
Accepted Manuscript

Randomized approximation algorithms for Planar visibility counting problem

Sharareh Alipour, Mohammad Ghodsi, Amir Jafari

PII: S0304-3975(17)30737-5
DOI: https://doi.org/10.1016/j.tcs.2017.10.009
Reference: TCS 11347

To appear in: Theoretical Computer Science

Received date: 29 April 2016
Revised date: 28 September 2017
Accepted date: 12 October 2017

Please cite this article in press as: S. Alipour et al., Randomized approximation algorithms for Planar visibility counting problem, Theoret.
Comput. Sci. (2017), https://doi.org/10.1016/j.tcs.2017.10.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.tcs.2017.10.009

Randomized approximation algorithms for Planar visibility

counting problem

Sharareh Alipour Mohammad Ghodsi Amir Jafari

October 16, 2017

Abstract

Given a set S of n disjoint line segments in R
2, the visibility counting problem

(VCP) is to preprocess S such that the number of segments in S visible from any
query point p can be computed quickly. This problem can be solved trivially in
O(log n) query time using O(n4 log n) preprocessing time and O(n4) space.

Gudmundsson and Morin in (2010), proposed a 2-approximation algorithm for
this problem with a tradeoff between the space and the query time. For any constant
0 ≤ α ≤ 1, their algorithm answers any query in Oε(m

(1−α)/2) time with Oε(m
1+α) of

preprocessing time and space, where ε > 0 is a constant that can be made arbitrarily
small and Oε(f(n)) = O(f(n)nε) and m = O(n2) is a number that depends on the
configuration of the segments.

In this paper, we propose two randomized approximation algorithms for VCP.
The first algorithm depends on two constants 0 ≤ β ≤ 2

3 and 0 < δ ≤ 1, and the
expected preprocessing time, the expected space, and the expected query time are
O(m2−3β/2 logm), O(m2−3β/2), and O(1

δ2m
β/2 logm), respectively. The algorithm,

in the preprocessing phase, selects a sequence of random samples, whose size and
number depend on the tradeoff parameters. When a query point p is given by an ad-
versary unaware of the random sample of our algorithm, it computes the number of
visible segments from p, denoted by mp, exactly, if mp ≤ 3

δ2m
β/2 log(2m). Otherwise,

it computes an approximated value, m′p, such that with the probability of at least

1− 1
m , we have (1−δ)mp ≤ m′p ≤ (2+2δ)mp. The preprocessing time and space of the

second algorithm are O(n2 log n) and O(n2), respectively. This algorithm computes
the exact value of mp if mp ≤ 1

δ2
√
n log n, otherwise it returns an approximated value

m′′p in expected O(1
δ2
√
n log n) time, such that with the probability at least 1− 1

logn ,

we have (1− 3δ)mp ≤ m′′p ≤ (1.5 + 3δ)mp.

Keywords. computational geometry, visibility, randomized algorithm, approxima-
tion algorithm, graph theory.

1 Introduction

Problem Statement

Let S = {s1, s2, . . . , sn} be a set of n disjoint closed line segments in the plane contained
in a bounding box B. Two points p and q in the bounding box are visible to each other
with respect to S, if the open line segment pq does not intersect any segments of S. A
segment si ∈ S is said to be visible from a point p, if there exists a point q ∈ si such that
q is visible from p. The visibility counting problem (VCP) is to find mp, the number of
segments of S visible from a query point p. Throughout this paper, we assume that the
configuration of line segments and the query point is in a general position. That is, no
three end-points or the query point and two end-points are colinear.

1

The visibility polygon of a given point p ∈ B (i.e. p is inside the bounding box) is
defined as

V PS(p) = {q ∈ B : p and q are visible},
and the visibility polygon of a given segment si is defined as

V PS(si) =
⋃

q∈si V PS(q).

Consider the 2n end-points of the segments of S as vertices of a geometric graph. Add
a straight-line-edge between each pair of visible vertices. The result is the visibility graph
of S or V G(S). To construct the extended visibility graph of S or EV G(S) from V G(S),
we continue each edge of V G(S) in both directions until it hits some other segments in S
or the bounding box. This creates at most two new vertices and two new edges for each
edge of V G(S). Adding all these vertices and edges to V G(S), we get EV G(S). The
extended visibility graph, reflects all the visibility information from which the visibility
polygon of any segment si ∈ S can be computed [12].

Related Work

The visibility polygon of a point p, V PS(p), can be computed in O(n log n) time using
O(n) space [5, 17]. Vegter proposed an output sensitive algorithm that reports V PS(p) in
O(|V PS(p)| log(n

|V PS(p)|)) time, by preprocessing the segments in O(m log n) time using

O(m) space, where m = O(n2) is the number of edges of V G(S) and |V PS(p)| is the
number of vertices of V PS(p) [18].

We can use EV G(S) to solve VCP. One can compute EV G(S) optimally in O(n log n+
m) time [10]. If a vertex is assigned to any intersection point of the edges of EV G(S)

⋃
S,

we have a planar graph, which is called the planar arrangement of the edges of EV G(S).
All points in any face of this arrangement have the same number of visible segments and
this number can be computed for each face in the preprocessing step [12]. Since, there
are O(n4) faces in the planar arrangement of EV G(S), a point location structure of size
O(n4) can answer each query in O(log n) time. But, O(n4) preprocessing time and space
is high. We also know that for any query point p, by computing V PS(p), mp can be
computed in O(n log n) with no preprocessing. This has led to several results with a
tradeoff between the preprocessing cost and the query time [4, 6, 11, 16, 19].

