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ECG Denoising and Compression Using a Modified
Extended Kalman Filter Structure
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Abstract—This paper presents efficient denoising and lossy com-
pression schemes for electrocardiogram (ECG) signals based on a
modified extended Kalman filter (EKF) structure. We have used
a previously introduced two-dimensional EKF structure and mod-
ified its governing equations to be extended to a 17-dimensional
case. The new EKF structure is used not only for denoising, but
also for compression, since it provides estimation for each of the
new 15 model parameters. Using these specific parameters, the
signal is reconstructed with regard to the dynamical equations of
the model. The performances of the proposed method are eval-
uated using standard denoising and compression efficiency mea-
sures. For denosing, the SNR improvement criterion is used, while
for compression, we have considered the compression ratio (CR),
the percentage area difference (PAD), and the weighted diagnos-
tic distortion (WDD) measure. Several Massachusetts Institute
of Technology–Beth Israel Deaconess Medical Center (MIT–BIH)
ECG databases are used for performance evaluation. Simulation
results illustrate that both applications can contribute to and en-
hance the clinical ECG data denoising and compression perfor-
mance. For denoising, an average SNR improvement of 10.16 dB
was achieved, which is 1.8 dB more than the next benchmark meth-
ods such as MABWT or EKF2. For compression, the algorithm was
extended to include more than five Gaussian kernels. Results show
a typical average CR of 11.37:1 with WDD < 1.73%. Consequently,
the proposed framework is suitable for a hybrid system that inte-
grates these algorithmic approaches for clean ECG data storage or
transmission scenarios with high output SNRs, high CRs, and low
distortions.

Index Terms—Denosing, ECG dynamical model (EDM),
extended Kalman filter (EKF), hidden state variables, lossy
compression.

I. INTRODUCTION

E LECTROCARDIOGRAM (ECG) recordings obtained by
a noninvasive technique is a harmless, safe, and quick

method of cardiovascular diagnosis. The accuracy and content
of information extracted from a recording require proper char-
acterization of waveform morphologies, which, in turn, require
the preservation of the phase and amplitude important clinical
features and high attenuation of noise. ECG signals are usu-
ally corrupted with unwanted interference such as muscle noise,
electrode artifacts, line noise, and respiration. On the other hand,
efficient ECG compression techniques are desirable due to the
huge amounts of digital data generated by ECG monitoring de-
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vices, and because the data need to be stored or transmitted over
a communication channel [1]. In addition, certain transmission
and storage methods can lead to segment corruption or packet
loss, and therefore, dropouts missing data.

Several techniques have been proposed to extract the ECG
components contaminated with the background noise and al-
low the measurement of subtle features in the ECG signal. One
of the common approaches is the adaptive filter architecture,
which has been used for the noise cancellation of ECGs contain-
ing baseline wander, electromyogram (EMG) noise, and motion
artifacts [2], [3]. Statistical techniques such as principal compo-
nent analysis [4], independent component analysis [5], [6], and
neural networks [7] have also been used to extract a noise-free
signal from the noisy ECG. Over the past several years, meth-
ods based on the wavelet transform (WT) have also received a
great deal of attention for the denoising of signals that possess
multiresolution characteristics such as the ECG [8]–[13].

Several ECG compression techniques have been developed
within the last 30 years, most of which are based on lossy
schemes for their higher compression ratio (CR) [14]. The com-
pression techniques devised for ECG signals are classified into
three different groups: direct, transformational, and parametric
extraction methods [14], [15]. Most of the proposed schemes
are based on the first two approaches. Hence, a few researchers
have investigated the parametric extraction techniques.

On the other hand, a synthetic model has been proposed for
generating artificial ECGs, which has unified the morphology
and pulse timing in a single nonlinear dynamic model [16].
Concerning the simplicity and flexibility of this model, it can be
easily used as a base for ECG processing, as demonstrated by
Clifford et al. [17], where the use of the model to filter, compress,
and classify the ECG was first proposed. This approach was
based on the least squares error (LSE) optimization. The model
may be further used in dynamic adaptive filters, such as the
Kalman Filter (KF). Sameni et al. proposed the use of a KF
framework to update the model on a beat-to-beat basis in order
to filter noisy ECGs [18]–[21]. The polar form of the dynamical
equations was also used for Kalman-based ECG denoising [20].

In this paper, the KF framework has been further modified by
adding 15 more equations to present the governing equations
of the model parameters. In fact, the new proposed structure is
aimed at estimating these new parameters, as well as the ECG
signal. The added parameters are further used for reconstructing
the ECG. Similar to [17], our proposed algorithm puts into work
both the denoising and compression approaches simultaneously,
but based on a sequential representation on a beat-by-beat dy-
namical adaptive basis. Meanwhile, the model is nonlinear and
requires the nonlinear counterparts of the conventional Kalman
filter. Our proposed model-based framework is built upon an ex-
tended Kalman filter (EKF) structure. Although there are several
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Bayesian filters such as the extended Kalman smoother (EKS)
and unscented Kalman filter (UKF), in this research, we have
chosen the EKF for its simplicity and more numerical stabil-
ity. However, the overall filtering performance is expected to be
better with EKS or UKF.

The paper is organized as follows. Section II provides back-
grounds on the EKF theory. Section III summarizes the ECG
artificial model. In Section IV, the new complete EKF structure
is proposed to incorporate the ECG dynamical model (EDM)
parameters. In Section V, our proposed algorithm for denoising
and compression is explained in details. Simulation results are
provided in Section VI. Finally, discussion and conclusions are
provided in Section VII.

