CE 815 - Secure Software Systems

Lecture 1

Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources.
Reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Software Faults

- Software are developed by humans and therefore are not perfect
- A human error may introduce a bug (or fault)
- Are all software faults security bugs?

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Software Insecurity

A software bug or software fault may be a security bug or vulnerability

* When the bug is triggered or exploited it compromises the security of the
software system

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Software Security

Easy, just write perfect software!
- Is that actually enough?

Easy, just write perfect software and have perfect users!

- Is that actually enough?

Easy, just write perfect software, have perfect users, and configure software
perfectly!

- Is that actually enough?

Easy, just write perfect software, have perfect users, configure software
perfectly, and use a perfect Operating System!

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Software Security

 Easy, just write perfect software, have perfect users, configure software
perfectly, use a perfect Operating System, use a perfect hypervisor, run on a
system with perfect firmware, run on a system with perfect hardware, ...

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Really depend on how you look at it

14

L A ™ T " \\\
TR b a8 T I Py
: b A e »‘,.Z:.'.'f.i g i
SN iR e R A
! ATNE)
(.

N————

MHYNe
o
. HAEI T
- ! [| .‘. }
> - LS
! ’ -'.,'.a’ 1
\ ’ K] W
T \ : \‘>.,,,,,,:.A|(
- d R
" ol T ' = L ess
LS HE 17\:“& !"'.‘l‘- ’;"5 f
L
>

| J

BUG FEATURE

Fall 1403 Ce 874 -Lecture 1

—xamples (CVE- 2009-4307)

groups_per_flex = 1 << sbi->s_log_groups_per_flex;

/* There are some situations, after shift the value of 'groups_per_flex’ can
become zero and division with O will result in fixpoint divide exception */

if (groups_per_flex == 0)
return 1;

flex_group_count = ... / groups_per_flex;

- X86 32bit, shift inst. truncates the shift amount to 5 bits. (32 shift becomes 0)

- PowerPC 32bit, shift inst. truncates the shift amount to 6 bits. (32 shift
becomes 1)

- In C, shifting an n-bit integer by n or more bits is undefined behavior.
- Compiler thinks, groups_per_flex will never be zero
* removed the check when compiling to optimize code

Fall 1403 Ce 874 -Lecture 1 [Regehr 2017]

7

Suffer overflow

« Suppose a web server contains a function: void func(char *str) ({
char buf[128];

strcpy (buf, str);
» When func() is called stack looks like: do-something (buf) ;

argument: str

return address
stack frame pointer

char buf[128]

SP —

Fall 1403 Ce 874 -Lecture 1 [CS 155] 8

Buffer overflow

» What if *str is 136 bytes long? void func(char *str) {
char buf[128];

strcpy (buf, str);
- After strcpy: do-something (buf) ;

argument: str

Problem:
no length checking in strcpy()

Fall 1403 Ce 874 -Lecture 1 [CS 155] 9

Other Examples

Out of bound memory access

Temporal Memory Safety Violations

Integer overflow

Fall 1403 Ce 874 -Lecture 1

10

11

Ce 874 -Lecture 1

Fall 1403

Vulnerabillities

£t

HeartBleed

Shellshock

Dirty COW

VNOM

glib GHOST

CVE-2014-0160

CVE-2014-6271

CVE-2016-5195

CVE-2015-3456

CVE-2015-0235

Affected over 600,000 websites

The impact is anywhere from
20 to 50% of global servers

Affects all Linux-based
operating systems including
Android

Affected all version of XEN and
KVM

A core component used in most
Linux distributions

v

Shellshock

DIRTY COW

F

VENOM

Fall 1403

Ce 874 -Lecture 1

12

CVE Growth

CVE's per year/month
§ 1,500
1,000
500
L ||\ i1 nm*
| e _.,_.............|...1.I.n..n.ml...n|||I|II|||||||||H|_.||| H ||.‘|“ ||||”|’IL||I|”|I“||‘ ‘”
1993 1998 2003
Fall 1404 Ce 815 -Lecture 1