There are two approximation algorithms for VCP by Fischer et al. [8, 9]. One of
these algorithms, for any 1 ≤ r ≤ n, uses a data structure of size O((m/r)2) to build a
(r/m)-cutting for EV G(S) by which the queries are answered in O(log n) time with an
absolute error of r compared to the exact answer. The second algorithm uses a random
sampling method to build a data structure of size O((m2 logO(1) n)/l) to answer any
query in O(l logO(1) n) time, where 1 ≤ l ≤ n. In the latter method, the answer of VCP is
approximated up to an absolute value of δn for any constant δ > 0 (δ affects the constant
factor of both data structure size and the query time).

In [17], Suri and O’Rourke represent the visibility polygon of a segment by a union
of triangles. Gudmundsson and Morin [12] improved the covering scheme of [17]. Their
method builds a data structure of sizeOε(m

1+α) = Oε(n
2(1+α)) inOε(m

1+α) = Oε(n
2(1+α))

preprocessing time, from which each query is answered in Oε(m
(1−α)/2) = Oε(n

1−α) time,
where 0 ≤ α ≤ 1. This algorithm returns m′

p such that mp ≤ m′
p ≤ 2mp. The same

result can be achieved from [2] and [14]. In [2], it is proven that the number of visible
end-points of the segments in S from p, denoted by vep, is a 2-approximation of mp, that
is mp ≤ vep ≤ 2mp.

2

Our Results

In this paper, first we present a randomized (2+2δ)-approximation algorithm, where 0 <
δ ≤ 1. The expected preprocessing time and space of our algorithm are O(m2−3β/2 logm)
and O(m2−3β/2) respectively, and our expected query time is O(1

δ2
mβ/2 logm), where

0 ≤ β ≤ 2
3 is chosen arbitrarily in the preprocessing time. Next, we present another

randomized algorithm. This algorithm computes the exact value ofmp ifmp ≤ 1
δ2
√
n log n,

otherwise it returns an approximated value m′′
p in expected O(

√
n log n) time, such that

with probability at least 1− 1
logn , we have: (1− δ)mp ≤ m′′

p ≤ (1.5 + δ)mp.
In the second proposed algorithm, a graph G(p) is associated to each query point p.

The construction of G(p) is explained in Section 2. It will be shown that G(p) has a
planar embedding.

Using Euler’s Formula for planar graphs, we will show that if p is inside a bounded face
of G(p), then mp = vep −C(G(p)) + 1, otherwise mp = vep −C(G(p)), where C(G(p)) is
the number of connected components of G(p) and vep is the number of visible end-points
of the segments in S from p. In Section 3 and 4, we will present algorithms to approximate
vep and C(G(p)). This leads to an overall approximation for mp. A preliminary and less
detailed version of this paper was presented in [3].

Table 1 compares the performance of our algorithms with the best known result for
this problem. Note that if we choose a constant number 0 < δ ≤ 1, then our expected
query time is better than [12], however our algorithm returns a (2 + 2δ)-approximation
of the answer with a high probability. Our query time, space and preprocessing time are
in expectation, but their method is deterministic. Note that m = O(n2) and one can
easily express the running times in terms of n. But, the advantage of having the running
times in terms of m appears when m is small relative to n2. The second algorithm returns
a (1.5 + 3δ)-approximation, the time complexity of this algorithm depends on n. Since
replacing 2δ and 3δ with δ does not change the order of the running time, space and
preprocessing time, for simplicity in the table we use δ.

To clarify our randomization approach of the first algorithm for counting the number
of visible end-points, let us explain it in few words. Given an input set of n segments and
tradeoff parameters 0 < β ≤ 2

3 and 0 < δ ≤ 1, in the preprocessing phase, we select a
sequence of random samples, whose size and number depend on these parameters. Now,
if a query point p is given, using these samples, we calculate exactly the number of
visible end-points and according to the size and the number of the samples produce an
approximated value for mp. Hence, the randomization is only in the preprocessing phase
and not in the query phase. If a query is given by an adversary unaware of the random
samples selected by our algorithm, this method results in an approximated value with
given approximation factor with a probability that approaches zero as the size of input
increases. When the random sample is known to the adversary, there is a possibly large
part of the region, that if the adversary repeatedly chooses the query point from that
region, the correctness with high probability claimed, will be ruined. However we hope
that, in real applications, such phenomena rarely happen. In the second algorithm for
counting the number of visible end-points and in the algorithm for counting the number
of connected components, the randomization occurs in the query phase and the adversary
can not affect the outcome of the algorithm as before.

3

Table 1: Comparison of our method and the best known result for VCP. Note that
0 ≤ β ≤ 2

3 is chosen in the preprocessing time and 0 < δ ≤ 1. Our first algorithm returns

an approximated answer with probability 1 − 1

m
and our second algorithm returns an

approximated answer with probability 1 − 1

log n
. The running time and space are in

expectation in the first algorithm. In our second algorithm only the query time is in
expectation.

Reference Preprocessing time Space Query Approx-Factor

[12] