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Review

• Automated vulnerability detection 
• Code graph representation 
• Word2Vec 
• GNN 
• Hand-selected dataset 

• Problem?
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Prior Works Limitations

• Detects vulnerability at function level 
• Can’t find vulnerability type
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VulChecker

• Precisely locate vulnerabilities in source code (down to the exact 
instruction) 
• Classify vulnerabilities type 
• Low-cost dataset augmentation
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Insights

• Broad Program Slicing  
• Location of the vulnerability instead of a region or function 

• Incomplete Code Representations  
•  enhanced-PDG 

• Manifestation distance 
• Manifestation vs root cause 

• The Lack of Labeled Data 
• datasets that only label code regions or functions 

• Level of program representation 
• Source code or machine instructions
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Prior Works
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VulChecker
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ePDG

• ePDGs are graph structures in which nodes represent atomic machine-level 
instructions and edges represent control- and data-flow dependencies 
between instructions 
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Program Slicing
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Program Slicing (cont.)
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VulChecker
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ePDG Generation 

• Lowering the source code S to LLVM IR  
• Extracting G based on the structure and flows it contains
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Lowering Code to LLVM IR 

• Simplifies the program representation: 
• Control-flow: complicated branching constructs in source code are reduced to 

conditional jumps that test a single condition 
• Data-flow: definition-use chains are shorter and less complex as they are based on 

virtual register values rather than source code variables 

• During lowering, VulChecker instructs Clang to embed debug information in 
the IR, which enables traceability of IR instructions back to source code 
instructions 
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Lowering Code to LLVM IR (cont.)

• Using semantic-preserving compiler optimizations provided by LLVM to 
simplify and better express the code in G: 
• Function inlining to replace function call sites in the IR with a concrete copy of the 

called function body 
• Indirect branch expansion to eliminate indirect branching constructs  
• Dead code elimination to reduce the size of the output graph 
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Generating the ePDG 

• C is the set of all types of instructions in the LLVM instruction API (e.g., return, 
add, allocate, etc.) and Ac is the set of all possible attributes for instruction v ∈ V 
of type c.  

• D is the set of edge types (i.e., control-flow or data-flow) and Ad is the set of flow 
attributes for a flow type d (e.g., the data type of the data dependency) 
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Sampling

• PoI Criteria  
• Program Slicing  
• Crawls G backwards from mi using breadth first search (BFS)  

• Labeling
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Feature Extraction

• Operational Node Features  
• Structural Node Features  
• Distance from the nearest potential root cause 
• Betweeness centrality measure (BEC) 

• Semantic Node Features  
• Edge Features 
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Embedding

• Some embeddings include one hot encodings and pre-processed 
embeddings (e.g., Word2Vec) 
• In some cases entire portions of code are summarized using Doc2Vec  
• The issue with these representations: 
• nodes in Gi would likely capture multiple operations in a single line of source code 

resulting in a loss in semantic precision  
• the use of pre-processed embeddings prevents the model from learning the best 

representation to optimize the learning objective
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Data Augmentation

• Data augmentation is a technique for creating new training examples from 
existing ones. VulChecker augments its training dataset by adding synthetic 
vulnerabilities to "clean" projects. 
• Validity: Since augmentation process splices multiple ePDGs, it may produce 

samples where a vulnerability ePDG subgraph lies on an infeasible path in 
the augmented ePDG
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Data Augmentation (cont.)
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Evaluation
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Evaluation (cont.)
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Evaluation (cont.)
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Conclusion

• VulChecker precisely locates vulnerabilities in source code down to the 
exact instruction. 

• Classifies vulnerabilities according to the Common Vulnerabilities and 
Exposures (CVE) taxonomy. 

• Employs a novel data augmentation technique to enrich the training dataset 
and enhance generalization ability.  

• Achieves near-zero false positives in vulnerability detection, outperforming 
commercial tools. 

• VulChecker successfully detects a previously unknown zero-day 
vulnerability, highlighting its ability to identify novel vulnerabilities.
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