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Multichannel Electrocardiogram Decomposition
Using Periodic Component Analysis

Reza Sameni*, Christian Jutten, and Mohammad B. Shamsollahi

Abstract—In this letter, we propose the application of the
generalized eigenvalue decomposition for the decomposition of
multichannel electrocardiogram (ECG) recordings. The proposed
method uses a modified version of a previously presented measure
of periodicity and a phase-wrapping of the RR-interval, for extract-
ing the “most periodic” linear mixtures of a recorded dataset. It is
shown that the method is an improved extension of conventional
source separation techniques, specifically customized for ECG sig-
nals. The method is therefore of special interest for the decompo-
sition and compression of multichannel ECG, and for the removal
of maternal ECG artifacts from fetal ECG recordings.

Index Terms—Blind source separation, fetal ECG extraction,
generalized eigenvalue decomposition.

I. INTRODUCTION

INDEPENDENT component analysis (ICA) has been ex-
tensively used for solving blind source separation (BSS)

problems and extracting independent components embedded in
multichannel recordings. ICA techniques are usually based on
the maximization of some nonlinear criterion as a measure of
component independence. However, for pseudoperiodic signals
such as the electrocardiogram (ECG), the temporal structure of
the signal is rich in information. For such signals, a measure of
periodicity of the extracted signals, both clinically and math-
ematically, is a more appropriate criterion than independence.
In some recent works, the temporal periodicity of ECG signals
has been exploited in source separation algorithms [1]. These
methods are, however, of the same order of complexity as con-
ventional ICA algorithms, and are basically designed for signals
having a constant fundamental period; an assumption that is not
true for real ECG recordings.

In this letter, we present an extension of previous source sepa-
ration methods that is specifically customized for the ECG. The
proposed method is partially based on the notion of periodic
component analysis (πCA) proposed in [2] and generalized
eigenvalue decomposition [3]. The relationships between this
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Fig. 1. General scheme of ICA algorithms with spatial whitening.

method and well-known ICA techniques such as AMUSE [4],
JADE [5], and SOBI [6] are also discussed. It will be shown
that for ECG signals, the method has several benefits over con-
ventional ICA and is applicable to both adult and fetal ECG
embedded in noise.

II. BACKGROUND

A. Generalized Eigenvalue Decomposition

For n × n symmetric matrices A and B, the problem of gen-
eralized eigenvalue decomposition (GEVD) [7] of the matrix
pair (A,B) consists of finding the matrices U and D, such that:

UT AU = D , UT BU = I (1)

where D is the diagonal generalized eigenvalue matrix corre-
sponding to the eigenmatrix U , with real eigenvalues sorted
in ascending order on its diagonal.1 As seen from (1), U is a
transformation that simultaneously diagonalizes A and B.

B. ICA Versus Generalized Eigenvalue Decomposition

In the context of ICA, we practically have a finite num-
ber of samples of an n-dimensional observation vector x(t) =
[x1(t), . . . , xn (t)]T , and seek for a linear mixture of these ob-
servations that maximizes some measure of independence, or
namely a contrast function. Under some general assumptions,
the estimated components are solutions of a BSS problem with
a linear latent variable model. Moreover, most ICA algorithms
perform spatial whitening on the dataset, which, as shown in
Fig. 1, only leaves a rotation matrix to be estimated by maxi-
mizing the contrast function of ICA.

An algebraic approach to ICA is to diagonalize a set of matri-
ces containing second or higher-order statistics of the dataset [5].
For signals with temporal structure, there are various algorithms
that use this algebraic approach. For example, for a wide-sense
stationary or cyclostationary real observation vector x(t), if we
define the covariance matrix as:

Cx(τ) = Et{x(t + τ)x(t)T } (2)

where Et{·} indicates averaging over t, the AMUSE algorithm
is a method that jointly whitens the data and diagonalizes Cx(τ)