2008

L~

2017

r

2013 2018
Data compiled from MITRE, NVD and Rapid7

[Rudis’18]

Who cares if there are vulnerabilities??/

Marketplace for owned machines

4 N
Pay-per-install (PPI) services clients keylogger
- /
N/

PPl operation:

1. Own victim’s machine 4 R
2. Download and install client’s code PPl service

3. Charge client ‘\/ \ /\

Victims
Source: Cabalerro et al. (www.icir.org/vern/papers/ppi-usesec11.pdf)

Fall 1403 Ce 874 -Lecture 1 [CS 155] 15

Marketplace for owned machines

4)

clients B
keylogger
\ Y,

N/

Cost: US - 100-180S / 1000 machines g)
PPl service
Asia - 7-8S / 1000 machines

_/ AN

O P P T O 7P P T
L .l LLIFEZTF 72 P

Victims

Source: Cabalerro et al. (www.icir.org/vern/papers/ppi-usesec11.pdf)

Fall 1403 Ce 874 -Lecture 1 [CS 155] 16

Marketplace for Vulnerabillities

Option 1: bug bounty programs (many)

+ Google Vulnerability Reward Program: up to $20K
 Microsoft Bounty Program: up to $100K

 Mozilla Bug Bounty program: $7500

* Pwn20wn competition: $15K

Option 2:
 Zero day initiative (ZDI), iDefense: $2K — $25K

Fall 1403 Ce 874 -Lecture 1

[CS 155]

17

—xample: Mozilla

Novel vulnerability

High quality bug

| report with High quality Minimum for
and exploit, new . ,
o Clearly bug report of a a high or Medium
form of exploitation . » . » "
| exploitable critical or high critical vulnerability
or an exceptional . " "
N critical vulnerability, vulnerabilitys
vulnerability "
vulnerability,
$10,000+ $7,500 $5,000 $3,000 $500 - $2500
Ce 874 -Lecture 1 [CS 155] 18

Fall 1403

Marketplace for Vulnerabillities

Option 3: black market

ADOBE READER $5,000-$30,000
MAC OSX $20,000-$50,000
ANDROID $30,000-$60,000
FLASH OR JAVA BROWSER PLUG-INS $40,000-%$100,000
MICROSOFT WORD $50,000-$100,000
WINDOWS $60,000-$120,000
FIREFOX OR SAFARI $60,000-$150,000
CHROME OR INTERNET EXPLORER $80,000-%$200,000
10S $100,000-$250,000

Source: Andy Greenberg (Forbes, 3/23/2012)

Fall 1403 Ce 874 -Lecture 1 [CS 155] 19

Marketplace for Vulnerabilities

1001 N

ZERODIUM Payouts for Desktops/Servers’ |

Up to
$1.000.0 El Windows RCE: Remote Code Execution Zero Click
M macOS LPE: Local Privilege Escalation wn

N Linux/BSD | SBX: Sandbox Escape or Bypass

Any OS VME:Virtual Machine Escape 3001

Up to Chrome
RCE+LPE

b |

RCE: remote code execution e ws outok

LPE: local privilege escalation

Upto

SBX: sandbox escape ~

Up to Safari Edge Firefox Vord/Excel cPanel/WHM
$100,000 RCE+LPE RCE+LPE RCE+LPE RCE RCE
Mac win win
Up to Adobe PDF Windows
$80,000 RCE+SBX LPE/SBX
2001
Up to Antivirus
$50,000 RCE
o
Up to Antivirus Horde
$10,000 LPE RCE RCE

Uinux Linux
2019/01 © zerodium.com

Source: Zerodium payouts

* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.

