CE 815 – Secure Software Systems

Causal Analysis (Benchmark)

Mehdi Kharrazi Department of Computer Engineering Sharif University of Technology

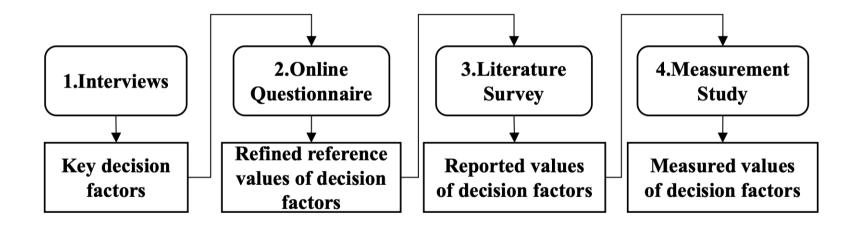
Acknowledgments: Some of the slides are fully or partially obtained from other sources. A reference is noted on the bottom of each slide, when the content is fully obtained from another source. Otherwise a full list of references is provided on the last slide.

Are we there yet? An Industrial Viewpoint on Provenance-based Endpoint Detection and Response Tools, F. Dong, S. Li, P. Jiang, D. Li, H. Wang, L. Huang, X. Xiao, J. Chen, X. Luo, Y. Guo, CCS 2023.

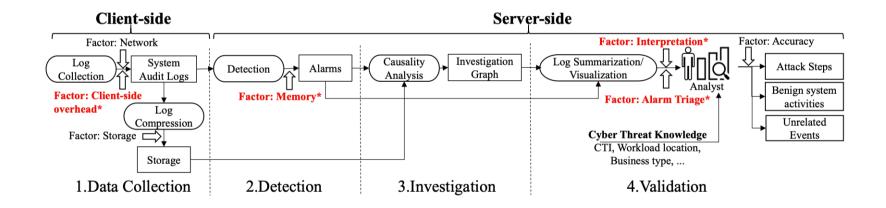
- EDR systems are cybersecurity tools designed for continuous monitoring of endpoints.
- They detect, investigate, and respond to security threats across workstations, servers, and mobile devices.
- They collect extensive data from endpoints, including process activities, network connections, and file changes.
- Data analysis involves behavioral analysis, machine learning, and integration of threat intelligence.
- Aimed at early detection of potential security incidents and anomalies.

- P-EDR as a next-generation system for APT attack defense by using a provenance graph for modeling dependencies between system activities.
- Superiority over conventional EDR systems in detection accuracy and interpretability.
- Rapid growth of P-EDR research and industry adoption noted in recent years.
- Study objectives: Assessing effectiveness and limitations of P-EDR systems.
- The paper's study includes interviews, questionnaires, literature surveys, and measurement studies to evaluate P-EDR systems.

Research Questions


- RQ1: How does the industry compare the effectiveness of P-EDR and conventional EDR?
- RQ2: What are the bottlenecks for the industry to adopt EDR Systems?
- RQ3: How well can existing P-EDR systems proposed in academia meet the expectations of the industry?

- One-to-one interviews with technical managers from top IT companies.
- Online questionnaire for feedback from a broader scope of security engineers.
- Literature survey of recent publications on P-EDR systems.
- Focus on evaluating effectiveness, limitations, and decision factors for P-EDR adoption.


Overview

Overview of P-EDR systems

One-to-one interview

- 5 EDR vendors from top-tier endpoint security companies
- 5 consumers of EDR systems from diverse kinds of organizations
- participants are experienced in security: on average, 10.5 years of experience

ID	Role	Company Name	Industry Area	Job Title	Years of Exp.	Team Size	Adopt P-EDR
E1		ByteDance	Technology	Head of Server Security	6	20~25	Yes
E2		MeiTuan	Technology	Cloud Workload Security Leader	5	20~25	Yes
E3	Consumer	Peking University	Education	Director of Network Security Office	19	10~15	No
E4		S.F. Express	Transportation	Endpoint Security Manager	10	20~25	No
E5		FiberHome	Manufacturing	Endpoint Security Manager	8	5~10	No
E6		Tencent Security	Security	Director of EDR	10	10~15	Yes
E7		Trend Micro	Security	Detection Engine Architect of EDR	9	20~25	Yes
E8	Vendor	Sangfor	Security	Director of Workload Protection Product	8	65~70	No
E9		Rising	Security	EDR Architect	21	50~55	No
E10		NSFOCUS	Security	EDR Product Manager	9	30~35	No