1In the problem of interest, A and B are symmetric positive-definite matrices;
therefore, the eigenvalues of D are real and positive [7].
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for some arbitrary τ , i.e., the solution of the GEVD problem of
the matrix pair (Cx(τ), Cx(0)) [3]. However, it is known that
no more than two matrices may be exactly diagonalized by a
quadratic transformation of the form (1), except when they be-
long to the same eigenspace [6]. Due to this fact, methods have
been proposed that approximately diagonalize a set of desired
matrices, and are more robust to data outliers and computa-
tional errors, as compared with AMUSE [8]. In this context,
the SOBI algorithm is an example of a time-domain algorithm
that whitens the data and approximately diagonalizes Cx(τ) for
several time-lags τ [6]. Similar time-domain methods have also
been proposed for cyclostationary sources, in which the data
is again prewhitened and matrices representing cyclostationary
statistics of the dataset are (approximately) diagonalized [9].
However, the final output of any of these approximate diagonal-
ization methods is a linear transformation of the form:

y(t) = UT x(t)

U = QΛ−1/2R (3)

where Q and Λ are, respectively, the eigenmatrix and eigen-
value matrix of Cx(0)2, and R is the rotation matrix found by
maximizing the contrast function of the ICA method. In (3),
the terms Q, Λ−1/2 , and R, respectively, correspond with the
principal component analysis (PCA), sphering, and ICA steps
indicated in Fig. 1. It is easy to show that the transformation U
diagonalizes the following symmetric matrix:

Γ = QΛ1/2RDRT Λ1/2QT (4)

where D is an arbitrary diagonal matrix.3 It therefore follows
that the matrix pair (Γ, Cx(0)) satisfies (1).

Equation (4) implies that for prewhitened data and for a rota-
tion matrix R found by maximizing any ICA contrast function,
there exists a set of matrices Γ that are exactly diagonalizable via
GEVD. The matrix Γ, by itself is not necessarily any of the sec-
ond or higher-order statistics matrices of the data; but contains
some overall statistics of the data that is exactly diagonalized
through the linear transformation U .

From this point of view, any ICA algorithm of the form of
Fig. 1 may be transformed into a GEVD problem for diagonal-
izing a single matrix containing some cross-statistical measure
of the multichannel dataset. This suggests that, in some appli-
cations, instead of forming a set of matrices containing conven-
tional statistics of the data, such as the second or higher-order
statistics, and approximately diagonalizing these matrices, we
can directly use the a priori information about the desired sig-
nals (e.g., their periodicity) to form an ad hoc symmetric matrix
Γ, and seek for linear transformations that diagonalize this ma-
trix, i.e., decorrelate the ad hoc statistics. The matrix Γ may,
for example, be a covariance-like matrix, as defined in (2), but
using a time-varying time lag τ that is derived from our prior
knowledge of the dataset. This idea is investigated for ECG
signals in the following sections.

2Cx (0) = QΛQT .
3In fact, in (4), the term RDRT represents an arbitrary matrix from the

eigenspace of R and Γ = U−T DU−1 .

Fig. 2. Illustration of the phase assignment procedure used for calculating τt

in each ECG beat.

C. Periodic Component Analysis

Here, we restate the problem of periodic component analysis,
adapted from [2], which is merely a restatement of the AMUSE
algorithm derived from a measure of periodicity.

Given an n-dimensional observation vector x(t) =
[x1(t), . . . , xn (t)]T , we seek for the linear mixture s(t) =
wT x(t) with a maximal periodic structure that minimizes the
following measure of periodicity:

ε(w, τ) =
∑

t |s(t + τ) − s(t)|2∑
t |s(t)|2

(5)

where w = [w1 , . . . , wn ]T and τ is the period of interest. It can
be shown that (5) may be rearranged as follows:

ε(w, τ) =
wT Ax(τ)w
wT Cx(0)w

= 2
[
1 − wT Cx(τ)w

wT Cx(0)w

]
(6)

where

Ax(τ) = Et{[x(t + τ) − x(t)][x(t + τ) − x(t)]T }
= 2Cx(0) − 2Cx(τ). (7)

In the second part of (7), we have used the symmetry of the ma-
trix Cx(τ). Then, using the Rayleigh–Ritz theorem from linear
algebra [7], it follows that the weight vector w minimizing (6)
is given by the eigenvector corresponding to the smallest gener-
alized eigenvalue of the matrix pair (Ax(τ), Cx(0)), or equiva-
lently, the largest generalized eigenvalue of (Cx(τ), Cx(0)). As
with (1), by assuming D as the diagonal generalized eigenvalue
matrix corresponding to the eigenmatrix U , with real eigenval-
ues sorted in descending order on its diagonal, the transforma-
tion UT x(t) gives the most periodic components in descending
order of periodicity.

III. METHOD

ECG signals have a pseudoperiodic structure that is repeated
in every cycle of the ECG beat. However, normal ECGs can have
RR-period deviations of up to 20% (c.f. [10]), which means that
a constant period τ , as defined in the previous section, does not
fully describe the periodicity of the ECG.

For such signals, we propose to use a time-varying period that
is updated on a beat-to-beat basis. For this, as shown in Fig. 2,
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Fig. 3. Polar representation of a noisy ECG using the ECG phase φ(t).

by detecting the R-peaks of the ECG, a linear phase φ(t) ranging
from −π to π is assigned to each ECG sample, with the R-peak
being fixed at φ(t) = 0. The linear phase φ(t), provides a means
for phase-wrapping the RR-interval onto the [−π, π] interval.
Therefore, the ECG—regardless of its RR-interval deviations—
may be converted to a polar representation in which the ECG
components in different beats, such as the P, Q, R, S, and T-
waves, are more or less phase-aligned with each other, especially
over the QRS segment (Fig. 3).

On the other hand, minimizing (6), requires the calculation of
the cross-correlation between the samples having a time-lag τ
in different channels. So, in order to apply πCA to ECG signals,
we can replace the constant time-lag τ in (7), with a variable τt

that is calculated from φ(t) from beat-to-beat. Therefore, in each
ECG cycle, the sample at the time-instant t is compared with the
sample t + τt , namely its dual sample, which is the sample with
the same phase value in the successive ECG beat. The time-
varying period τt may be mathematically defined as follows:

τt = min{τ |φ(t + τ) = φ(t), τ > 0}. (8)

Using this definition, the covariance matrix defined in (2) is
redefined as follows:

C̃x = Et{x(t + τt)x(t)T }. (9)

Moreover, in order to assure the symmetry of C̃x and the realness
of its eigenvalues, the following step is required in practice:

C̃x = (C̃x + C̃T
x )/2. (10)

In fact, if we consider the polar representations of each of
the channels of x(t) (as in Fig. 3), the matrix C̃x represents the
covariance of the polar representation around its mean value.
Following the discussions in Section II-B, C̃x is the matrix
containing the ad hoc statistics of the ECG, i.e., a measure of
ECG periodicity extracted from the ECG R-peak information.

Next we find U , the GEVD solution of the (C̃x , Cx(0)) pair
with the eigenvectors ranked in descending order of their cor-
responding generalized eigenvalues. The desired signal vector
y(t) = [y1(t), . . . , yn (t)]T is then found from (3). The com-
ponents of y(t) are sorted according to the amount of their
periodicity, relative to the heart beat. In other words, y1(t) is the

Fig. 4. DaISy dataset consisting of five maternal abdominal and three thoracic
channels [11].

most periodic component and yn (t) is the least periodic, with
respect to the R-peaks of the ECG.

The proposed method is rather flexible, and may be extended
to other ad hoc statistics extracted from ECG recordings. For
instance, for the problem of fetal ECG extraction, if we define
φm (t) and φf (t) as the maternal and fetal ECG phases found
from the maternal and fetal R-peaks, C̃m

x and C̃f
x representing

the covariance matrices of the mother and fetus, are found by
averaging (9) over the maternal and fetal periods, respectively.
Then, the matrix C̃x used in the GEVD may be set to any of the
following matrices:

C̃x = C̃m
x (11a)

C̃x = C̃f
x (11b)

C̃x = C̃m
x − C̃f

x . (11c)

If we assume the data to be prewhitened, the diagonalization of
the matrices defined in (11) is, respectively, equivalent to finding
1) the most periodic components with respect to the maternal
ECG, 2) the most periodic components with respect to the fetal
ECG, and 3) the most periodic components with respect to the
maternal ECG while being the least periodic components with
respect to the fetal ECG. In this latter case, the extracted com-
ponents should gradually change from the maternal ECG to the
fetal ECG, from the first to the last component.4 It should, of
course, be noted that the last two cases are difficult to imple-
ment in practice, as they require the prior extraction of the fetal
R-peaks to form the C̃f

x matrix.

IV. RESULTS

The well-known DaISy fetal ECG database is used for illus-
tration [11]. The database consists of five abdominal and three
thoracic channels recorded from the abdomen and chest of a
pregnant woman with a sampling rate of 250 Hz. The eight
channels of the dataset may be seen in Fig. 4.

4Note that, in the last definition of (11), C̃x is not necessarily positive definite.
However, due to its symmetry, the generalized eigenvalues are real and may be
ranked in ascending/descending order.
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Fig. 5. Independent components extracted from the dataset of Fig. 4, using
JADE. Notice that components 1, 2, 3, and 5 correspond to the maternal subspace
and components 4 and 8 to the fetal subspace.

Fig. 6. Periodic components extracted from the dataset with maternal ECG
beat synchronization. The maternal ECG contribution reduces from top to
bottom.

The JADE algorithm [5], is used as the benchmark ICA
method. The eight independent components extracted by this
algorithm are depicted in Fig. 5.

By performing R-wave detection on one of the maternal tho-
racic channels, the maternal ECG phase φm (t) is calculated
according to the explanations of the previous section. Next,
the time-varying maternal ECG period τm

t is calculated, from
which the matrix C̃x and the generalized eigenmatrix U of the
(C̃x , Cx(0)) pair are found and sorted in descending order of
the eigenvalues. The resultant periodic components calculated
from (3) are depicted in Fig. 6. As seen in Fig. 6, the first com-
ponent (corresponding to the largest eigenvalue) has the most
resemblance with the maternal ECG, while as the eigenvalues
decrease, the signals become less similar to the maternal ECG.
Interestingly, two of the extracted components (components six
and seven) are the fetal components. This can be explained by
considering that πCA is ranking the extracted components ac-
cording to their resemblance with the maternal ECG period,
while the fetal components do not resemble the maternal ECG,

Fig. 7. Periodic components extracted from the dataset with fetal ECG beat
synchronization. Notice that the fetal ECG contribution reduces from top to
bottom.

Fig. 8. Periodic components extracted from the dataset with maternal &
fetal ECG beat synchronization. The maternal (fetal) ECG contribution reduces
(increases) from top to bottom.

when averaged synchronously with respect to the maternal R-
peaks. The fetal components are therefore extracted among the
last components.

As explained in Section III, it is also possible to consider
the fetal ECG periodicity in the matrix C̃x , which requires the
fetal R-peaks for extracting the time-varying fetal period τf

t .
For this, the fetal ECG component extracted by JADE in the
fourth channel of Fig. 5 is used for fetal R-peak detection and
phase calculation. Having calculated the fetal ECG phase φf (t),
the previously explained procedures are repeated to extract the
periodic components of the fetal ECG. The resultant periodic
components are depicted in Fig. 7. This time we see that the
extracted components are ranked according to their resemblance
with the fetal ECG.

The last results correspond to the last type of covariance ma-
trix defined in (11c). The covariance matrix C̃x for this part is
calculated from the difference of C̃m

x and C̃f
x . After performing

the previously explained GEVD stages, the periodic components
are found from (3). These components are depicted in Fig. 8.
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As expected before, the first component has the most resem-
blance with the maternal ECG, while the last component mostly
resembles the fetal ECG and the intermediate components are
mixtures of maternal and fetal components and noise.

V. DISCUSSION AND CONCLUSION

The proposed method is able to extract the “most periodic”
components corresponding to a desired ECG signal from a set
of multichannel recordings by forming some covariance-like
matrix and jointly diagonalizing this matrix and the actual co-
variance matrix of the dataset. The intuition behind this method
is to find any periodic structure that is synchronous with the
reference ECG R-peaks extracted from a suitably clean ECG
reference. As was explained in Section II-B, the bases of the
proposed method are rather similar to PCA and ICA. How-
ever, due to the proper use of the temporal pseudoperiodicity
of the ECG, the method has some interesting benefits over con-
ventional source separation techniques, which are noted in the
following:

1) From the physiological point of view, the independence
criterion of conventional ICA has been replaced with a
periodic temporal structure criterion, which is a more rea-
sonable assumption for ECG signals and in accordance
with the clinical intuition about the ECG. In fact, cardiolo-
gists are not familiar with the interpretation of independent
components extracted from multichannel recordings, but
they are interested in periodic structures that are repeated
in each ECG beat.

2) From the mathematical point of view, all the temporal
information of the ECG is gathered in the matrix C̃x .
Therefore, the conventional iterative ICA algorithm is re-
placed by a closed-form solution consisting of an initial
R-wave detection step, covariance matrix calculation, and
a single step of GEVD. The method is therefore more
time-efficient.

3) The extracted components are ranked according to their
degree of synchronization (periodicity) with the R-peaks,
while in conventional ICA, it is not possible to predict the
order of the extracted components. This feature is very
helpful, especially for automating the removal of the ma-
ternal ECG from fetal ECG recordings, or generally for
removing cardiac interference from multichannel biosig-
nals.

4) Due to the mean-square-error compression property of the
eigenvalue decomposition ( [13], Ch. 6), the ECG signal
is concentrated within the least number of components. In
other words, by using the proposed method, we achieve
a minimal representation of the ECG signal. This fea-
ture can be used in ECG compression, as we can define
some threshold on the extracted eigenvalues and remove
the components corresponding to the smaller eigenval-
ues by simple thresholding or through a hypothesis test.
In this way, since the components are ranked according
to their resemblance with the ECG, we are sure that the
“least important” components have been removed. This
is, however, not the case for ICA or PCA compression

techniques when applied to the ECG, since the low vari-
ance components extracted by these methods can convey
important parts of the ECG morphology and may not be
removed by thresholding [14].

5) The eigenvalues found from (1) are also a measure of the
noisiness of the extracted component and may be used for
thresholding the minor components. In the general BSS
problem, if we consider the observed data to follow the
latent variable model x = Hs + n, any linear combina-
tion of the data x will contain some noise [15]. However
depending on the criterion that is used, the noise may be
accumulated in a few undesired components while keep-
ing the desired components such as the ECG cleaner than
the rest of the components. In fact, if we consider any
source of aperiodicity as noise, the proposed method may
be interpreted as a transformation that is distributing the
noise variance in the less important components. This is
an important issue that is not achieved with conventional
ICA, as they seek for the most independent components
and not the most periodic (least noisy) ones.

6) The solutions of GEVD problems are generally more
susceptible to noise, as compared with joint approximate
diagonalization methods [6]. However, in the proposed
method, although only two matrices are jointly diagonal-
ized, the results are still robust to deviations of heartbeat
and noise. The reason is that the time lags τt required in
the calculation of C̃x , are extracted from the beat-to-beat
information of the ECG. The robustness may, however,
be improved in future works, if we split the overall
information of the RR-interval that is carried by C̃x , into
several matrices that contain local information of the
ECG cycle, such as the P, QRS, and T-segments. These
matrices can then be approximately diagonalized, using
joint approximate diagonalization methods [8].

In future works, the performance of the proposed method should
also be studied for real and simulated multichannel ECG signals
[16], with different degrees of morphological and heartbeat devi-
ations, and in different sampling rates and signal-to-noise ratios.
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