Dan Boneh

Marketplace for Vulnerabilities_

ZERODIUM Payouts for Mobiles’ N

Up to Android FCP
$2,500,000 Zero Click

FCP: Full Chain with Persistence . 0S —
RCE: Remote Code Execution BN Android |
LPE: Local Privilege Escalation m Any OS

&.3,0300 SBX: Sandbox Escape or Bypass Zigri '(::(I:i:k
RCE: remote code execution ' e
500000 ick [l Zoro Giick
Zero Chc Zero Clic

LPE: local privilege escalation e
Up to WhatsA, SMS/MMS
SBX: sandbox escape 000300 cesire [Seeiire

10S/Androkd 10S /Androv*

e N 2008 A | iz
Up to WeChat iMessage FB Messenger Telegram ’ Email App Safari
RCE+LPE RCE+LPE RCE+LPE RCE+LPE RCE+LPE RCE+LPE RCE+LPE

~“ ‘androl 10S 10S /Androld 10S /Androkd

5001 800 — I— N

Up to Baseband LPE to Media Files Documents SBX Safari RCE
$200,000 RCE+LPE Kernel /Root RCE+LPE RCE+LPE for Safari w/o SBX
10S/Androld 10S /Androld 10S /Androld 10S /Androkd
700 N N -~ 9002
Up to Code Signing RCE Information Passcode
$100,000 Bypass via MitM Disclosure

10S/Androld 10S /Androkd

Source: Zerodium payouts

* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.

Dan Boneh

Ok, Important. How we find them?

Audit It

How much does it take to audit all available programs?

C/C++ Header

It took 2 years to audit TrueCrypt (2013-2015)

German Government + Cryptographers and
Security researchers conducted the audit

Audit finished April 2015

CVE-2015-7358 and CVE-2015-7359 discovered
September 2015 by Google Zero Project!

>N
(@3}

/16
5] | V.

666B

SH2C

‘_‘a;a
5962 2
5466 2

JA69 7

MUTO NI OO
OO D TMAUIC) O IO
> UIND ANO {

=
>
(@)

Fall 1403 Ce 874 -Lecture 1 23

Too much code |

Lines of code per Kernel version

20M

9

Almost 500 years and with no guarantees!
10M

Lines of code

5M

0
\9\:}’.\ 0;,;\ ‘bQQ”.O’Qy x(p/\ x@/&c%ﬁo)@ bﬁbc),?)”) (99 .Q?)Q?‘@Q@%Q ,})ﬁby <
NN AT q,,v\; 1Y v 7 VDA AN 0. o' 2o

A VS DN X
¢ 9‘ /\/. /))o q. <:). g~

Version

Lines of Code

Fall 1403 Ce 874 -Lecture 1

24

Too much code !l

11000 10,197

9,368

- 111 billion lines of new software code 8,752 ‘462 8,956

. 8,285 =

IS created every year 4250

7,217

- Each bug found by hackers first, will

lead to a disaster 2500
* Hackers are interested in Exploitable 2750

bugs!

0

2010 2011 2012 2013 2014 2015 2016

o Number of Vulnerabilities per year; IBM Report 2017

Fall 1403 Ce 874 -Lecture 1 25

Solutions

* Redevelop Linux Kernel and all other programs

 Not feasible 3,000
3000

2250

1,140

750 —612

O'

2.6.0 (2004) 2.6.8 (2006) 2.6.33 (2010) 2.6.x (2011)

Million Dollars

Kernel Version [Wikipedia]

Fall 1403 Ce 874 -Lecture 1 26

DARPA Cyber Grand Challenge

« “Cyber Grand Challenge (CGC) is a contest to build high-performance
computers capable of Finding and Fixing Vulnerabilities l'

« Announced in 2013, and Final Contest held in 2016

GRAND_CHALLENGE
- Teams build “Cyber Reasoning Systems” (CRS)

- CRS finds “Proof of Vulnerability” (POV) (automatically exploit)
+ CRS fixes vulnerability

Fall 1403 Ce 874 -Lecture 1 27

Who participated in CGC”

Fall 1403 Ce 874 -Lecture 1

What happens if we don’t find them all”?

Multiple layers of defense

How to mitigate the vulnerabilities?
* run-time protection

How do we look for vulnerabilities?
* Program analysis

How do we refrain from one vulnerabilities causing another one?
- Better Architectures

How do we refrain from future vulnerabilities?

+ Better programming languages

Fall 1403 Ce 874 -Lecture 1

30

Survey

« How much familiar with?
- Gdb, objectdump, rop
« CFlI, Taint
- Symbolic Execution, Static Analysis
« NLP Concepts: one hot, word2vec , skipgram, etc.
- DL Concepts: LSTM, DNN, GNN, etc.

Fall 1404 Ce 815 -Lecture 1

A quick review of some of the very basics!

Fall 1404

(et ||
woNDERFUl—

IDEAS

s |
D
—

—

“TERRVFIC
Puws

) ENP—
/—\Q — ("g

THE DETAILS -

Ce 815 -Lecture 1

j“ A\
/U

l
\J

Application Model

Network

AN

Process
A

OS

<

Fall 1404

/7 Terminal

A

>

Ce 815 -Lecture 1

k‘h/

[Adam Doupe]

Stages in which there could be a vulnerability

* Design vulnerabilities
- Flaws in the overall logic of the application
- Lack of authentication and/or authorization checks
* Erroneous trust assumptions
* Implementation vulnerabilities
 Application is not able to correctly handle unexpected events
- Unexpected input, Unexpected errors/exceptions
» Unexpected interleaving of events
* Deployment vulnerabilities
* Incorrect/faulty deployment/configuration of the application
» Installed with more privileges than the ones it should have

- Installed on a system that has a faulty security policy and/or
mechanism (e.g., a file that should be read-only is actually writeable)

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

The Life of an Application

* Author writes code in high-level language

The application is translated in some executable form and saved to a file

* Interpretation vs. compilation

* The application is loaded in memory

* The application is executed

* The application terminates

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Interpretation

* The program is passed to an interpreter
* The program might be translated into an intermediate representation
* Python byte-code
- Each instruction is parsed and executed

 In most interpreted languages it is possible to generate and execute code
dynamically

- Bash: eval <string>
« Python: eval(<string>)
- JavaScript: eval(<string>)

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Compilation

» The preprocessor expands the code to include definitions, expand macros
« GNU/Linux: The C preprocessor is cpp
- The compiler turns the code into architecture-specific assembly
- GNU/Linux: The C compiler is gcc
+ gcc -S prog.c will generate the assembly
» Use gcc’s -m32 option to generate 32-bit assembly

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Compilation

* The assembler turns the assembly into a binary object
- GNU/Linux: The assembler is as
A binary object contains the binary code and additional metadata

 Relocation information about things that need to be fixed once the
code and the data are loaded into memory

* Information about the symbols defined by the object file and the
symbols that are imported from different objects

» Debugging information

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Compilation

 The linker combines the binary object with libraries, resolving references that
the code has to external objects (e.g., functions) and creates the final
executable

- GNU/Linux: The linker is Id
- Static linking is performed at compile-time
* Dynamic linking is performed at run-time
« Most common executable formats:
- GNU/Linux: ELF
« Windows: PE

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

The ELF File Format

- The Executable and Linkable Format (ELF) is one of the most widely-used
binary object formats

- ELF is architecture-independent
- ELF files are of four types:
* Relocatable: need to be fixed by the linker before being executed

- Executable: ready for execution (all symbols have been resolved with the
exception of those related to shared libs)

- Shared: shared libraries with the appropriate linking information

« Core: core dumps created when a program terminated with a fault
* Tools: readelf, file

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

The ELF File Format

Magic number

Addressing info

File type

Arch type

Entry point

Program header pos

Section header pos

Header size

Size and number of
entries in program header

Size and number of
entries in section header

Fall 1404

/

A program is seen as a
collection of segments by

Header

the loader and as a
collection of sections by the

Program
Header
Table

compiler/linker

A segment is usually made
of several sections

Segment

The segment structure is defined in the
Program Header Table

Section

Section

The section structure is defined in the

Section
Header
Table

Section Header Table

Ce 815 -Lecture 1 [Adam Doupe]

