
CE 815 - Secure Software Systems

Lecture 1

Mehdi Kharrazi

Department of Computer Engineering

Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources.
Reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Fall 1404 Ce 815 -Lecture 1

Software Faults

• Software are developed by humans and therefore are not perfect

• A human error may introduce a bug (or fault)

• Are all software faults security bugs?

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Software Insecurity

• A software bug or software fault may be a security bug or vulnerability

• When the bug is triggered or exploited it compromises the security of the

software system

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Software Security

• Easy, just write perfect software!

• Is that actually enough?

• Easy, just write perfect software and have perfect users!

• Is that actually enough?

• Easy, just write perfect software, have perfect users, and configure software
perfectly!

• Is that actually enough?

• Easy, just write perfect software, have perfect users, configure software
perfectly, and use a perfect Operating System!

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Software Security

• Easy, just write perfect software, have perfect users, configure software
perfectly, use a perfect Operating System, use a perfect hypervisor, run on a
system with perfect firmware, run on a system with perfect hardware, …

[Adam Doupe]

Fall 1403 Ce 874 -Lecture 1

Really depend on how you look at it

6

Speculative
 Execution

Fall 1403 Ce 874 -Lecture 1

• X86 32bit, shift inst. truncates the shift amount to 5 bits. (32 shift becomes 0)

• PowerPC 32bit, shift inst. truncates the shift amount to 6 bits. (32 shift

becomes 1)

• In C, shifting an n-bit integer by n or more bits is undefined behavior.

• Compiler thinks, groups_per_flex will never be zero

• removed the check when compiling to optimize code

Examples (CVE- 2009-4307)

groups_per_flex = 1 << sbi->s_log_groups_per_flex;

/* There are some situations, after shift the value of ’groups_per_flex’ can
become zero and division with 0 will result in fixpoint divide exception */

if (groups_per_flex == 0)

return 1;

flex_group_count = ... / groups_per_flex;

7[Regehr 2017]

Fall 1403 Ce 874 -Lecture 1

• Suppose a web server contains a function:

• When func() is called stack looks like:

8

void func(char *str) {
 char buf[128];

 strcpy(buf, str);
	 do-something(buf);
}

argument: str
return address

stack frame pointer

char buf[128]

SP

Buffer overflow

[CS 155]

Fall 1403 Ce 874 -Lecture 1

Buffer overflow

• What if *str is 136 bytes long?

• After strcpy:

9

void func(char *str) {
 char buf[128];

 strcpy(buf, str);
	 do-something(buf);
}

argument: str
return address

stack frame pointer

char buf[128]

SP

*str Problem:
 no length checking in strcpy()

[CS 155]

Fall 1403 Ce 874 -Lecture 1

Other Examples

• Out of bound memory access

• Temporal Memory Safety Violations

• Integer overflow

• …..

10

Fall 1403 Ce 874 -Lecture 1 11

Fall 1403 Ce 874 -Lecture 1

Vulnerabilities ….

12

HeartBleed CVE-2014-0160 Affected over 600,000 websites

Shellshock CVE-2014-6271 The impact is anywhere from
20 to 50% of global servers

Dirty COW CVE-2016-5195
Affects all Linux-based

operating systems including
Android

VNOM CVE-2015-3456 Affected all version of XEN and
KVM

glib GHOST CVE-2015-0235 A core component used in most
Linux distributions

Fall 1404 Ce 815 -Lecture 1

CVE Growth

[Rudis’18]

Who cares if there are vulnerabilities???

Fall 1403 Ce 874 -Lecture 1

Marketplace for owned machines

Pay-per-install (PPI) services

PPI operation:

1. Own victim’s machine

2. Download and install client’s code

3. Charge client

15

Source: Cabalerro et al. (www.icir.org/vern/papers/ppi-usesec11.pdf)

spam
bot keyloggerclients

PPI service

Victims

[CS 155]

Fall 1403 Ce 874 -Lecture 1

Marketplace for owned machines

16

Source: Cabalerro et al. (www.icir.org/vern/papers/ppi-usesec11.pdf)

spam
bot keyloggerclients

PPI service

Victims

Cost: US - 100-180$ / 1000 machines

	 Asia - 7-8$ / 1000 machines

[CS 155]

Fall 1403 Ce 874 -Lecture 1

Marketplace for Vulnerabilities

Option 1: bug bounty programs (many)
• Google Vulnerability Reward Program: up to $20K

• Microsoft Bounty Program: up to $100K

• Mozilla Bug Bounty program: $7500

• Pwn2Own competition: $15K

Option 2:
• Zero day initiative (ZDI), iDefense: $2K – $25K

17[CS 155]

Fall 1403 Ce 874 -Lecture 1

Example: Mozilla

18[CS 155]

Fall 1403 Ce 874 -Lecture 1

Marketplace for Vulnerabilities

Option 3: black market

19

Source: Andy Greenberg (Forbes, 3/23/2012)

[CS 155]

Dan Boneh

Marketplace for Vulnerabilities

Source: Zerodium payouts

RCE: remote code execution

LPE: local privilege escalation

SBX: sandbox escape

Dan Boneh

Marketplace for Vulnerabilities

Source: Zerodium payouts

RCE: remote code execution

LPE: local privilege escalation

SBX: sandbox escape

Ok, Important. How we find them?

