
CE 815 – Secure Software Systems
ML-Based Vulnerability Detection Methods (Hoppity)

Mohammad Haddadian/Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A reference is noted on the
bottom of each slide, when the content is fully obtained from another source. Otherwise a full list of references is
provided on the last slide. Thanks to Mohammad Haddadian for the help on the slides.

Fall 1403 CE 815 - Secure Software Systems

Introduction

• Vulnerability detection as first step
• Then, Vulnerability repair

• Compiler VS Interpreter
• Vulnerability VS Bug
• Security VS non-Security

2[HOPPITY]

HOPPITY: Learning Graph Transformations to Detect and Fix
Bugs in Programs, ICLR 2020.

3

Fall 1403 CE 815 - Secure Software Systems

Problem

Source-code analysis is:
• Undecidable
• Noisy
• Rules are hand written
• Tailored to specific code bases / bug patterns

4[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Javascript Challenges

• Incorrect operators
• Incorrect identifiers
• Accessing undefined properties
• Mishandling variable scopes
• Type incompatibilities

5[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Example

6[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Solution

Leverage large amounts of Javascript fixes on Github to locate and repair bugs

7[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Steps

• Represent source code
• Represent fixes
• Learning

8[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Model

• Problem of detecting and repairing bugs in programs is a structured
prediction problem on a graph-based representation of programs.

9[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Goal

• 1- function add (a) {a + b;}	 	 	 	 Buggy

• 2- function add (a, b) {a + b;}	 	 	 	 Step 1

• 3- function add (a, b) { return a + b;}		 	 Step 2

10[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Source code representation

• AST
• ValueLink

11[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Fix representation

• Graph Edits

12[HOPPITY]

[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Low level primitives

• Location
• Value
• Type

14[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Low level primitives: Value

Choose from either the values appearing in the current file (local value table),
or a collection of global values that are common for the specific language

Let Dval be the global dictionary of commonly used leaf-node values in the
language, where each item i ∈ D is associated with a vector representation:
iv v⃗

15[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Low level primitives: Type

• As the total possible number of types is finite and fixed for a given language,
the type prediction is simply a multi-class classification problem.
• But utilize the AST grammar checker with contextual information to prune

the output space.

16[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Graph edit operators

17[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Anatomy of a graph edit

“replace_val”
	 1.	 Predict Location
	 2.	 Predict Value

18

“replace_type”
	 1.	 Predict Location
	 2.	 Predict Type

“remove”
	 1.	 Predict Location

“add”
	 1.	 Predict Location
	 2.	 Predict Value
	 3.	 Predict Type
	 4.	 Predict Child Number

[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Graph transformation

19[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Inference

20[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Dataset

• OneDiff (just one change)
• ZeroOneDiff (zero or one edit)
• ZeroOneTwoDiff (zero, one or two edits)

21[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Evaluation

22[HOPPITY]

Fall 1403 CE 815 - Secure Software Systems

Evaluation (cont.)

23[HOPPITY]

CE 815 - Secure Software SystemsFall 1403

Acknowledgments

• [HOPPITY] HOPPITY: Learning Graph Transformations to Detect and Fix Bugs
in Programs, ICLR 2020.

24