The PE File Format

- The PE file was introduced to allow MS-DOS programs to be larger than 64K
(limit of .COM format)

« Also known as the “EXE” format

- The header contains a number of relocation entries that are used at loading
time to “fix” the addresses (this procedure is called rebasing)

- Programs are written as if they were always loaded at address O
* The program is actually loaded in different points in memory

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

X380 Registers

* Registers represent the local variables of the processor
* There are four 32-bit general purpose registers

. eax/ax, ebx/bx, ecx/cx, edx/cx eax
. r \
« Convention
- Accumulator: eax ‘ah ‘al ‘
« Pointer to data: ebx a:(
* LOOp counter: ecx _
. esi
- 1/O operations: edx _A
r Y
S

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

X380 Registers

 Two registers are used for high-
speed memory transfer operations

- esi/si (source), edi/di (destination) eax
A
* There are several 32-bit special - D
purpose registers ‘ ‘ah ‘al ‘

« esp/sp: the stack pointer . . ,
- ebp/bp: the frame pointer ax

esl

A

' N\
S

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

X380 Registers

Segment registers: cs, ds, ss, es, fs, gs
- Used to select segments (e.g., code, data, stack)

Program status and control: eflags

The instruction pointer: eip
* Points to the next instruction to be executed
- Cannot be read or set explicitly
- It is modified by jump and call/return instructions

- Can be read by executing a call and checking the value pushed on the
stack

Floating point units and mmx/xmm registers

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Data Sizes

Fall 1404

7 O
N
15 87 O
High | Low
Byte | Byte
N+1 N
31 16 15 0
High Word | Low Word
N+2 N
63 32 31 0
High Doubleword Low Doubleword
N+4 N
127 64 63 0
High Quadword Low Quadword
N+8 N

Ce 815 -Lecture 1

Byte

Word

Doubleword

Quadword

Double
Quadword

[Adam Doupe]

X860 Assembly Language

- (Slightly) higher-level language than machine language
* Program is made of:
- directives: commands for the assembler
- .data identifies a section with variables
* instructions: actual operations
« jmp 0x08048f3f
- Two possible syntaxes, with different ordering of the operands!
« AT&T syntax (objdump, GNU Assembler)
* mnemonic source, destination
« DOS/Intel syntax (Microsoft Assembler, Nasm, IDA Pro)
 mnemonic destination, source

* In gdb can be set using: set disassembly-flavor intel/att

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Data Definition

« (Constants
Hexadecimal numbers start with 0x

- Data objects are defined in a data segment using the syntax
e Jlabel type datal, dataz2,

« Types can be
DB: Byte
DW: Word (16 bits)
DD: Double word (32 bits)
DQ: Quad word (64 bits)

For example:

.data
myvar DD 0x12345678, 0x23456789 # Two 32-bit values
bar DW 0x1234 # 16-bit data object
mystr DB "foo", 0 # Null-terminated string

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Addressing Memory

- Memory access is composed of width, base, index, scale, and displacement
- Base: starting address of reference
* Index: offset from base address
- Scale: Constant multiplier of index
 Displacement: Constant base
- Width: (address suffix)
- size of reference (b: byte, s: short, w: word, |: long, g: quad)
» Address = base + index”*scale + displacement
- AT&T Syntax —> displacement(base, index, scale)

« Example:
- movl -0x20(%eax, %ecx, 4), Yoedx

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Addressing Memory

« movl -8(%ebp), Y%oeax
* copies the contents of the memory pointed by ebp - 8 into eax
« movl (%eax), Y%eax
* copies the contents of the memory pointed by eax to eax
- movl %eax, (%oedx, %ecx, 2)
* moves the contents of eax into the memory at address edx + ecx * 2
« movl $0x804a0e4, %ebx
« copies the value 0x804a0e4 into ebx
- movl (0x804a0e4), %eax
 copies the content of memory at address 0x804a0e4 into eax

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Instruction Classes

- Data transfer

* mov, xchg, push, pop
 Binary arithmetic

- add, sub, imul, mul, idiv, div, inc, dec
* Logical

« and, or, xor, not

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

INnstruction Classes

« Control transfer
* jmp, call, ret, int, iret
 Values can be compared using the cmp instruction
* cmp src, dest # subtracts src from dest without saving the result
» Various eflags bits are set accordingly
 jne (ZF=0), je (ZF=1), jae (CF=0), jge (SF=0F), ...