Interview Feedback

Answers	Participants
Limitations of EDR/P-ED	R
High Client-Side Overhead	E1, E2, E3, E4, E5, E6, E7, E8, E9, E10
Too Many False Alarms	E1, E2, E4, E5, E6, E7, E8
Incomplete Rule Set	E1, E2, E4, E5, E7, E9, E10
Data Privacy	E3
Effectiveness of P-EDR	
P-EDR Already Deployed	E1, E2, E6, E7
P-EDR Better Than EDR	E1, E2, E3, E4, E5, E6, E7, E8, E9, E10

Seven key factors

- Average number of nodes of provenance graphs of alarms as the metric for the interpretation cost.
- Preferred to use the average number of alarms per monitored host per day to evaluate the performance rather than using precision

Factor	Description
Computing Cost	
CC1: Client-Side Overhead	how much an EDR system slows down the
CCI. Chent-Side Overhead	protected hosts
CC2: Network	bandwidth occupied by transmitting sys-
CC2: Network	tem audit logs to the server
CC3: Storage	hard-disk used to store the system logs
CC4: Memory	server memory size required to analyze
CC4. Memory	the collected logs
Labor Cost	
LC1: Alarm Triage	man-hour required to detect false alarms
IC2. Interpretation	man-hour required to interpret attack re-
LC2: Interpretation	sults
Performance	
Accuracy	attack detection accuracy

Interview results for key decision factors

		Con	nputing Cost		Labor	Cost	Performance
ID	Network	Storage	Memory*	Client-Side Overhead*	Interpretation Cost*	Alarm Triage Cost*	Accuracy
E1	None	None	3, ServerMem*:	2, ClientMem*: 100MB/host,	4, Number of	1, Alarms*:	None
			30MB/host	RT OH*:1%	nodes*: 100	0.001/day/host	5 D
E2	None	None	3, ServerMem*:	1, ClientMem*: 150MB/host,	4, Number of	2, Alarms*:	5, Precision,
			50MB/host	RT OH*:5%	nodes*: 10	0.001/day/host	> 0.85
E3	None	3, Disk:	2, ServerMem*:	1, ClientMem*: 100MB/host,	None	None	5, Precision,
	Trone	60MB/day/host	30MB/host,	RT OH*:5%	Ttone	Tone	> 0.9
E4	None	None	3, ServerMem*:	1, ClientMem*: 200MB/host,	None	2, Alarms*:	None
L4	None	None	50MB/host,	RT OH*:10%	Ivolle	0.004/day/host	INOILE
E5	None	None	3, ServerMem*:	1, ClientMem*: 100MB/host,	None	2, Alarms*:	None
E5	None	None	30MB/host,	RT OH*:5%	None	0.02/day/host	ost None
E6	5, Net:	6, Disk:	3, ServerMem*:	1, ClientMem*: 200MB/host,	4, Number of	2, Alarms*:	N
Eo	100MB/day/host	15MB/day/host	30MB/host,	RT OH*:1%	nodes*: 100	0.1/day/host	None
E7	5, Net:	6, Disk:	3, ServerMem*:	1, ClientMem*: 50MB/host,	4, Number of	2, Alarms*:	None
E/	10MB/day/host	70MB/day/host	20MB/host,	RT OH*:5%	nodes*: 100	0.1/day/host	INORE
E8	5, Net:	4, Disk:	3, ServerMem*:	2, ClientMem*: 250MB/host,	None	1, Alarms*:	None
Eð	42MB/day/host	100MB/day/host	26MB/host,	RT OH*:5%	None	0.05/day/host	None
To	4, Net:	3, Disk:	2, ServerMem*:	1, ClientMem*: 150MB/host,	N	NT	NT
E9	1MB/day/host	15MB/day/host	10MB/host,	RT OH*:10%	None	None	None
E10	4, Net:	5, Disk:	3, ServerMem*:	1, ClientMem*: 100MB/host,	N	2, Alarms*:	Nerra
E10	100MB/day/host	35MB/day/host	30MB/host,	RT OH*:5%	None	0.1/day/host	None
Reference	1~100MB	15~100MB	10~50MB/host	50~250MB/host,	10~100	0.001~0.1	> 0.85
Range	/day/host	day/host		1~10%	10~100	/day/host	> 0.85

