
CE 815 – Secure Software Systems
ML-Based Vulnerability Detection Methods (Vulchecker)

Mohammad Haddadian/Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A reference is noted on the
bottom of each slide, when the content is fully obtained from another source. Otherwise a full list of references is
provided on the last slide.

Fall 1403 CE 815 - Vulnerability Analysis

Review

• Automated vulnerability detection
• Code graph representation
• Word2Vec
• GNN
• Hand-selected dataset

• Problem?

2

Fall 1403 CE 815 - Vulnerability Analysis

Prior Works Limitations

• Detects vulnerability at function level
• Can’t find vulnerability type

3[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

VulChecker

• Precisely locate vulnerabilities in source code (down to the exact
instruction)
• Classify vulnerabilities type
• Low-cost dataset augmentation

4[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Insights

• Broad Program Slicing
• Location of the vulnerability instead of a region or function

• Incomplete Code Representations
• enhanced-PDG

• Manifestation distance
• Manifestation vs root cause

• The Lack of Labeled Data
• datasets that only label code regions or functions

• Level of program representation
• Source code or machine instructions

5[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis 6[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Prior Works

7[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

VulChecker

8[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

ePDG

• ePDGs are graph structures in which nodes represent atomic machine-level
instructions and edges represent control- and data-flow dependencies
between instructions

9[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Program Slicing

10[Alves]

Fall 1403 CE 815 - Vulnerability Analysis

Program Slicing (cont.)

11[Alves]

Fall 1403 CE 815 - Vulnerability Analysis

VulChecker

12[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

ePDG Generation

• Lowering the source code S to LLVM IR
• Extracting G based on the structure and flows it contains

13[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Lowering Code to LLVM IR

• Simplifies the program representation:
• Control-flow: complicated branching constructs in source code are reduced to

conditional jumps that test a single condition
• Data-flow: definition-use chains are shorter and less complex as they are based on

virtual register values rather than source code variables

• During lowering, VulChecker instructs Clang to embed debug information in
the IR, which enables traceability of IR instructions back to source code
instructions

14[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Lowering Code to LLVM IR (cont.)

• Using semantic-preserving compiler optimizations provided by LLVM to
simplify and better express the code in G:
• Function inlining to replace function call sites in the IR with a concrete copy of the

called function body
• Indirect branch expansion to eliminate indirect branching constructs
• Dead code elimination to reduce the size of the output graph

15

Fall 1403 CE 815 - Vulnerability Analysis

Generating the ePDG

• C is the set of all types of instructions in the LLVM instruction API (e.g., return,
add, allocate, etc.) and Ac is the set of all possible attributes for instruction v ∈ V
of type c.

• D is the set of edge types (i.e., control-flow or data-flow) and Ad is the set of flow
attributes for a flow type d (e.g., the data type of the data dependency)

16[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Sampling

• PoI Criteria
• Program Slicing
• Crawls G backwards from mi using breadth first search (BFS)

• Labeling

17[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Feature Extraction

• Operational Node Features
• Structural Node Features
• Distance from the nearest potential root cause
• Betweeness centrality measure (BEC)

• Semantic Node Features
• Edge Features

18[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Embedding

• Some embeddings include one hot encodings and pre-processed
embeddings (e.g., Word2Vec)
• In some cases entire portions of code are summarized using Doc2Vec
• The issue with these representations:
• nodes in Gi would likely capture multiple operations in a single line of source code

resulting in a loss in semantic precision
• the use of pre-processed embeddings prevents the model from learning the best

representation to optimize the learning objective

19[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Data Augmentation

• Data augmentation is a technique for creating new training examples from
existing ones. VulChecker augments its training dataset by adding synthetic
vulnerabilities to "clean" projects.
• Validity: Since augmentation process splices multiple ePDGs, it may produce

samples where a vulnerability ePDG subgraph lies on an infeasible path in
the augmented ePDG

20[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Data Augmentation (cont.)

21[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Evaluation

22[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Evaluation (cont.)

23[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Evaluation (cont.)

24[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Conclusion

• VulChecker precisely locates vulnerabilities in source code down to the
exact instruction.

• Classifies vulnerabilities according to the Common Vulnerabilities and
Exposures (CVE) taxonomy.

• Employs a novel data augmentation technique to enrich the training dataset
and enhance generalization ability.

• Achieves near-zero false positives in vulnerability detection, outperforming
commercial tools.

• VulChecker successfully detects a previously unknown zero-day
vulnerability, highlighting its ability to identify novel vulnerabilities.

25[VulChecker]

Fall 1403 CE 815 - Vulnerability Analysis

Acknowledgments

• [VulChecker] VulChecker: Graph-based Vulnerability Localization in Source
Code, Y. Mirsky, G. Macon, M. Brown, C. Yagemann, M. Pruett, E. Downing,
S. Mertoguno, and W. Lee, Usenix Security 2023.
• [Alves] Program Slicing. SwE 455, Alves, E., Federal University of

Pernambuco, 2015.

26