Fall 1403 Ce 874 -Lecture 1

Audit it

• How much does it take to audit all available programs?

• It took 2 years to audit TrueCrypt (2013-2015)

• German Government + Cryptographers and

Security researchers conducted the audit

• Audit finished April 2015

• CVE-2015-7358 and CVE-2015-7359 discovered

September 2015 by Google Zero Project!

23

Fall 1403 Ce 874 -Lecture 1

Too much code !

24

Almost 500 years and with no guarantees!

Fall 1403 Ce 874 -Lecture 1

Too much code !!!

• Number of Vulnerabilities per year; IBM Report 2017

• 111 billion lines of new software code
is created every year

• Each bug found by hackers first, will
lead to a disaster

• Hackers are interested in Exploitable
bugs!

25

Fall 1403 Ce 874 -Lecture 1

Solutions

• Redevelop Linux Kernel and all other programs

• Not feasible

26

M
ill

io
n

D
ol

la
rs

[Wikipedia]

Fall 1403 Ce 874 -Lecture 1

• “Cyber Grand Challenge (CGC) is a contest to build high-performance
computers capable of Finding and Fixing Vulnerabilities

• Announced in 2013, and Final Contest held in 2016

• Teams build “Cyber Reasoning Systems” (CRS)

• CRS finds “Proof of Vulnerability” (POV) (automatically exploit)

• CRS fixes vulnerability

DARPA Cyber Grand Challenge

27

Fall 1403 Ce 874 -Lecture 1

Who participated in CGC?

• 104 teams originally registered in 2014

• 28 teams made it through to CGC Qualifying Event

• 7 teams headed to CGC finals.

28

 CodeJitsu: University of California, Berkeley

 ForAllSecure: ForAllSecure startup from Carnegie Mellon University

 TECHx: GrammaTech, Inc. and University of Virginia

 CSDS: University of Idaho

 DeepRed: Raytheon Company

 disekt: CTF Team

 Shellphish: University of California, Santa Barbara

What happens if we don’t find them all?

Fall 1403 Ce 874 -Lecture 1

Multiple layers of defense

• How to mitigate the vulnerabilities?

• run-time protection

• How do we look for vulnerabilities?

• Program analysis

• How do we refrain from one vulnerabilities causing another one?

• Better Architectures

• How do we refrain from future vulnerabilities?

• Better programming languages

30

Fall 1404 Ce 815 -Lecture 1

Survey

• How much familiar with?

• Gdb, objectdump, rop

• CFI, Taint

• Symbolic Execution, Static Analysis

• NLP Concepts: one hot, word2vec , skipgram, etc.

• DL Concepts: LSTM, DNN, GNN, etc.

A quick review of some of the very basics!

Fall 1404 Ce 815 -Lecture 1

Fall 1404 Ce 815 -Lecture 1

Application Model

Process

Network

Environment

File  
System

Terminal

Application

OS

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Stages in which there could be a vulnerability

• Design vulnerabilities

• Flaws in the overall logic of the application

• Lack of authentication and/or authorization checks

• Erroneous trust assumptions

• Implementation vulnerabilities

• Application is not able to correctly handle unexpected events

• Unexpected input, Unexpected errors/exceptions

• Unexpected interleaving of events

• Deployment vulnerabilities

• Incorrect/faulty deployment/configuration of the application

• Installed with more privileges than the ones it should have

• Installed on a system that has a faulty security policy and/or

mechanism (e.g., a file that should be read-only is actually writeable)
[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

The Life of an Application

• Author writes code in high-level language

• The application is translated in some executable form and saved to a file

• Interpretation vs. compilation

• The application is loaded in memory

• The application is executed

• The application terminates

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Interpretation

• The program is passed to an interpreter

• The program might be translated into an intermediate representation

• Python byte-code

• Each instruction is parsed and executed

• In most interpreted languages it is possible to generate and execute code

dynamically

• Bash: eval <string>

• Python: eval(<string>)

• JavaScript: eval(<string>)