Online questionnaire (37 responses)

- Design the questionnaire based on the results from the interview
- Four must-meet factors: Memory, Client-Side Overhead, Interpretation, and Triage.
- Divide the reference range obtained in the interviews into five equal-sized

Must-meet Factors	Summarized Result
Memory	< 20 MB/host
Client-side Overhead (RT OH)	< 3 %
Client-side Overhead (ClientMem)	< 100 MB/host
Interpretation	< 50 nodes
Alarm Triage	< 0.1 alarms/day/host

Literature Survey

- Selected 20 papers on P-EDR systems 2017-2022
 - Rule-based approaches
 - Anomaly-based approaches
 - Investigation approaches
- Look into whether they have been evaluated against the decision factors

Summarization of Literature Survey

Trans		Client-si	de Overhead		Storage	Memory	Alarm Triage	Interpretation			
Туре	Tool Name	Agent	RT OH(%)	ClientMem (MB)	(/MB/host/day)	(MB/host)	(#Alarm/host/day)	(#Node, #Edge)	Precision	Recall	Accuracy
	SLEUTH [35]	Auditd	-	-	362.87	81.93	-	(52, -)	-	-	-
	MORSE [37]	Auditd, DTrace	-	-	1266.67	230.4	-	(283, -)	≈ 0	1.00	-
	HOLEMS [60]	Auditd, Dtrace, ETW	-	-	179.23	104.76	-	(-, 400)	1.00	1.00	1.00
	RapSheet [31]	Symantec EDR	-	-	358.00	-	-	(12, 39)	0.26	1.00	0.75 - 0.95
	Pagoda [83]	Karma [19], PASS [62]	-	-	1126.40	-	-	(13315, 10964)	0.92-1.00	1.00	0.75 - 0.95
Detection	StreamSpot [56]	SystemTap [41]	-	-	-	-	-	(8315,173857)	0.50-1.00	-	0.50 - 0.80
Detection	UNICORN [29]	CamFlow [65]	-	-	24917.33	-	-	$(1.76 \times 10^5, 2.82 \times 10^6)$	0.80 - 0.99	0.88 - 1.00	0.84 - 0.99
	ProvDetector [81]	-	-	-	-	-	-	(-, -)	0.96	0.99	-
	ZePro [75]	-	-	-	266.67	57.14	-	(1853, 2249)	-	-	-
	P-Gaussian [84]	-	-	-	864	152.5	-	(1949, 3045)	-	0.66 - 0.94	0.65 - 0.95
	Poirot [59]	Auditd, Dtrace, ETW	-	-	6500.55	122.39	-	(-, -)	1.00	1.00	1.00
	SHADEWATCHER [89]	Auditd	-	-	59112.73	4194.30	-	(-, -)	0.86 - 1.00	0.95 - 1.00	0.98 - 1.00
	RTAG [43]	RAIN	4.84	-	1536 - 4096	-	-	(164.67, 3200)	-	-	1.00
	MCI [46]	Auditd, Dtrace, ETW	-	-	-	-	-	(34.56, 62.87)	0.92- 1.00	0.95 - 1.00	-
	PrioTracker [52]	Auditd, ETW	-	-	998.64	-	-	(-, 1219)	-	-	-
Investigation	NoDoze [33]	Auditd, ETW	-	-	428.90	-	-	(14, 14)	0.50	1.00	0.86
linestigation	ATLAS [15]	-	-	-	2286.93	-	-	(-, -)	0.91	0.97	0.99
	DEPCOMM [85]	Sysdig	-	-	-	-	-	(289, -)	-	-	-
	DEPIMPACT [26]	Sysdig	-	-	-	-	-	(-, 234.27)	0.79 - 0.85	1.00	-
	RAPID [51]	Auditd, Dtrace, ETW	-	-	4743.40	30.04	-	(-, -)		-	-

Summarization of Literature Survey

- Alarm Triage: None of the papers provide evaluation. Thus, even though they can achieve high accuracy the triage costs are usually not acceptable in practice.
- Rule-based systems, can generate smaller provenance graphs for alarms than anomaly-based systems
- Memory: reported values are much higher than the reference values (< 20MB/host)
- Only a small set of papers provide evaluations for part of the four factors & fail to satisfy the reference values

Summarization of Literature Survey

• None of the existing provenance collectors can satisfy the reference value of runtime overhead (< 3%).

