
CE 815 – Secure Software Systems
ML-Based Vulnerability Detection Methods (Learning Limitations)

Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A reference is noted on the
bottom of each slide, when the content is fully obtained from another source. Otherwise a full list of references is
provided on the last slide.

Fall 1403 CE 815 - Vulnerability Analysis

Uncovering the Limits of Machine Learning for Automatic Vulnerability
Detection, Niklas Risse, Marcel Böhme, Usenix Security 2024.

2

Fall 1403 CE 815 - Secure Software Systems

The Promise and Limitations of ML for Vulnerability Detection

• Current Achievements:
• Machine Learning for Vulnerability Detection (ML4VD) models achieve up to 70%

accuracy in identifying security flaws from source code.
• Claims of outperforming traditional program analysis methods without hardcoded

program semantics.
• Key Contradictions:

• Models struggle to distinguish vulnerable functions from their patched counterparts.
• High benchmark scores may give a false sense of security.

• Challenges Highlighted:
• Overfitting: Models depend on unrelated features in the training data.
• Generalization Issues: Poor performance on out-of-distribution data.

3[Risse]

Fall 1403 CE 815 - Secure Software Systems

Proposed Solutions and Contributions

• Proposed Methodology:
• Algorithm 1: Tests overfitting to unrelated features by using semantic-preserving

transformations.
• Algorithm 2: Assesses model ability to distinguish vulnerabilities from patches.

• Key Contributions:
• Identification of critical flaws in current evaluation methods.
• Introduction of a new dataset, VulnPatchPairs, featuring matched pairs of vulnerable

and patched functions.
• Empirical findings:

• Severe overfitting to unrelated features during training.
• Lack of generalization across vulnerability-related contexts.

4[Risse]

Fall 1403 CE 815 - Secure Software Systems

Expectations for Vulnerability Detection Models

• General Expectations:
• Predict vulnerabilities accurately regardless of transformations.
• Remain robust to both semantic-preserving and label-inverting changes.

• Key Evaluation Criteria:
• Semantic-Preserving: No change in prediction after transformation.
• Label-Inverting: Prediction changes align with modified ground truth.

• Implications:
• Robust models must handle diverse real-world code variations.

5[Risse]

Fall 1403 CE 815 - Secure Software Systems

What is Data Augmentation?

• Definition:
• Application of code transformations to code snippets in a dataset.
• Ensures transformations preserve program semantics.

• Purpose:
• Improve model robustness to variations in real-world code.
• Test vulnerability detection models under diverse conditions.

• Core Concept:
• Transformations should not change the ground truth vulnerability label,

unless intended.

6[Risse]

Fall 1403 CE 815 - Secure Software Systems

Types of Transformations

• Semantic-Preserving Transformations:
• Changes that do not affect vulnerability status:
• Identifier renaming.
• Adding unused code or comments.
• Reordering unrelated statements.
• Replacing elements with equivalents.

7[Risse]

Fall 1403 CE 815 - Secure Software Systems

Example: Semantic-Preserving Transformation

• Original Code:

• Transformed Code (Semantic-Preserving):

8

int calculateSum(int a, int b) {
 int sum = a + b;
 return sum;
}

int calculateSum(int firstParam, int secondParam) {
 // Calculate sum of two numbers
 int sum = firstParam + secondParam;
 return sum;
}

• Identifier Renaming:

• a → firstParam, b → secondParam.

• Comment Insertion:

• Added a comment describing the functionality.

• Key Point:

• Ground Truth Label (e.g., vulnerable/non-
vulnerable) remains the same.

[Risse]

Fall 1403 CE 815 - Secure Software Systems

Types of Transformations (con’t)

• Label-Inverting Transformations:
• Changes that alter vulnerability status:
• Adding a vulnerability to non-vulnerable code.
• Removing a vulnerability from vulnerable code.

• Expected Behavior:
• Models should:
• Maintain predictions for semantic-preserving changes.
• Adapt predictions accurately for label-inverting changes.

9[Risse]

Fall 1403 CE 815 - Secure Software Systems

Goal of Algorithm 1 (Detecting Overfitting)

• Objective:
• Assess if ML4VD models overfit to training data features unrelated to

vulnerabilities.
• Test if performance gains from training data augmentation generalize beyond

specific transformations.
• Key Questions:
• Does augmenting the testing data degrade performance?
• Can augmenting the training data restore performance?
• How does using different augmentations for training and testing affect

performance?

10[Risse]

Fall 1403 CE 815 - Secure Software Systems 11[Risse]

Fall 1403 CE 815 - Secure Software Systems

Key Insights from Algorithm 1

• Expected Results:
• Testing augmentation without training augmentation reduces performance

(outputA1.1>0).
• Identical augmentations for training and testing partially restore performance

(outputA1.2>outputA1.1).
• Using different augmentations for training and testing causes performance

drops (outputA1.3≪outputA1.2).
• Applications:
• Identify overfitting to specific augmentations.
• Assess model robustness across diverse data transformations.

12[Risse]

Fall 1403 CE 815 - Secure Software Systems

Goal of Algorithm 2

• Objective:
• Evaluate if ML4VD techniques can distinguish between vulnerabilities and their

patches.
• Test if models trained on one setting can generalize to another:

• Standard vulnerability detection dataset.
• Vulnerability-patch dataset.

• Key Questions:
• Can models trained on standard datasets distinguish patched functions from vulnerable

ones?
• Can models trained on vulnerability-patch datasets perform well on standard datasets?

