
was 1 s (1000 points). Then, all 22 features and indices were examined.

Coastline and nonlinear energy features were successful in this
approach. Fig. 2 shows the trend of coastline feature extracted from
epileptiform ECoG data of a rat in the test group. Smoothed coastline
d coastline values are plotted, which abruptly increase at the seizure onset. Red lines
, delay of alarm is 3 s.



Fig. 3. Top: The long-term ECoG recording of a rat in the control group. Bottom: The smoothed nonlinear energy values fluctuations appear at the low level. The horizontal line
represent the threshold of baseline for seizure onset detection of depth k=5 and d=1.

362 M. Niknazar et al. / Epilepsy & Behavior 27 (2013) 355–364
values are shown at the bottom of Fig. 2. It can be seen that coastline
values are sensitive to quick and high fluctuations of ECoG but still re-
main within relatively small bounds before the seizure onset. On the
contrary, coastline values sharply increase at seizure onset. Optimum
performances for the seizure onset detection algorithms were
obtained with values of k=2.5 and d=3 for coastline and values of
k=5 and d=1 for nonlinear energy. Both coastline and nonlinear en-
ergy features had 1 false alarm in the test group and no false alarm in
the control group. For both of them, sensitivity and specificity were
83% and 95%, and Q was 89% consequently.

Between these two features, the better result was achieved by
coastline feature, which led to 2±2 seconds delay in its correct
detections. Nonlinear energy feature led to 3.6±3.05 seconds delay
in its correct detections. Fig. 3 (bottom) shows smoothed nonlinear
energy values for a rat in the control group. It was observed that
nonlinear energy values were at a low level during the long-term
ECoG recording.
Fig. 4. Fuzzy similarity index of three periods. For all rats, the average values of fuzzy
similarity index during seizure phase are lower than before and after seizure phases.
4.2. Second approach for detection (Classification)

In this section, again, all 22 features were examined. For similarity
and dissimilarity indices, a long 100-second ECoG segment (100,000
points) during an interval quite distant in time from any seizure
was selected as reference window. Fig. 4 summarizes the values of
fuzzy similarity index of the 12 rats in the test group before, during,
and after seizure periods. Based on the diagram, the fuzzy similarity
index can efficiently detect induced seizures. The bars in Fig. 4 repre-
sent the average values of fuzzy similarity index before, during, and
after seizure periods.

Statistical analysis is needed for each feature or index to deter-
mine whether its distributions over the three periods (before, during,
and after seizure) are significantly different. To do this, the one-way
analysis of variance (ANOVA) was performed on average of each fea-
ture or index values in the three periods.
The results for fuzzy similarity index are presented in Fig. 5. It is
seen that the fuzzy similarity index values before and after seizure in-
tervals are higher than of during seizure interval.

In order to more deeply test these observed mean differences
statistically, in addition to the one-way ANOVA, Tukey's post-hoc
test was also performed for each feature or index values of the
three periods. Table 2 shows results for fuzzy similarity index.

Pvalue is considered as the criterion for seizure detection. Table 3
presents Pvalues of all features and indices. Results show that dynami-
cal similarity index, fuzzy similarity index, BBDI and also RR, ENTR and
L in the recurrence plots led to Pvalueb0.05. Therefore, they have sig-
nificant variations before seizure and during seizure periods. BBDI



Fig. 5. The boxplot of fuzzy similarity index before, during and after seizure periods.

Table 3
Pvalues of all features and indices for detection of induced seizures.

Feature or Index Pvalue Feature or Index Pvalue

Approximate Entropy 0.0503 Nonlinear Energy 0.5593
Fractal Dimension 0.5728 Activity 0.7762
Lyapunov exponent 0.1165 Dynamical Similarity Index 0.0034
Complexity 0.0635 Fuzzy Similarity Index 0.001
Mobility 0.8881 BBDI 0.0089
Spectral Entropy 0.2471 RR 0.0227
Spectral Kurtosis 0.174 DET 0.3704
Spectral Skewness 0.181 ENTR 0.0157
Coastline 0.7416 L 0.0061
Autocorrelation 0.742 LAM 0.5339
Normalized Autocorrelation 0.5989 TT 0.0772
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and L in the recurrence plots are used for the first time in this work for
detecting induced seizures.

Dynamical and fuzzy similarity indices were able to pass Tukey's
post-hoc test successfully. Therefore, not only are they able to discrim-
inate before seizure and during seizure phases, they also are able to
discriminate during seizure and after seizure phases. Between these
two indices, fuzzy similarity index wasmore applicable because it dis-
criminated more and led to a lower Pvalue (Pvalueb0.001).

5. Discussion and conclusions

In this paper, a unified approach for detection of induced seizures
in rats was presented. Common features and indices used for process-
ing of single channel epileptiform EEGs for seizure detection were de-
scribed. In this research, for the first time, nonlinear energy and
coastline features were successfully employed for seizure onset de-
tection, obtaining superior results compared with the results of
other features and indices. BBDI and the value of average diagonal
length in the recurrence plots that were used for the first time in
Table 2
One-way ANOVAwith comparisons between the means using Tukey's test. Data are the
fuzzy similarity index before, during, and after seizure phases.

Rat no Before seizure During seizure After seizure

1 0.8401 0.831 0.9248
2 0.8776 0.1932 0.6906
3 0.8057 0.3203 0.6713
4 0.7522 0.4911 0.8172
5 0.8222 0.6969 0.7798
6 0.8369 0.7023 0.8191
7 0.7664 0.238 0.7439
8 0.9005 0.782 0.7431
9 0.3679 0.0227 0.1611
10 0.6794 0.2738 0.9127
11 0.6874 0.4983 0.7187
12 0.9063 0.3931 0.8273
Mean 0.7702 0.4535 0.7341

ANOVA source
of variation

Sums of
squares

Degrees of
freedom

Mean
square

F Prob>F

(SS) (DF) (MS)

Treatment 0.7213 2 0.3606 8.54 0.001
Error 1.3938 33 0.0422
Total 2.1151 35

Tukey test: before seizure phase vs. during seizure phase q=5.337 (Pb0.01), after
seizure phase vs. during seizure phase q=4.729 (Pb0.01).
this study were successful in classification approach of seizure detec-
tion in rats. However, dynamical and fuzzy similarity indices, which
had been already used, led to better results in this approach.

The main advantage of this work is that several features in differ-
ent categorizations have been examined. Moreover, both possible
approaches for seizure detection have been considered. The dataset
in this work includes more rats in comparison to other datasets
[45–47,49–52]. Moreover, most of the previous studies in the area
of PTZ-induced seizure detection employed only one, two or three
features and they considered only one approach for seizure detection.

Application of a wide range of features with different levels of
complexity and sensitivity can reveal suitability of each feature in
each approach for detecting PTZ-induced seizures. However, as a lim-
itation of this work, the features have been examined separately, so
that in future studies, the suitable features in each approach should
be put in a feature vector and employed together.

According to the results of this study, variance-based features
such as nonlinear energy and coastline are more appropriate for
tracking abrupt changes in ECoG (or EEG) signal. Therefore, these
two features perform better in thresholding approach. The other fea-
tures are slower and less sensitive. The results show that nonlinear
features or indices, which are based on dynamical system theories,
can better track transition of a neural system from seizure-free to
ictal period. Among these features or indices, two groups of features
or indices had significantly better results: similarity or dissimilarity
indices and RQA features. Similarity or dissimilarity indices can better
track transition from interictal period to ictal period since they com-
pare present window to a reference window in the interictal period.
RQA that was also widely used in this study has significant advan-
tages such as no assumption about noise, linearity, stationarity and
length of signal. Therefore, it is a suitable tool for analysis of ECoG
(or EEG) signals.

Perspectives include application of a larger number of sophisticat-
ed features or indices and combination of suitable features or indices
in each approach to improve the performance of seizure detection.
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