	Platform	Owner	Affect	RT OH (%)	Mem (MB)
Sysdig [17]	Linux	Sysdig.Inc	[26, 85]	NA	NA
Auditd [71]	Linux	Linux Foundation	[33, 35, 37, 46, 51, 52, 59, 60, 89]	NA	NA
DTrace [18, 82]	Linux	Sun Microsystems	[37, 46, 51, 59, 60]	3.2	NA
Camflow [66]	Linux	University of Cam- bridge	[29]	9.7	NA
LTTng [23]	Linux	EfficiOS	NA	NA	NA
ETW [24]	Windows	Microsoft	[33, 46, 51, 52, 59, 60]	NA	NA
KennyLoggings [64]	Linux	UIUC	NA	4.6	NA
Hardlog [13]	Linux	Microsoft	NA	6.3	NA
Quicklog [34]	Linux	Florida State Univer- sity	NA	5.3	NA
SystemTap [25, 41]	Linux	Linux Foundation	[56]	NA	NA
RAIN [42]	Linux	Georgia Institute of Technology	[42, 43]	NA	NA
Karma [19, 74]	Linux	Indiana University	[83]	NA	NA
PASS [62]	Linux	Harvard University	[83]	10.5	NA

CE 815 - Secure Software Systems

Data Collecter Measurement Study

- Three most widely used industrial open-source collectors,
 - Sysdig, LTTng, and Auditd,
- Seven representative applications used in the surveyed papers
 - I/O-intensive applications :Nginx, Redis, Postmark, Django ,http
 - CPU-intensive applications : OpenSSL,7-ZIP.

Physical	C1	C2	C3	C4
Machine	1CPU + 2GB	4CPU + 8GB	16 CPU + 32GB	32 CPU + 64GB
Virtual	C5	C6	C7	C8
Machine	1CPU + 2GB	4CPU + 8GB	16 CPU + 32GB	32 CPU + 64GB

Client-Side Measurement Study

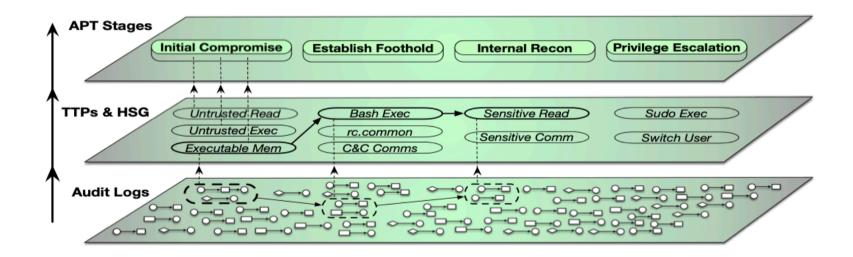
Application	Collector	C1	C2	C3	C4	C5	C6	C7	C8	Avg
	Auditd	597.30	101.30	34.60	34.80	821.10	186.30	23.70	10.90	226.25
Nginx	Sysdig	70.20	26.10	14.60	15.60	68.10	21.20	9.50	7.20	29.06
	LTTng	24.80	10.70	10.00	11.70	26.30	25.80	7.00	1.40	14.71
	Auditd	457.00	58.10	41.70	50.20	512.00	53.20	46.00	43.20	157.67
Redis	Sysdig	17.90	20.00	17.20	16.20	21.00	16.40	15.60	5.70	16.25
	LTTng	8.30	8.40	10.00	5.10	13.60	6.90	1.40	2.70	7.05
	Auditd	406.00	81.80	84.30	78.40	658.00	149.40	157.20	116.20	216.41
Postmark	Sysdig	88.80	19.20	18.00	22.00	98.80	23.20	16.50	7.50	36.75
	LTTng	10.30	9.40	12.30	18.10	12.90	10.30	10.90	11.60	11.98
	Auditd	2.50	0.70	2.10	2.30	1.20	0.50	1.50	2.10	1.62
Django (Python)	Sysdig	1.00	1.00	0.40	1.10	1.10	1.40	0.10	0.30	0.80
	LTTng	1.70	2.10	1.70	1.00	1.20	0.30	0.80	1.10	1.24
	Auditd	341.00	97.30	31.20	11.30	516.00	91.60	35.30	15.50	142.40
http (Golang)	Sysdig	60.70	13.90	10.60	2.80	76.70	11.90	4.10	2.20	22.86
	LTTng	13.80	6.50	4.20	4.10	13.40	6.20	5.80	4.20	7.28
	Auditd	2.90	1.80	1.20	1.00	6.90	0.10	1.70	0.20	1.98
OpenSSL	Sysdig	0.50	0.80	0.40	0.10	0.50	1.40	0.30	0.10	0.51
	LTTng	2.50	0.50	0.10	0.10	0.20	0.20	1.70	0.60	0.74
	Auditd	17.40	10.90	5.40	3.70	16.90	5.60	2.40	2.00	8.04
7-ZIP	Sysdig	1.50	1.30	1.10	1.10	1.20	1.00	0.80	0.70	1.08
	LTTng	2.40	1.80	0.90	0.80	4.70	2.30	0.10	0.10	1.64