II. EXTENDED KALMAN FILTER REVIEW

The EKF is a nonlinear extension of conventional Kalman
filter that has been specifically developed for systems having
nonlinear dynamic models [22]. For a discrete nonlinear system
with the state vector xk and observation vector yk , the dynamic
model and its linear approximation near a desired reference
point may be formulated as follows:


xk+1 = f(xk , wk , k)

≈ f(x̂k , ŵk , k) + Ak (xk − x̂k ) + Fk (wk − ŵk )
y

k
= g(xk , vk , k)
≈ g(x̂k , v̂k , k) + Ck (xk − x̂k ) + Gk (vk − v̂k )

(1)
where

Ak =
∂f(x, ŵk , k)

∂x

∣∣∣∣
x= x̂k

Fk =
∂f(x̂k , w, k)

∂w

∣∣∣∣
w=ŵ k

Ck =
∂g(x, v̂k , k)

∂x

∣∣∣∣
x= x̂k

Gk =
∂g(x̂k , v, k)

∂v

∣∣∣∣
v= v̂ k

. (2)

Here, wk and vk are the process and measurement noises,
respectively, with covariance matrices Qk = E{wkwT

k } and
Rk = E{vkvT

k }. In order to implement the EKF, the time prop-
agation and the measurement propagation equations are sum-
marized as follows:{

x̂−
k+1 = f(x̂+

k , w, k)
∣∣
w=0

P−
k+1 = AkP+

k AT
k + FkQkFT

k


x̂+
k = x̂−

k + Kk [y
k
− g(x̂−

k , v, k)|v=0]

Kk = P−
k CT

k [CkP−
k CT

k + Gk ]−1

P+
k = P−

k − KkCkP−
k

(3)

where x̂−
k = E{xk |yk−1

, y
k−2

, . . . , y
1
} is the a prior estimate

of the state vector, xk , at the kth update, using the observations
y1 to yk−1 , and x̂+

k = Ê{xk |yk
, y

k−1
, . . . , y

1
} is the a posteri-

ori estimate of the state vector after adding the kth observations
yk . P−

k and P+
k are defined in the same manner to be the esti-

mations of the covariance matrices in the kth stage, before and
after using the kth observation, respectively.

III. ECG DYNAMICAL MODEL

McSharry et al. [16] proposed a realistic synthetic ECG
generator using a set of 3-D state equations that generates

a trajectory in the Cartesian coordinates. Sameni et al. [20]
transformed these dynamic equations into the polar form to
obtain a simpler compact set, with the simplified discrete form
shown as:


θk+1 = (θk + ωδ)mod(2π)

zk+1 = −
∑

i∈{P,Q,R,S,T }
δ
αiω

b2
i

∆θi exp

(
−∆θ2

i

2b2
i

)
+ zk + η

(4)
where δ is the sampling time, αi, bi , θi are the amplitude,
angular spread, and location of the Gaussian functions, and
∆θi = (θ − θi)mod(2π) represents the RR interval variability.
The ECG is then described by the set of discrete samples formed
by z. η is a random additive white noise, which represents the
baseline wander effects and models other additive sources of
process noise [20]. As it is seen in (4), the palliative/provoking,
quality, radiation, severity, timing (PQRST) waves are modeled
with a sum of five Gaussian functions, each of which is located
at a specific angular position θi . In fact, the 3-D trajectory
consists of a circular limit cycle in the polar plane, which
is pushed up and down as it approaches each of the θi . The
projection of the trajectory on the z-axis gives a synthetic ECG.

IV. PROPOSED COMPLETE EKF STRUCTURE TO INCORPORATE

THE ECG MODEL PARAMETERS

In [19]–[21], the authors studied the application of EDM to
ECG denoising using an EKF structure with only two state
variables (which we call EKF2). In their works, they chose θ
and z as the only state variables. Hence, the state vector and the
process noise vector were:

xk = [θkzk ]T

wk = [αP , . . . , αT , bP , . . . , bT , θP , . . . , θT , ω,N ]T . (5)

Using the previous state variables, it is only possible to have
estimations of the ECG (for example, in denoising applications)
and the phase. Since these parameters are those that make the
artificial ECG adaptable to different ECG signals, we have added
the αi , bi , and θi (i = P , Q, R, S, and T ) to the state variables
and have proposed new dynamical equations for each. Long-
term ECGs can be described by a series of states described by
a given power-spectral density with similar parameters over the
short term [23]. This idea motivated us to propose autoregressive
(AR) dynamics as follows:

yi [k + 1] = γyi [k] + ui [k] (6)

where yi denotes any of the 15 Gaussians’ parameters αi ,
bi , and θi , with ui indicating its corresponding white noise.
Regarding the small changes of the PQRST morphology during
several cycles, we have adopted this AR model. In order to en-
sure a valid set of equations, we have set γ = 1 (or γ ≈ 1), since
the Gaussians’ parameters are expected to have little variations
from one beat to another beat in normal ECG signals. We expect
that the recent sample of any of the newly introduced parameters
can be regressed on the past value of itself to produce a useful
estimate for the new sample. However, the AR (1) model also
provides a noise term that accounts for the perturbations in mor-
phology from beat to beat (such as those caused by respiration,
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or changes in heart rate). For constructing the EKF structure, we
have the new state vector and process noise vector as follows:

xk = [θk , zk , αP , . . . , bP , . . . , θP , . . . , θT ]T

wk = [ω, η, u1 , . . . , u15 ]T . (7)

With the 17 state variables in (7), the new modified EKF
model is formulated as:


θ[k + 1] = θ[k] + ωδ = F1(θk , ω, k)

z[k + 1] = −
∑

i∈{P,Q,R,S,T }
δ
αi [k]ω
bi [k]2

∆θi [k] exp

(
−∆θi [k]2

2bi [k]2

)

+z[k] + η = F2(θk , zk , αik
, bik

, θik
, N, k)

αP [k + 1] = αP [k] + u1 [k] = F3(αPk
, u1 , k)

...

bP [k + 1] = bP [k] + u6 [k] = F8(bPk
, u6 , k)

...

