
CE 815 – Secure Software Systems
ML-Based Vulnerability Detection Methods (Devign)

Mohammad Haddadian/Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A reference is noted on the
bottom of each slide, when the content is fully obtained from another source. Otherwise a full list of references is
provided on the last slide.

Fall 1403 CE 815 - Vulnerability Analysis

Vulnerabilities

2[CMSC818I]

Fall 1403 CE 815 - Vulnerability Analysis

Literature Background

• Manual Code Auditing
• Static Analysis Tools
• Dynamic Analysis Tools

3[ChatGPT]

Fall 1403 CE 815 - Vulnerability Analysis

Manual Code Auditing

• Advantages:
• Thorough and comprehensive analysis of code
• Ability to detect complex vulnerabilities that may elude automated tools
• Deep understanding of the codebase and its context

• Limitations:
• Time-consuming and labor-intensive process
• Prone to human error and inconsistencies
• Difficult to scale for large codebases and complex systems

4[ChatGPT]

Fall 1403 CE 815 - Vulnerability Analysis

Static Analysis Tools

• Types:
• Code scanners: Examine source code for potential vulnerabilities and coding errors
• Lint tools: Identify stylistic issues and potential code defects
• Data flow analysis: Tracks data flow through code to detect potential vulnerabilities

• Techniques:
• Lexical analysis: Breaks code into tokens and examines their usage patterns
• Syntax analysis: Checks code adherence to programming language rules
• Semantic analysis: Analyzes the meaning and intent of code constructs

• Effectiveness:
• Effective for detecting a wide range of vulnerabilities
• Can be integrated into the software development lifecycle (SDLC)
• Scalable for large codebases and complex systems

5[ChatGPT]

Fall 1403 CE 815 - Vulnerability Analysis

Dynamic Analysis Tools

• Principles:
• Examines software behavior during execution
• Identifies vulnerabilities by observing how the software responds to various inputs or

scenarios

• Approaches:
• Fuzz testing: Generates random or unexpected inputs to trigger unexpected behavior
• Symbolic execution: Analyzes code by symbolically representing inputs and variables
• Runtime monitoring: Tracks program execution and detects anomalous behavior

• Applications:
• Effective for detecting vulnerabilities that manifest during runtime
• Complements static analysis by providing insights into dynamic behavior
• Can be used to test software in various deployment environments

6[ChatGPT]

Fall 1403 CE 815 - Vulnerability Analysis

Rise of Machine Learning, Why?

• Improved Accuracy:
• Machine learning models can discern intricate patterns and subtle anomalies,

enhancing the accuracy of vulnerability detection

• Adaptability:
• ML models can adapt to emerging threats without manual intervention, providing a

proactive defense mechanism

• Automation:
• Automation in the detection process reduces the reliance on predefined signatures,

enabling the identification of novel vulnerabilities

7[ChatGPT]

Fall 1403 CE 815 - Vulnerability Analysis

Learning Flow for Vulnerability Detection

• Data Collection and Preparation:
• Preprocessing, feature extraction, and representation

• Model Training:
• Choosing an appropriate architecture, optimization algorithms, and hyperparameter

tuning

• Model Evaluation:
• Performance metrics, generalization, and robustness

8[ChatGPT]

Devign: Effective Vulnerability Identification by Learning
Comprehensive Program Semantics via Graph Neural

Networks
NeurIPS 2019

9

Fall 1403 CE 815 - Vulnerability Analysis

Introduction

• Vulnerability detection:
• Crucial for cyber security
• Challenging and requires specialized expertise
• Traditional approach: Manually-defined vulnerability patterns
• Limitations: Tedious to create, difficult to maintain

10[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Problem

• Develop an automated approach to learn vulnerability patterns from code
• Leverage graph neural networks (GNNs) to extract comprehensive program

semantics
• Design a model that effectively identifies vulnerable functions without

manual feature engineering

11[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Workflow

12[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Code Sequence Representation

13[Bolun]

Fall 1403 CE 815 - Vulnerability Analysis

Code Graph Representation

• Enhanced Accuracy
• Code graphs capture relationships between program elements, providing a more

accurate representation of code for vulnerability detection.