CE 815 - Secure Software Systems

Client-Side Measurement Study

• Memory consumption of provenance data collectors

Agent	C1/C5	C2/C6	C3/C7	C4/C8
Auditd	65.9M	65.9M	65.9M	65.9M
Sysdig	38M	62M	158M	286M
LTTng	17.9M	23.9M	47.9M	79.9M

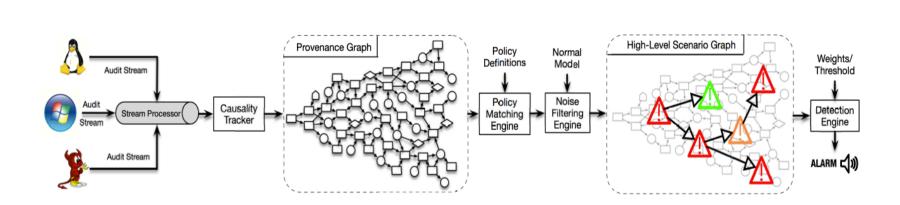


- Evaluated ProvDetector, UNICORN, and HOLMES use five datasets :
- DARPA-Cadets, DARPA-Theia, and DARPA-Trace
- Production dataset: real auditing data collected from a security company
- Simulation dataset: is an in-lab dataset created for attack simulation

Dataset	Host Num	Days	Data Size	Event Num	Event Rate	Event Size
DARPA-Cadets	1	11	14 GB	15 M	16.87 eps	1013 Byte
DARPA-Theia	1	11	7.5 GB	10 M	11.25 eps	810 Byte
DARPA-Trace	1	11	62 GB	72 M	75.76 eps	925 Byte
Simulation	5	12	23 GB	50 M	48.23 eps	483 Byte
Production	300+	5	16.85 GB	17 M	39.35 eps	1064 Byte

Holmes

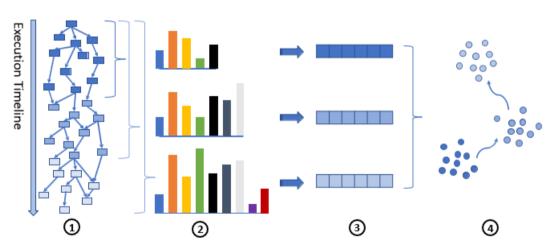
Introduction to MITRE



			G 应 ☆ 《	- • * [
MITRE ATT&CK°	Matrices	 Tactics - Tech 	niques 🔹 Defenses 👻 CTI 👻 Resources 👻 Benefactors Blog 🖓	Searc
MITRE ATT&CK* Matrices - Tactics - Techniques - Defenses - CTI - Resources - Benefactors Blog & Se TACTICS Enterprise tactics				
Reconnaissance	goal: the re		action. For example, an adversary may want to achieve credential Enterprise	
	ID	Name	Description	
	TA0043	Reconnaissance		
J. J	TA0042			
Credential Access	TA0001	Initial Access	The adversary is trying to get into your network.	
· · · · · · · · · · · · · · · · · · ·	TA0002	Execution	The adversary is trying to run malicious code.	
Collection	TA0003	Persistence	The adversary is trying to maintain their foothold.	
Command and Control 🗸	TA0004	Privilege Escalation	The adversary is trying to gain higher-level permissions.	