θP [k + 1] = θP [k] + u11 [k] = F13(θPk
, u11 , k)

...

θT [k + 1] = θT [k] + u15 [k] = F17(αTk
, u15 , k).

(8)
The basic idea of the EKF is to linearize the state-space model

(4) at each time instant around the most recent state estimation.
Equation (9) represents the linearized version. Note that the
terms which are equal to zero are not cited in this equation.

∂F1

∂θk
= 1,

∂F2

∂zk
= 1

∂F2

∂θk
= −

∑
i∈{P,Q,R,S,T }

δ
αiω

b2
i

[
1 − ∆θ2

i

b2
i

]
exp

(
−∆θ2

i

2b2
i

)

∂F2

∂αik

= −δ
ω

b2
i

∆θi exp

(
−∆θ2

i

2b2
i

)
∂F2

∂bik

= −2δ
αiω

b3
i

∆θi

[
1 − ∆θ2

i

2b2
i

]
exp

(
−∆θ2

i

2b2
i

)
∂F2

∂θik

= δ
αiω

b2
i

[
1 − ∆θ2

i

2b2
i

]
exp

(
−∆θ2

i

2b2
i

)
∂F3

∂αPk

=
∂F4

∂αQk

=
∂F5

∂αRk

=
∂F6

∂αSk

=
∂F7

∂αTk

= 1

∂F8

∂bPk

=
∂F9

∂bQk

=
∂F10

∂bRk

=
∂F11

∂bSk

=
∂F12

∂bTk

= 1

∂F13

∂θPk

=
∂F14

∂θQk

=
∂F15

∂θRk

=
∂F16

∂θSk

=
∂F17

∂θTk

= 1.

(9)

Having linearized the new modified EDM, an EKF may be
developed. Note that in order to model the effects of the mis-
match of the EDM with a true ECG signal, it is necessary to
introduce a process noise in the dynamic model. For this, an
additive random Gaussian white noise has been assumed in (8).
This small portion of noise, η, gives more flexibility to the KF,
and prevents it from converging to undesired limit cycles [4].
In the proposed EKF structure, we have only two noisy obser-
vations corresponding to the state variables θ and z [21], which

are related to the state vector as follows:[
ϕk

sk

]
=

[
1 0 0 · · · 0

0 1 0 · · · 0

]
xk +

[
v1k

v2k

]
(10)

where ϕ and s are the noisy observations corresponding to the
phase and the ECG signal, respectively. v1 and v2 are the obser-
vation noises. Other state variables for which we have no obser-
vations are considered as the hidden states. In the EKF model,
these variables would be estimated with respect to their dynam-
ics given in (8). Also, we have Rk = E{[v1k

, v2k
][v1k

, v2k
]T }.

In the context of estimation theory, the variance of the observa-
tion noise in (10) somehow represents the degree of reliability
of a single observation. In other words, when a rather precise
measurement of the states of a system is valid, the value of Rk

is low, and the Kalman filter gain is adapted such as to rely on
that specific measurement. While for the epochs that the mea-
surements are too noisy or there are no measurements available,
the value of Rk is high and the Kalman filter tries to follow its
underlying dynamics rather than relying on the observations.

V. MODEL-BASED DENOSING AND COMPRESSION

Once the EKF structure is constructed, we can perform se-
lected processing applications on ECG signals. The proposed
framework can estimate any of its states according to the dy-
namical equations and the observations. In fact, they enable us
to build up denoising and compression blocks, a concept that is
addressed next.

A. Denoising

The proposed nonlinear Bayesian framework estimates its
variables using the state dynamical equations and its observa-
tions, noisy phase ϕ and noisy ECG s. Since the ECG signal, z,
is a state variable in the EKF structure, the filtering procedure
provides its estimation, x̂2 , which is regarded as the denoised
version of the input signal.

B. Compression

A mathematical representation for the clean ECG signal can
be obtained by integrating the last equation of the continuous
form of EDM (1) with respect to t [16]. This way, the ECG
signal is formulated as a sum of five Gaussians as:

z(ai, bi , θi) =
∑

i∈{P,Q,R,S,T }
αi exp

(
−∆θ2

i

2b2
i

)
. (11)

According to (11), if we have only an estimated value for the
αi , bi , and θi , we can reconstruct the original ECG. Since we
have considered these variables as the states of EKF, we can
easily estimate their values from x̂3:17 . But, the EKF updates its
estimations when a new sample is observed. This means that the
EKF estimates the αi , bi , and θi parameters time series, in a sim-
ilar manner to θ and z. We expect a constant value for each of the
15 Gaussians’ parameters during each heartbeat. This is espe-
cially true, because the amplitude, spread, and angular location
of the PQRST do not vary within a single ECG beat. In practice,
since the estimated series of αi , bi , and θi are not a definitely
constant function, we use its average value over each heartbeat
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and use equation (12) to reconstruct the estimated ECG.

zrec =
∑

i=3:7

x̂i exp

(
−[(x̂1 − x̂i+10)mod(2π)]2

2x̂2
i+5

)
. (12)

This way, for every detected beat of an ECG, we must
store/transmit 15 values. Also, as it can be seen from (12) that
we need to store/transmit the estimated phase x̂1 to be able to
reconstruct the ECG. However, since the phase values are lin-
early distributed between –π and +π, we can only encode the
zero locations (i.e., the R-peaks of x̂2). In the decoder, we use
these locations to assign the phase values between −π and +π.

