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Introduction

• Vulnerability detection as first step 
• Then, Vulnerability repair 

• Compiler VS Interpreter 
• Vulnerability VS Bug 
• Security VS non-Security
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HOPPITY: Learning Graph Transformations to Detect and Fix 
Bugs in Programs, ICLR 2020.
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Problem

Source-code analysis is: 
• Undecidable 
• Noisy 
• Rules are hand written 
• Tailored to specific code bases / bug patterns
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Javascript Challenges

• Incorrect operators 
• Incorrect identifiers 
• Accessing undefined properties 
• Mishandling variable scopes 
• Type incompatibilities
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Example
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Solution

Leverage large amounts of Javascript fixes on Github to locate and repair bugs
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Steps

• Represent source code 
• Represent fixes 
• Learning
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Model

• Problem of detecting and repairing bugs in programs is a structured 
prediction problem on a graph-based representation of programs.
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Goal

• 1- function add (a) {a + b;}	 	 	 	 Buggy 

• 2- function add (a, b) {a + b;}	 	 	 	 Step 1 

• 3- function add (a, b) { return a + b;}		 	 Step 2
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Source code representation

• AST 
• ValueLink
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Fix representation

• Graph Edits
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Low level primitives

• Location 
• Value 
• Type
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Low level primitives: Value

Choose from either the values appearing in the current file (local value table), 
or a collection of global values that are common for the specific language  

Let Dval be the global dictionary of commonly used leaf-node values in the 
language, where each item i ∈ D is associated with a vector representation: 
iv v⃗
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Low level primitives: Type

• As the total possible number of types is finite and fixed for a given language, 
the type prediction is simply a multi-class classification problem. 
• But utilize the AST grammar checker with contextual information to prune 

the output space.
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Graph edit operators
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Anatomy of a graph edit

“replace_val” 
	 1.	 Predict Location 
	 2.	 Predict Value
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“replace_type” 
	 1.	 Predict Location 
	 2.	 Predict Type

“remove” 
	 1.	 Predict Location

“add” 
	 1.	 Predict Location 
	 2.	 Predict Value 
	 3.	 Predict Type 
	 4.	 Predict Child Number 
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Graph transformation
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Inference
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Dataset

• OneDiff (just one change) 
• ZeroOneDiff (zero or one edit) 
• ZeroOneTwoDiff (zero, one or two edits)
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Evaluation
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Evaluation (cont.)
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