CE 815 - Secure Software Systems

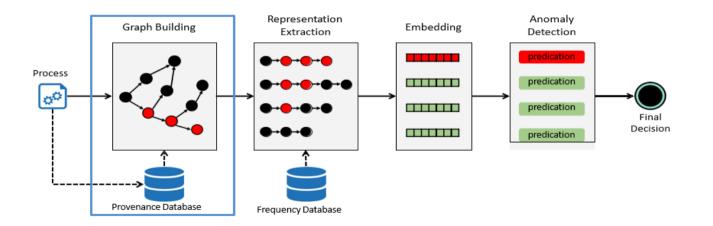
Holmes



1. Takes as input a labeled,

Unicorn

- Takes as input a labeled, streaming provenance graph
- 2. Builds at runtime an inmemory graph histogram
- 3. Computes a fixed-size graph sketch periodically
- 4. Clusters sketches into a system model



ProveDetector

• Uses path instead of node to find anomaly

- Memory consumption results
 - HOLMES and ProvDetector was positively correlated with the data volume both exceeded the reference value (<20MB/host)
 - For UNICORN, stable memory consumption -> Parallel Sliding Windows it exceeded the reference value by 11.9 times.
- Therefore, none of these systems meet the requirement for the Memory

Dataset	# of Graph Nodes	Memory (MB/host)		
Dataset	# of Graph Nodes	HOLMES	MES ProvDetector	UNICORN
DARPA-Cadets	280W+	5683	10240	274
DARPA-Theia	125W+	3870	6574	242
DARPA-Trace	325W+	9605	-	242
Simulation	3W+	73	195	213
Production	5W+	84	240	219

- Interpretation:
- ProvDetecor satisfy the reference value (< 50 nodes)
- HOLMES generates alarms within ten times larger than the reference value.
- UNICORN generates too coarse-grained provenance graphs -> is not practical in industry.

Dataset	HOLMES ProvDetector		UNICORN
DARPA-Cadets	173	15	154730
DARPA-Theia	73	8	522735
DARPA-Trace	450	-	1454033
Simulation	566	7	11587
Production	81	5	17853

- Alarm Triage
 - UNICORN can roughly satisfy the reference value (<0.1 alarms/host/day).
 - HOLMES and ProvDetector will need to improve their precision significantly.

Dataset	HOLMES	ProvDetector	UNICORN
DARPA-Cadets	21	90	0.3
DARPA-Theia	36.7	90	0.1
DARPA-Trace	13.9	-	0.45
Simulation	2.3	23	0.09
Production	12.1	56.3	0.13

FINDINGS OF STUDY

- RQ1: How does the industry compare the effectiveness of P-EDR and conventional EDR?
- The industry acknowledges that P-EDR systems are superior to conventional EDR systems due to better interpretability. Experienced security analysts can easily understand basic provenance graphs that consist of low-level system audit events, and companies have designed training sessions in provenance analysis for training novice analysts.

FINDINGS OF STUDY

- RQ2: What are the bottlenecks for the industry to adopt EDR Systems?
- The operating cost, which consists of the four-must factors: Memory, Client-Side Overhead, Interpretation, and Alarm Triage, is the primary bottleneck for the industry to adopt an EDR/P-EDR system.

FINDINGS OF STUDY

- RQ3: How well can existing P-EDR systems proposed in academia meet the expectations of the industry?
- There exist three important gaps (overlooking client-side over-head, the imbalance between alarm triage cost and interpretation cost, and excessive server-side memory consumption) between the academic research and the industry expectations.

Acknowledgments

- [Dong] Are we there yet? An Industrial Viewpoint on Provenance-based Endpoint Detection and Response Tools, F. Dong, S. Li, P. Jiang, D. Li, H. Wang, L. Huang, X. Xiao, J. Chen, X. Luo, Y. Guo, CCS 2023.
- [Wang] You Are What You Do: Hunting Stealthy Malware via Data Provenance Analysis, Q. Wang, W.U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen, W. Cheng, C.A. Gunter, H. Chen, NDSS 2020.
- [Unicorn] UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats, X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, NDSS 2020.
- [Holmes] HOLMES: Real-Time APT Detection through Correlation of Suspicious Information Flows, S. Momeni Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, V. N. Venkatakrishnan, IEEE Symposium on Security and Privacy 2019.