A more accurate representation for reconstructing the com-
pressed ECG through a sum of Gaussians is possible if we
vary the number of Gaussian functions in (12). Clifford et al.
proposed an extension of the EDM, which used an arbitrary
number of Gaussians, with two Gaussians for each asymmetric
turning point [17]. As was shown [24]–[26], using six–eight
Gaussians is a more appropriate choice for the number of ker-
nels used for reconstruction, but this would further affect the
compression performance. We will discuss this point in the next
section.

The proposal to use the EDM for compression was previously
introduced an optimization scheme to find the LSE fit for the
input ECG [17]. This fit was mathematically optimal in the LSE
sense, but did not use any dynamical adaptable information
about the input ECG. In the previous approach, the nonlinear
optimization has to be performed within each cycle of the signal.
Also, initial values of the parameters of the model are required.
These initials together with the system dynamics (8) enable
us to find an optimal fit for the proceeding cycles through the
recursive solution (3). The current implementation is also based
on the EDM. However, our method uses the dynamical set of
equations in the construction of an adaptive filter, which not
only uses the ECG as an observation but also depends on the
state dynamics. Furthermore, the EKF-based algorithm does not
need to have the initial parameters for every cycle of the input
signal. Hence, the proposed EKF-based technique is an efficient
idea for ECG compression.

VI. RESULTS

The proposed algorithm implemented in Matlab on a Core
Duo computer at 1.86 GHz with 1 Gb RAM. The same machine
was used to measure processing time for the test signals. To
study the performance of the proposed method several standard
data sets from PhysioBank [27] were used, including the MIT-
BIH normal sinus rhythm database (DB1) [28], the MIT-BIH
noise stress test database (DB2) [29], the MIT-BIH arrhyth-
mia database (DB3) [30], and the MIT-BIH compression test
database (DB4) [31].

It is worth noting that the initial value for the state vector as
well as the selection of the covariance matrices of the process
and the measurement noise will highly influence the trajectory
of the estimated vectors. Hence, prior to the implementation
of the filter, it is necessary to select their values. In order to
automate the parameter selection procedure for any given ECG,
the parameters should be estimated from the signal itself. Similar
to the approach discussed in [21], we have calculated the phase-

wrapped ECG for all phases between −π and π. Using the mean
[ECG(θ)] and the standard deviation (SD) [σECG(θ)] of this
new representation for the input signal, we are able to estimate
the initial values for the dynamic model parameters using a
typical nonlinear optimization scheme like lsqnonlin.m [32],
[33], as proposed in [17]. It should be noted that the algorithm is
highly affected by the choice of these initial values. Especially
since the 15 Gaussians parameters need to be estimated only
from two observations, errors in assigning their initial values
cause the output of EKF not to follow the input ECG. Thus, the
more precise the initial values are, the less the perturbation in
the observations affects the filtering performance.

Similarly, the covariance values of Qk are found by calcu-
lating the magnitude of the deviation of the parameters of the
five Gaussian functions of EDM around the estimated mean,
that best model the acceptable deviations of the ECG around
ECG(θ). This is again a nonlinear least-squares problem that
is solved by finding the optimal parameters that generate the
best fit of the mean ECG within the upper and lower ranges
of ECG(θ) ± σECG(θ). We have used a global value for the
angular frequency ω, which is a simpler approximation for short
signals with minor RR-interval deviations (between 10% to
20% [21]). This way, it may be set to ω = 2π/TRR , where TRR
is the average RR-interval of the whole signal. In a similar man-
ner to [21], we set E{v2

1k
} = (ωδ)2/12, and E{v2

1k
} is found

from the deviations of the inactive segment of the ECG, between
the end of the T-wave and the beginning of the next P-wave,
which correspond to the ending segments of the phase-warped
ECG.

Before presenting the experiments and results, the scope of
the proposed filtering scheme needs to be further clarified. In
the presented approach, due to the phase wrapping of the RR-
interval to 2π, normal interbeat variations of the RR-interval
(between 10% to 20%), or consistent RR-interval abnormalities
such as Bradycardia or Tachycardia do not considerably affect
the filter performance. However, for morphological abnormal-
ities that only appear in some of the ECG cycles, such as the
Premature Ventricular Contraction (PVC), the phase error of
the model can lead to large errors in the Gaussians function lo-
cations. Especially for low input SNRs, where neither the model
nor the measurements are reliable for the filter, the filtering per-
formance is not expected to be satisfactory. However, the benefit
of the Gaussian mixture representation is that the effect of each
Gaussian term vanishes very quickly (in less than the ECG pe-
riod), meaning that the errors are not propagated to the follow-
ing ECG cycles. Moreover, by monitoring the state estimates’
covariance matrices and the variations of the innovation signals,
it is possible to detect such unexpected abnormalities. Of course,
it should be considered that the accurate filtering of abnormal
ECGs with high morphologic changes, such as QT hysteresis
and premature contraction beats, remains an open problem [21].
However, we are now studying EDM-based segmentation meth-
ods to extract the abnormal cycles of ECG signals. This way, it
is possible to filter any ECG, if we can split the input signal into
two or more signals with little morphological beat variation. The
method proposed in [25] is another possibility. All these show
the necessity of extensive and more accurate studies to develop
a reliable technique to overcome mentioned problems.
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Fig. 1. Typical filtering results of EKF17 for different input ECGs. (a) Record
116 from DB3, with an additive white Gaussian noise of –2 dB. (b) Record
118e24 from DB2, with calibrated amount of real EMG noise (corresponding
to an input SNR of 2 dB for the noisy portion). (c) Record 203 from DB3, with
real motion artifacts (corresponding to an input SNR of 5 dB).

A. Denoising

The second estimation from the estimated states vectors ob-
tained by the proposed EKF model with 17 state variables
(EKF17) was chosen as the denoised signal. Three databases
DB1, DB2, and DB3 were used to study the performance of the
proposed method. Fig. 1 shows denoising results for different
types of noises including white and real noises. As it can be seen,
the denoised signal follows the clean ECG morphology when
artificial white noise is added [see Fig. 1(a)]. Also, for the real
EMG noises, the denoised signal is free from any EMG artifacts
[see Fig. 1(b)]. Motion artifact is generally considered the most
troublesome, since it can mimic the appearance of ectopic beats,
it causes undesired notches on the ST segment and cannot be
removed easily by simple bandpass filters, unlike other types.

Fig. 1(c) indicates that EKF17 is also able to remove motion
artifact, while preserving diagnostic morphological information
of the signal. Note that because there are underlying dynamics
for the ECG signal, which constrain the filtering, motion artifact

Fig. 2. Typical filtering results of EKF2 and EKF17 for an input signal of
5 dB using an additive white Gaussian noise (Record 16265 from DB1). The
peaks distortions for EKF2 are clearly seen, especially in the ST segments and
the R-peaks.

cannot force the denoised signal follow distorted waveforms.
To clarify this, see Fig. 1(c), where the denoised signal shows
a different pattern to that of the noisy signal. Specifically, the
T-wave end points in the denoised signal do not follow the
distorted T-wave end points of the noisy signal.

To appreciate the merits of EKF17 over the previously EKF
model with two state variables (EKF2), we have illustrated the
results of both methods in Fig. 2. One can easily find the peak
distortions of EKF2, especially for the QRS complex, and the
distortions in the ST segment.

For evaluating the performance of the proposed method, we
have used the SNR improvement measure given by:

imp[dB]=SNRoutput−SNRinput=10 log

(∑
i |xn (i) − x(i)|2∑
i |xd(i) − x(i)|2

)
(13)

where x denotes the clean ECG, xd is the denoised signal, and
xn represents the noisy ECG.

In order to investigate the performance of our algorithm and
to compare it to different benchmark methods, we have imple-
mented the EKF2 algorithm [21]. Also, a recently proposed al-
gorithm based on the multiadaptive bionic WT (MABWT) [13],
which has shown the best results among wavelet-based filter-
ing techniques, has been implemented. Typical values for the
SNR improvements of the ECG records of DB3 are provided in
Table I. The analyzed portions of the records (in seconds) are
also detailed in Table I. To ensure the consistency of the results,
the whole procedure was repeated 100 times over the selected
portions of the records of DB3 and the first 60 min of all 18
records of DB1; each time using a different set of random white
Gaussian noise at the input. The SNRs were generally calcu-
lated over the second half of the filtered segments, to ensure that
the transient effects of the filters would not influence the SNR
calculations. For a quantitative comparison, the mean and SD of
the SNR improvements versus different input SNRs is plotted in
Fig. 3. Note the superiority of EKF17, especially in lower input
SNRs, where the clean ECG is lost in noise.

B. Compression

Having the estimations of the EKF state variables (7), the
reconstructed ECG is obtained using (12). Fig. 4 shows an ECG
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TABLE I
PERFORMANCE EVALUATION OF THE BENCHMARK DENOISING ALGORITHMS

ON DB3. THE VALUES SHOW SNR IMPROVEMENT IN DECIBELS

Fig. 3. The mean (top) and SD (bottom) of the filter output SNR improvements
versus different input SNRs for the selected portions of the records of DB3 and
the first 60 min of all 18 records of DB1, averaged over 100 repetitions for each
of three methods; MABWT, EKF2, and EKF17.

signal, with 15 estimated Gaussians’ parameters, i.e., α̂i , b̂i ,
θ̂i , shown as time series. Note that they remain nearly constant
valued during each normal beat. When the filter encounters a
different rhythm, the Gaussian parameters change because the
rhythm has been changed. This will cause their estimations not
to remain constant anymore during that beat.

Using the parameters of the Gaussian functions of EDM, it is
possible to reconstruct the input ECG. However, more accurate
reconstruction is possible if we vary the number of Gaussian
functions, as proposed by Clifford et al. [17], where asymmetries
in waveforms, or extra waves (such as the U-wave) can be
modeled by adding an extra Gaussian. Fig. 5 illustrates an ECG
and the reconstructed signals using five and six Gaussians. As
it can be seen, the signals are similar to the original ECG.

Particularly, when six Gaussians are used, the characteristic
waveforms are reconstructed almost perfectly, with minimal
distortion in the diagnostic information during compression.
According to the asymmetric shape of the T-wave, for assigning
the Gaussians to the PQRST waveforms, we used two Gaussians
for the T-wave, called T+ and T− [17]. This way, distortionless
reconstruction of the T-wave and especially the ST segment is
possible (see Fig. 5).

Database DB4 was used to evaluate the proposed compres-
sion algorithm and to compare it with other known compression
methods. We have also implemented the embedded zero-trees of
wavelet coefficients (EZW) method [34] based on the concept
introduced in [35], and the set partitioning in hierarchical trees

Fig. 4. Estimated Gaussians’ parameters with EKF17 for record 231 from
DB3 (analyzed portion 1.2 sec:3 sec).

(SPIHT) algorithm [36]. These compressors were chosen for
comparison because they are often referred for comparison in
the literature, and are known as the best transform-based ECG
compressors. Generally speaking, most of the ECG compres-
sion algorithms use simple mathematical distortion measures
such as the rms error, the percentage rms difference (PRD),
the SNR, and a maximum amplitude error for evaluating the
reconstructed signal [37]. Such performance indexes are irrele-
vant from the point of view of diagnosis [38]. In other words,
all these error measures have disadvantages, which all result in
poor diagnostic relevance. For example, if the signal has base-
line fluctuations, the variance of the signal will be higher, the
PRD will be artificially lower, and the SNR will be artificially
higher. Furthermore, every segment in the PQRST complex
has a different diagnostic meaning and significance. A given
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Fig. 5. Typical results of the EKF-based compression algorithms for Record 117 from DB3 (dotted line). The reconstructed signal using EKF17 (5 Gaussians)
and EKF20 (6 Gaussians) are shown with dashed line and solid line, respectively.

distortion in one segment does not necessarily have the same
relevance or importance as the same magnitude of distortion in
another segment. For example, in many patients’ ECGs, small
changes (elevations or depressions) of the ST segment are much
more diagnostically significant than the TP segment. In the pro-
posed algorithm, we do not track the baseline since we are
constructing the original ECG only through a sum of five or six
Gaussians (12). Hence, the baseline of the reconstructed signal
is expected to be flat. This can increase the error between the
input ECG and the reconstructed one for nonflat portions and
would increase the PRD value as well. To avoid such errors,
baseline wanders have been eliminated using MABWT in the
preprocessing stage.

The weighted diagnostic distortion (WDD) [38] is based on
comparing the PQRST features of the original ECG and the
reconstructed signal. The WDD measures the relative preserva-
tion of the diagnostic information in the reconstructed signal:
the location, duration, amplitudes, and shapes of the waves and
complexes that exist in every beat. It is defined as

WDD(β, β̂) = ∆βT Λ
tr(Λ)

∆β × 100 (14)

where β and β̂ represent two vectors of 18 diagnostic features
of the original beat and reconstructed beat, respectively, ∆β is
the normalized difference vector, and Λ is a diagonal matrix of
weights [38] which is set to

Λ = diag[2.5 2.5 1 1 2 2 1 0.5 0.1 . . .

1.5 1 3 1.5 1.5 1 1 3 3].
(15)

In this research, we have used the same features and penalty
matrices as [38]. We have also considered another error mea-
sure, called the percentage area difference (PAD) between the
original and the reconstructed signal, which is defined for the
time indexes between ti and tf as [39]:

PAD =

∣∣∣∫ tf

ti
x(t)dt −

∫ tf

ti
xr (t)dt

∣∣∣
(tf − ti)(xmax − xmin)

× 100. (16)

TABLE II
PERFORMANCE EVALUATION OF BENCHMARK COMPRESSION

ALGORITHMS ON DB4

Table II shows compression evaluation results for 50 selected
records from DB4 with their complete durations. The results
are compared to those of EZW and SPIHT. The CR for the
model-based algorithm is formulated as:

CR =
L

nparam
=

L

(3nGaussnbeat) + nR
(17)

where L is the whole ECG length (in samples), nparam is the
number of parameters required for reconstruction, nbeat is the
total number of beats in the ECG sequence, nGauss is the number
of Gaussian kernels used in the EDM, and nR is the number of
total R-peaks locations. Since nR = nbeat the CR reduces to

CR =
L

nbeat(1 + 3nGauss)
. (18)

It can be seen from Table II that our proposed method pro-
vides a higher CR, while preserving the similarity between the
original ECG and the reconstructed version most accurately. It is
worth noting that in all cases, the WDD of EKF17 is comparable
to and usually superior to the other methods being tested. Ad-
ditionally, increasing the number of Gaussians results in lower
CRs, as expected. Accordingly, EKF20 is chosen as the desired
compression scheme because of its CR and low error measures.

Another interesting remark is that the CR of EKF-based al-
gorithm depends upon the number of beats [refer to (18)]. This
means that for ECG signals with lower average heart rates, the
CR is much higher because the resulting ECG contains fewer
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TABLE III
HEART RATE AND SAMPLING FREQUENCY EFFECTS ON THE PERFORMANE

OF EKF20 COMPRESSION ALGORITHM

beats. This is beneficial for compression of long-term ECGs,
like Holter recordings. The CR is also a function of the sam-
pling frequency fs ; obviously, the CR for those signals with
higher fs would be higher. To simulate the heart rate and the
sampling frequency effects on the CR, we have considered se-
lected records from DB3 and DB4. The results for EKF20 are
provided in Table III for EKF20. The results show the effect of
heart rate on the CR. In fact, for a constant fs , the more the
number of beats are, the lower the CR is (see either second–
fourth rows or fifth–seventh rows). Also, by comparing records
that have approximately the same sampling frequency, we came
to this conclusion that for a constant number of beats, the more
the fs is, the higher the CR is (compare the second row to the
last row in which the number of beats are nearly equal).

The actual run time of the algorithms was used to evaluate the
time complexity of the proposed method. Generally, by using m
Gaussians kernels in (4), the state vector and the process noise
vector in (7) have 3m + 2 entries, leading Q, A, and F matrices
to be (3m + 2) × (3m + 2). C is a (2) × (3m + 2) matrix.

In addition, R and G matrices do not depend on the number
of Gaussians. In other words, since we have two observations,
these matrices are 2 × 2. Consequently, increasing m affects
the dimensionality of the matrices and the run time. For a signal
with approximately 20 000 samples (corresponding to almost
1 min at a sampling frequency of fs = 360 Hz), a run of EKF2,
EKF17, EKF20, EKF23, and EKF26 takes about 12.2, 17.1,
21.7, 26.9, and 31.5 s, respectively.

VII. DISCUSSION AND CONCLUSION

We have presented and validated a new EKF algorithm that
incorporates the parameters of the EDM, and its applications to
ECG denoising and compression. By introducing a simple AR
model for each of the 15 dynamic parameters of the Gaussians,
the new EKF structure was constructed. The proposed set of
equations aims at integrating into the ECG model a mechanism
that estimates the new hidden state variables without having
any corresponding observations, which was later used for com-
pression. The designed filter was applied to noisy ECG signals,
and the results demonstrate the filter’s capability in tracking and
filtering noisy ECG.

Compared to benchmark denoising schemes EKF2 and
MABWT, EKF17 provides a larger SNR improvement, espe-
cially fewer input SNRs, where the original signal is lost in
noise. Another point of interest is the low SD of SNR improve-
ments for EKF17, which ensures the consistency of results as
compared to other methods. Furthermore, the new modifications

in the EKF structure results in fewer peak distortions. Hence,
the proposed method can serve as a base for the design of a
robust ECG filter, with vast applications for low SNR ECGs.

The EKF structure not only estimates the clean ECG as a
Kalman state variable, but also estimates the Gaussians param-
eters of the model. Therefore, a simple way to reconstruct the
ECG is to store/transmit only these parameters, as well as the
R-locations, for each beat. However, these estimations are not
constant valued, and therefore, we have used their mean value
over each beat (60 divided by the average heart rate). Accord-
ing to the described procedure, the ECGs were compressed and
reconstructed using different number of Gaussian Kernels. It is
worth noting that the results in this paper are for short ECGs.
For longer ECGs, it is likely that the heart rate varies signif-
icantly, and therefore, the performance of the filter will vary.
Long ECG sections will probably require an adaptive change of
the parameters with the RR period.

For evaluating the performance of the proposed EKF-based
algorithm for lossy compression and to give different weights
to different diagnostic features, we used the WDD measure as
the major distortion index. Its features depend on the PQRST
waveforms, which qualify it to be the well-correlated measure
with morphological characteristics of the ECG signal. Its only
drawback is its expensive cost in term of time for calculation.
Evaluation results showed that the proposed EKF-based algo-
rithm has a high CR, while giving low WDD values (less than
5%). This means that the reconstructed signals can be guaran-
teed to be clinically useful provided that the initial values for
the EKF structure are chosen appropriately. Another fact of the
proposed EKF scheme is that the CR depends on the number of
beats in the ECG signal. In other words, ECG signals with long
RR-intervals result in a higher CR. This is more applicable to
long-term ECG compression.

In addition, through simple modifications, the model would be
robust to PQRST variations, which incorporates several patho-
logical conditions such as small ST changes and QT prolonga-
tion. This gives the opportunity to study low amplitude com-
plexes, even with interbeat changes. By modifying the simple
model of (4) to incorporate more than five waves (P, Q, R, S,
and T), except for the use of two Gaussians for the T-wave in
EKF20, the error rate decreases (to less than 2%). But, the cost
of using more Gaussian functions is a lowering of the CRs. The
results showed that using six Gaussians (EKF20) can lead to an
acceptable CR and WDD value.

Future works include incorporating baseline fluctuations in
the EDM to reduce the distortions and cause the algorithm to
be more reliable. In addition, different dynamical models may
be proposed to represent the new state variables behavior. Also,
it is possible not to use a constant value for the AR coefficient,
but to find an adaptive value during different cycles. Moreover,
lossless compression schemes may be proposed by combining
EKF17 with a residual difference encoder [40].
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with soft-thresholding methods,” in Proc. Comput. Cardiology, Hannover,
Germany, Sep. 1999, pp. 535–538.

[13] O. Sayadi and M. B. Shamsollahi, “Multiadaptive bionic wavelet trans-
form: Application to ECG denoising and baseline wandering reduction,”
EURASIP J. Adv. Signal Process., vol. 2007, pp. 1–11, 2007.

[14] S. M. S. Jalaleddine, C. G. Hutcgens, R. D. Strattan, and W. A. Coberly,
“ECG data compression techniques—A unified approach,” IEEE Trans.
Biomed. Eng., vol. 37, no. 4, pp. 329–343, Apr. 1990.

[15] M. Blanco-Velasco, F. Cruz-Roldan, F. Lopez-Ferreras, A. Bravo-Santos,
and D. Martinez-Munoz, “A low complexity algorithm for ECG sig-
nal compression,” Med. Eng. Phys., vol. 26, no. 7, pp. 553–568, Sep.
2004.

[16] P. E. McSharry, G. D. Clifford, L. Tarassenko, and L. A. Smith, “A
dynamic model for generating synthetic electrocardiogram signals,” IEEE
Trans. Biomed. Eng., vol. 50, no. 3, pp. 289–294, Mar. 2003.

[17] G. D. Clifford, A. Shoeb, P. E. McSharry, and B. A. Janz, “Model-based
filtering, compression and classification of the ECG,” Int. J. Bioelectro-
magnetis, vol. 7, no. 1, pp. 158–161, 2005.

[18] M. Mneimneh, E. Yaz, M. Johnson, and R. Povinelli, “An adaptive kalman
filter for removing baseline wandering in ECG signals,” in Proc. 33rd
Annu. Int. Conf. Comput. Cardiol., 2006, pp. 253–256.

[19] R. Sameni, M. B. Shamsollahi, and C. Jutten, “Filtering electrocardiogram
signals using the extended Kalman filter,” in Proc. 27th Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBS), Shanghai, China, Sep. 1–4, 2005,
pp. 5639–5642.

[20] R. Sameni, M. B. Shamsollahi, C. Jutten, and M. Babaie-Zadeh, “Filtering
noisy ECG signals using the extended Kalman filter based on a modified
dynamic ECG model,” in Proc. 32nd Annu. Int. Conf. Comput. Cardiol.,
Lyon, France, Sep. 25–28, 2005, pp. 1017–1020.

[21] R. Sameni, M. B. Shamsollahi, C. Jutten, and G. D. Clifford, “A nonlinear
bayesian filtering framework for ECG denoising,” IEEE Trans. Biomed.
Eng., vol. 54, no. 12, pp. 2172–2185, Dec. 2007.

[22] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[23] P. E. McSharry and G. D. Clifford, “A statistical model of the sleep-wake
dynamics of the cardiac rhythm,” Comput. Cardiol., vol. 32, pp. 591–594,
Sep. 2005.

[24] G. D. Clifford and P. E. McSharry, “Method to filter ECGs and evaluate
clinical parameter distortion using realistic ECG model parameter fitting,”
Comput. Cardiol., vol. 32, pp. 735–738, Sep. 2005.

[25] G. D. Clifford, “A novel framework for signal representation and source
separation: Applications to filtering and segmentation of biosignals,” J.
Biol. Syst., vol. 14, no. 2, pp. 169–183, Jun. 2006.

[26] G. D. Clifford and M. Villarroel, “Model-based determination of QT
intervals,” Comput. Cardiol., vol. 33, pp. 357–360, Sep. 2006.

[27] PhysioBank, physiologic signal archives for biomedical research [Online].
Available: http://www.physionet.org/physiobank/

[28] The MIT-BIH Normal Sinus Rhythm Database [Online]. Available:
http://www.physionet.org/physiobank/database/nsrdb/

[29] The MIT-BIH Noise Stress Test Database [Online]. Available:
http://www.physionet.org/physiobank/database/nstdb/

[30] The MIT-BIH Arrhythmia Database [Online]. Available: http://
physionet.org/physiobank/database/mitdb/

[31] The MIT-BIH Compression Test Database [Online]. Available: http://
www.physionet.org/physiobank/database/cdb/

[32] T. F. Coleman and Y. Li, “On the convergence of reflective Newton meth-
ods for large-scale nonlinear minimization subject to bounds,” Math.
Program., vol. 67, no. 2, pp. 189–224, 1994.

[33] T. F. Coleman and Y. Li, “An interior, trust region approach for nonlinear
minimization subject to bounds,” SIAM J. Optim., vol. 6, pp. 418–445,
1996.

[34] M. L. Hilton, “Wavelet and wavelet packets compression of electrocar-
diogram,” IEEE Trans. Biomed. Eng., vol. 44, no. 5, pp. 394–402, May
1997.

[35] J. A. Norris, K. B. Englehart, and D. F. Lovely, “Myoelectric signal
compression using zerotrees of wavelets coefficients,” Med. Eng. Phys.,
vol. 25, no. 9, pp. 739–746, Nov. 2003.

[36] Z. Lu, D. Y. Kim, and W. A. Pearlman, “Wavelet compression of ECG
signals by the set partitioning in hierarchical trees algorithm,” IEEE Trans.
Biomed. Eng., vol. 47, no. 7, pp. 849–856, Jul. 2000.

[37] M. Ishijima, “Fundamentals of the decision of optimum factors in the
ECG data compression,” IEICE Trans. Inf. Sys., vol. E76-D, no. 12, Dec.
1993.

[38] Y. Zigel, A. Cohen, and A. Katz, “The weighted diagnostic distortion
measure for ECG signal compression,” IEEE Trans. Biomed. Eng., vol. 47,
no. 11, pp. 1422–1430, Nov. 2000.

[39] A. C. D’Ambrosio, A. Ortiz-Conde, and F. J. G. Sánchez, “Percentage
area difference (PAD) as a measure of distortion and its use in maximum
enclosed are (MEA), a new ECG signal compression algorithm,” in Proc.
4th IEEE Int. Caracas Conf. Devices, Circuits Syst., Aruba, Apr. 17–19,
2002, pp. 1035-1–1035-5.

[40] R. Kannan and C. Eswaran, “Lossless compression schemes for ECG sig-
nals using neural network predictors,” EURASIP J. Adv. Signal Process.,
vol. 2007, Article ID 35641, pp. 102–122, 2007, doi:10.1155/2007/35641.

Omid Sayadi (S’06) was born in Shiraz, Iran, in
1983. He received the B.Sc. degree in biomedical
engineering from Shahed University, Tehran, Iran,
in 2005, and the M.Sc. degree in electrical engineer-
ing, biomedical engineering in 2007 from Sharif Uni-
versity of Technology, Tehran, where he is currently
working toward the Ph.D. degree in biomedical engi-
neering at the Electrical Engineering Department.

He is also a member of Biomedical Signal and
Image Processing Laboratory (BiSIPL), Sharif Uni-
versity of Technology. His current research interests

include dynamical models for ECG generation, model-based ECG processing,
the application of wavelet concepts, and especially multiadaptive bionic wavelet
transform to biomedical signal processing solutions, signature verification, and
efficient heart modeling.

Mohammad Bagher Shamsollahi (M’02) was born
in Qom, Iran, in 1965. He received the B.Sc. de-
gree in electrical engineering from Tehran Univer-
sity, Tehran, Iran, in 1988, the M.Sc. degree in elec-
trical engineering, telecommunications from Sharif
University of Technology, Tehran, in 1991, and the
Ph.D. degree in electrical engineering, biomedical
signal processing from the University of Rennes 1,
Rennes, France, in 1997.

Currently, he is an Associate Professor in the De-
partment of Electrical Engineering, Sharif University

of Technology. His current research interests include biomedical signal pro-
cessing, brain computer interface, and time-scale and time-frequency signal
processing.