• Improved Scalability
• Code graphs are efficiently represented and processed using graph algorithms,

enabling effective analysis of large codebases.

• Enhanced Flexibility
• Code graphs can be easily modified to represent different aspects of code, adapting

to various cybersecurity tasks.

14[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Code Graph Representation (cont.)

15[Bolun]

Fall 1403 CE 815 - Vulnerability Analysis

Code Graph Representation (cont.)

• Abstract Syntax Tree (AST)

• Control Flow Graph (CFG)

• Data Flow Graph (DFG)

• Natural Code Sequence (NCS)
• In order to encode the natural sequential order of the source code, NCS

edges are used to connect neighboring code tokens in the ASTs. The main
benefit with such encoding is to reserve the programming logic reflected by
the sequence of source code

16[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Code Graph Representation (cont.)

17[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Graph Embedding

0 1 1 0

1 0 0 1

0 0 0 1

1 0 1 0

• Word2Vec
• Content | Type

18[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Model

• Learn embeddings for each node, edge, graph
• Message passing
• Using Gated GNN

19[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

GNN

20[Gaunt]

Fall 1403 CE 815 - Vulnerability Analysis

GNN (cont.)

21[Gaunt]

Fall 1403 CE 815 - Vulnerability Analysis

GNN (cont.)

22[Gaunt]

Fall 1403 CE 815 - Vulnerability Analysis

Model

• Learn embeddings for each node, edge, graph
• Message passing
• Using Gated GNN

23[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Evaluation

• Q1: How does our Devign compare to the other learning based vulnerability
identification methods?

• Q2: Can Devign learn from each type of the code representations (e.g., a single-
edged graph with one type of information)? And how do the Devign models with
the composite graphs (e.g., all types of code representations) compare to each of
the single-edged graphs?

• Q3: Can Devign have a better performance compared to some static analyzers in
the real scenario where the dataset is imbalanced with an extremely low percentage
of vulnerable functions?

• Q4: How does Devign perform on the latest vulnerabilities reported publicly
through CVEs?

24[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Dataset

• Data Collection:
• Four diversified large-scale open-source C projects
• Manually labeled commits as security/non-security, from which vulnerable and non-

vulnerable functions are labeled

• Data Preprocessing:
• Code parsing to extract AST, CFG, and PDG graphs using Joern
• Two many different type of edges, limit to 3 types
• LastRead (DFG_R), LastWrite (DFG_W), and ComputedFrom (DFG_C)

25[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Dataset

26[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Evaluation

• Metrics + Xgboost
• Collect totally 4 complexity metrics and 11 vulnerability metrics for each function using

Joern, and utilize Xgboost for classification

• 3-layer BiLSTM
• Treats the source code as natural languages and input the tokenized code into

bidirectional LSTMs with initial embeddings trained via Word2vec

• 3-layer BiLSTM + Att
• With attention mechanizm

• CNN
• Takes source code as natural languages and utilizes the bag of words to get the initial

embeddings of code tokens, and then feeds them to CNNs to learn.

27[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Evaluation (cont.)

28[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Evaluation

• 10% vulnerable data

29[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Conclusion

• Devign Key Contributions:
• Proposed a novel Conv module to efficiently extract useful features for graph-level

classification
• Employed a rich set of code semantic representations for comprehensive program

semantics learning
• Demonstrated significant performance improvement over state-of-the-art methods
• Achieved an average of 10.51% higher accuracy and 8.68% F1 score
• Successfully applied to identify vulnerabilities in real-world software projects

30[Devign]

Fall 1403 CE 815 - Vulnerability Analysis

Acknowledgments

• [Devign] Devign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks, Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu, NeurIPS 2019.
• [CMSC818I] CMSC818I: Advanced Topics in Computer Systems; Large Language Models, Security,

and Privacy, Chen, Y., UMD, 2023.
• [ChatGPT] Content created with the help of OpenAI’s ChatGPT.
• [Bolun] Code vulnerability detection based on deep sequence and graph models: A survey, Wu,

Bolun, and Futai Zou, Security and Communication Networks, 2022.
• [Gaunt] Graph neural networks: Variations and applications, Gaunt, A., Youtube, 2016. Retrieved

from https://m.youtube.com/watch?v=cWIeTMklzNg

31