- Control transfer can be direct (destination is a constant) or indirect (the
destination address is the content of a register)

* Input/output
* in, out

« Misc
* NOP

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Invoking System Calls

- System calls are usually invoked through libraries
* Linux/x86
* int Ox80

 eax contains the system call number

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

X86(32 bit) System Call Table

1 exit
2 fork
3 read

5 open
6 close
7 waitpid
8 creat
9 link

10 unlink

11 execve

NR syscall name

O restart_syscall

arg0 (%ebx)

int error_code

unsigned int fd

const char *filename

unsigned int fd

pid_t pid

const char *pathname

const char *oldname

const char *pathname

const char *filename

arg1 (%ecx)

char *buf

int flags

int *stat_addr

umode_t mode

const char *newname

const char *const *argv

arg2 (%edx)

size_t count

umode_t mode

int options

const char *const *envp

Fall 1404

Ce 815 -Lecture 1

Hello World!

.data
hw:
.string "hello world\n"
text int main()
.globl main 1
main: printf("hello world!");
movl $4,%eax return 0;
movl $1,%ebx J
movl $hw,%ecx Return 0;
movl $12,%edx
int $0x80 syscall(4, 1, “hello world\n", 12);
movl $1,%eax syscall(1, 0);
movl $0,%ebx
int $0x80

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Program Loading and Execution

* When a program is invoked, the operating system creates a process to
execute the program

- The ELF file is parsed and parts are copied into memory

- In Linux /proc/<pid>/maps shows the memory layout of a process
 Relocation of objects and reference resolution is performed

- The instruction pointer is set to the location specified as the start address
- Execution begins

Fall 1404 Ce 815 -Lecture 1 [Adam Doupe]

Acknowledgments/References (1/2)

- [Adam Doupe] CSE 545, Software Security, Adam Doupe, ASU, Spring 2018
- [Bellovin 06] COMS W4180 — Network Security Class Columbia University.

» [Messmer 08] 10 of the Worst Moments in Network Security History, Events

that shock sensibilities and shaped the future, By Ellen Messmer, Network
World, 03/11/08

- [Rudis’18] CVE 100K: By The Numbers, Bob Rudis, Apr 30, 2018. https://
blog.rapid7.com/2018/04/30/cve-100k-by-the-numbers/

- [Mendoza’18] Vulnerabilities reached a historic peak in 2017, Miguel Angel
Mendoza 5 Feb 2018. https://www.welivesecurity.com/2018/02/05/
vulnerabilities-reached-historic-peak-2017/

Fall 1404 Ce 815 -Lecture 1 58

https://www.welivesecurity.com/2018/02/05/vulnerabilities-reached-historic-peak-2017/
https://www.welivesecurity.com/2018/02/05/vulnerabilities-reached-historic-peak-2017/
https://www.welivesecurity.com/2018/02/05/vulnerabilities-reached-historic-peak-2017/

Acknowledgments/References (2/2)

- [Wang 2012] Undefined Behavior: What Happened to My Code?, X. Wang, H.
Chen, A. Cheung, Z. Jia, N. Zeldovich, M.F. Kaashoek, APSys ’12, 2012.

« [Regehr 2017] Undefined Behavior in 2017, John Regehr blog, 2017.

- [Williams 2017] Meltdown and Spectre - understanding and mitigating the
threats, Jake Williams, SANS / Rendition Infosec, 2017 (slides)

* [cs 155] Lecture slides are from the Computer Security course taught by Dan
Boneh at Stanford University, 2015.

Fall 1404 Ce 815 -Lecture 1 59