• …

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Compilation

• The preprocessor expands the code to include definitions, expand macros

• GNU/Linux: The C preprocessor is cpp

• The compiler turns the code into architecture-specific assembly

• GNU/Linux: The C compiler is gcc

• gcc -S prog.c will generate the assembly

• Use gcc’s -m32 option to generate 32-bit assembly

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Compilation

• The assembler turns the assembly into a binary object

• GNU/Linux: The assembler is as

• A binary object contains the binary code and additional metadata

• Relocation information about things that need to be fixed once the
code and the data are loaded into memory

• Information about the symbols defined by the object file and the
symbols that are imported from different objects

• Debugging information

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Compilation

• The linker combines the binary object with libraries, resolving references that
the code has to external objects (e.g., functions) and creates the final
executable

• GNU/Linux: The linker is ld

• Static linking is performed at compile-time

• Dynamic linking is performed at run-time

• Most common executable formats:

• GNU/Linux: ELF

• Windows: PE

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

The ELF File Format

• The Executable and Linkable Format (ELF) is one of the most widely-used
binary object formats

• ELF is architecture-independent

• ELF files are of four types:

• Relocatable: need to be fixed by the linker before being executed

• Executable: ready for execution (all symbols have been resolved with the

exception of those related to shared libs)

• Shared: shared libraries with the appropriate linking information

• Core: core dumps created when a program terminated with a fault

• Tools: readelf, file

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

The ELF File Format

Header

Program 
Header  
Table

Segment

Magic number
Addressing info
File type
Arch type
Entry point
Program header pos
Section header pos
Header size

Section  
Header  
Table

...

Size and number of  
entries in program header

Size and number of  
entries in section header

Section
Section

• A program is seen as a  
collection of segments by  
the loader and as a  
collection of sections by the  
compiler/linker

• A segment is usually made  
of several sections

• The segment structure is defined in the
Program Header Table

• The section structure is defined in the
Section Header Table

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

The PE File Format

• The PE file was introduced to allow MS-DOS programs to be larger than 64K
(limit of .COM format)

• Also known as the “EXE” format

• The header contains a number of relocation entries that are used at loading

time to “fix” the addresses (this procedure is called rebasing)

• Programs are written as if they were always loaded at address 0

• The program is actually loaded in different points in memory

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

x86 Registers

• Registers represent the local variables of the processor

• There are four 32-bit general purpose registers

• eax/ax, ebx/bx, ecx/cx, edx/cx

• Convention

• Accumulator: eax

• Pointer to data: ebx	

• Loop counter: ecx

• I/O operations: edx

ah al

eax

ax

esi

si

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

x86 Registers

• Two registers are used for high-
speed memory transfer operations

• esi/si (source), edi/di (destination)

• There are several 32-bit special
purpose registers

• esp/sp: the stack pointer

• ebp/bp: the frame pointer

ah al

eax

ax

esi

si

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

x86 Registers

• Segment registers: cs, ds, ss, es, fs, gs

• Used to select segments (e.g., code, data, stack)

• Program status and control: eflags

• The instruction pointer: eip

• Points to the next instruction to be executed

• Cannot be read or set explicitly

• It is modified by jump and call/return instructions

• Can be read by executing a call and checking the value pushed on the

stack

• Floating point units and mmx/xmm registers

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Data Sizes

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

x86 Assembly Language

• (Slightly) higher-level language than machine language

• Program is made of:

• directives: commands for the assembler

• .data identifies a section with variables

• instructions: actual operations

• jmp 0x08048f3f

• Two possible syntaxes, with different ordering of the operands!

• AT&T syntax (objdump, GNU Assembler)

• mnemonic source, destination

• DOS/Intel syntax (Microsoft Assembler, Nasm, IDA Pro)

• mnemonic destination, source

• In gdb can be set using: set disassembly-flavor intel/att

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Data Definition

• Constants

• Hexadecimal numbers start with 0x

• Data objects are defined in a data segment using the syntax

• label type data1, data2, ...

• Types can be

• DB: Byte

• DW: Word (16 bits)

• DD: Double word (32 bits)

• DQ: Quad word (64 bits)

• For example:

.data
 myvar DD 0x12345678, 0x23456789 # Two 32-bit values
 bar DW 0x1234 # 16-bit data object
 mystr DB "foo", 0 # Null-terminated string

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Addressing Memory

• Memory access is composed of width, base, index, scale, and displacement

• Base: starting address of reference

• Index: offset from base address

• Scale: Constant multiplier of index

• Displacement: Constant base

• Width: (address suffix)

• size of reference (b: byte, s: short, w: word, l: long, q: quad)

• Address = base + index*scale + displacement

• AT&T Syntax —> displacement(base, index, scale)

• Example:

• movl -0x20(%eax, %ecx, 4), %edx

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Addressing Memory

• movl -8(%ebp), %eax

• copies the contents of the memory pointed by ebp - 8 into eax

• movl (%eax), %eax

• copies the contents of the memory pointed by eax to eax

• movl %eax, (%edx, %ecx, 2)

• moves the contents of eax into the memory at address edx + ecx * 2

• movl $0x804a0e4, %ebx

• copies the value 0x804a0e4 into ebx

• movl (0x804a0e4), %eax

• copies the content of memory at address 0x804a0e4 into eax

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Instruction Classes

• Data transfer

• mov, xchg, push, pop

• Binary arithmetic

• add, sub, imul, mul, idiv, div, inc, dec

• Logical

• and, or, xor, not

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Instruction Classes

• Control transfer

• jmp, call, ret, int, iret

• Values can be compared using the cmp instruction

• cmp src, dest # subtracts src from dest without saving the result

• Various eflags bits are set accordingly

• jne (ZF=0), je (ZF=1), jae (CF=0), jge (SF=OF), …

• Control transfer can be direct (destination is a constant) or indirect (the

destination address is the content of a register)

• Input/output

• in, out

• Misc

• nop

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Invoking System Calls

• System calls are usually invoked through libraries

• Linux/x86

• int 0x80

• eax contains the system call number

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

X86(32 bit) System Call Table
NR syscall name %eax arg0 (%ebx) arg1 (%ecx) arg2 (%edx)

0 restart_syscall 0 - - -

1 exit 1 int error_code - -

2 fork 2 - - -

3 read 3 unsigned int fd char *buf size_t count

4 write 4 unsigned int fd const char *buf size_t count

5 open 5 const char *filename int flags umode_t mode

6 close 6 unsigned int fd - -

7 waitpid 7 pid_t pid int *stat_addr int options

8 creat 8 const char *pathname umode_t mode -

9 link 9 const char *oldname const char *newname -

10 unlink A const char *pathname - -

11 execve B const char *filename const char *const *argv const char *const *envp

Fall 1404 Ce 815 -Lecture 1

Hello World!

.data

hw:	

	 .string "hello world\n"

.text

.globl main

main:	

	 movl 	 $4,%eax	

	 movl	 $1,%ebx	

	 movl $hw,%ecx	

	 movl 	 $12,%edx	

	 int	 	 $0x80	

	 movl	 $1,%eax

	 movl	 $0,%ebx

 int	 	 $0x80	

[Adam Doupe]

int main()

{

 printf("hello world!");

 return 0;

}

Return 0;

syscall(4, 1, “hello world!\n", 12);

syscall(1, 0);

Fall 1404 Ce 815 -Lecture 1

Program Loading and Execution

• When a program is invoked, the operating system creates a process to
execute the program

• The ELF file is parsed and parts are copied into memory

• In Linux /proc/<pid>/maps shows the memory layout of a process

• Relocation of objects and reference resolution is performed

• The instruction pointer is set to the location specified as the start address

• Execution begins

[Adam Doupe]

Fall 1404 Ce 815 -Lecture 1

Acknowledgments/References (1/2)

• [Adam Doupe] CSE 545, Software Security, Adam Doupe, ASU, Spring 2018

• [Bellovin 06] COMS W4180 — Network Security Class Columbia University.

• [Messmer 08] 10 of the Worst Moments in Network Security History, Events

that shock sensibilities and shaped the future, By Ellen Messmer, Network
World, 03/11/08

• [Rudis’18] CVE 100K: By The Numbers, Bob Rudis, Apr 30, 2018. https://
blog.rapid7.com/2018/04/30/cve-100k-by-the-numbers/

• [Mendoza’18] Vulnerabilities reached a historic peak in 2017, Miguel Ángel
Mendoza 5 Feb 2018. https://www.welivesecurity.com/2018/02/05/
vulnerabilities-reached-historic-peak-2017/

58

https://www.welivesecurity.com/2018/02/05/vulnerabilities-reached-historic-peak-2017/
https://www.welivesecurity.com/2018/02/05/vulnerabilities-reached-historic-peak-2017/
https://www.welivesecurity.com/2018/02/05/vulnerabilities-reached-historic-peak-2017/

Fall 1404 Ce 815 -Lecture 1

Acknowledgments/References (2/2)

• [Wang 2012] Undefined Behavior: What Happened to My Code?, X. Wang, H.
Chen, A. Cheung, Z. Jia, N. Zeldovich, M.F. Kaashoek, APSys ’12, 2012.

• [Regehr 2017] Undefined Behavior in 2017, John Regehr blog, 2017.

• [Williams 2017] Meltdown and Spectre - understanding and mitigating the

threats, Jake Williams, SANS / Rendition Infosec, 2017 (slides)

• [cs 155] Lecture slides are from the Computer Security course taught by Dan

Boneh at Stanford University, 2015.

59