13[Risse]

Fall 1403 CE 815 - Secure Software Systems 14[Risse]

Fall 1403 CE 815 - Secure Software Systems

Key Insights from Algorithm 2

• Expected Results:
• Models trained on standard datasets struggle with vulnerability-patch

tasks (outputA2.2).
• Models trained on vulnerability-patch tasks may generalize poorly to

standard datasets (outputA2.4).
• Applications:
• Evaluate real-world utility of ML4VD techniques.
• Highlight gaps in generalization between standard and modified settings.

15[Risse]

Fall 1403 CE 815 - Secure Software Systems

Experiments

• Impact of Data Augmentation:
• How does testing data augmentation affect ML4VD performance?
• Does training data augmentation restore performance?

• Overfitting:
• Do ML4VD techniques overfit to specific augmentations?
• Can models generalize across different augmentations?

• Generalization to Vulnerability-Patch Tasks:
• Can ML4VD distinguish between vulnerabilities and their patches?
• Does training on patches improve standard task performance?

16[Risse]

Fall 1403 CE 815 - Secure Software Systems

Datasets Used

• CodeXGLUE/Devign:
• 26.4k C functions, ~46% vulnerable.
• Common vulnerabilities: memory-related (e.g., buffer overflows, memory leaks).

• VulDeePecker:
• 61.6k C/C++ code samples, ~28% vulnerable.
• Focus: buffer and resource management errors.

• VulnPatchPairs (New Dataset):
• 26.2k C functions:
• 13.1k vulnerable functions from CodeXGLUE.
• 13.1k patched versions extracted from FFmpeg and QEMU repositories.

17[Risse]

Fall 1403 CE 815 - Secure Software Systems 18[Risse]

Fall 1403 CE 815 - Secure Software Systems

Training Pipeline

• Training Process:
• Models pre-trained on large source code datasets (e.g., 2.3M - 680M snippets).
• Fine-tuned for 10 epochs on selected datasets.

• Performance Metrics:
• CodeXGLUE: Accuracy (balanced dataset).
• VulDeePecker: F1-score (imbalanced dataset).
• Additional Metrics: Precision, Recall, False Positive Rate (FPR), False Negative Rate (FNR).

• Hardware Setup:
• 5 NVIDIA A100 GPUs (40 GB RAM each).
• Approx. 60 days of compute time per full experiment on one GPU.

19[Risse]

Fall 1403 CE 815 - Secure Software Systems

Semantic preserving transformations used

20[Risse]

Fall 1403 CE 815 - Secure Software Systems

Experimental Design

• Algorithms Applied:
• Algorithm 1: Detect overfitting to augmentations.
• Algorithm 2: Test generalization to vulnerability-patch tasks.

• Transformations Used:
• 11 semantic-preserving transformations (e.g., identifier renaming,

statement reordering, comment removal).

21[Risse]

Fall 1403 CE 815 - Secure Software Systems

Research Question 1 (Impact of Data Augmentation)

• Applying semantic-preserving transformations to testing data reduces performance
(average drop):

• CodeXGLUE: 2.5% accuracy.
• VulDeePecker: 4.3% F1-score.

• Augmenting both training and testing data with the same transformations restores
most performance:
• ~69.0% of lost accuracy (CodeXGLUE).
• ~66.2% of lost F1-score (VulDeePecker).

• Most Impactful Transformations: Adding comments, reordering statements, and
inserting unused functions.

22[Risse]

Fall 1403 CE 815 - Secure Software Systems 23[Risse]

Fall 1403 CE 815 - Secure Software Systems 24[Risse]

Fall 1403 CE 815 - Secure Software Systems

Research Question 2 (Overfitting to Specific Transformations)

• Training on transformations different from the testing data:
• Performance restoration fails.
• Results in an additional performance drop (30.2% for CodeXGLUE, 77.5%

for VulDeePecker).
• Using a meta-transformation (combining various transformations except

one):
• Partially restores performance but does not fully mitigate the drop.

• Conclusion: ML4VD models overfit to specific augmentations and fail to
generalize to unseen transformations.

25[Risse]

Fall 1403 CE 815 - Secure Software Systems 26[Risse]

Fall 1403 CE 815 - Secure Software Systems

Research Question 3 (Generalization to Vulnerability-Patch Tasks)

• Standard to Patch Generalization:
• Models trained on standard datasets performed worse than random

guessing on vulnerability-patch tasks.
• Patch to Standard Generalization:
• Models trained on vulnerability-patch data performed poorly on

standard datasets, with a significant performance drop.
• Implications: ML4VD models cannot generalize across vulnerability-related

contexts without task-specific training.

27[Risse]

Fall 1403 CE 815 - Secure Software Systems 28[Risse]

Fall 1403 CE 815 - Secure Software Systems

Key Insights Across Experiments

• Testing data augmentation exposes dependence on unrelated features.
• Training on specific transformations limits generalization capability.
• Algorithm 1 reveals overfitting to label-unrelated features.
• Algorithm 2 demonstrates inability to generalize between vulnerabilities and

patches.
• Impact on Real-World Use: Current ML4VD techniques are highly context-

dependent and unsuitable for real-world vulnerability detection without
targeted improvements.

29[Risse]

Fall 1403 CE 815 - Secure Software Systems

Acknowledgments

• [Risse] Uncovering the Limits of Machine Learning for Automatic
Vulnerability Detection, Niklas Risse, Marcel Böhme, Usenix Security 2024.
• [VulChecker] VulChecker: Graph-based Vulnerability Localization in Source

Code, Y. Mirsky, G. Macon, M. Brown, C. Yagemann, M. Pruett, E. Downing,
S. Mertoguno, and W. Lee, Usenix Security 2023.
• [Alves] Program Slicing. SwE 455, Alves, E., Federal University of

Pernambuco, 2015.

30

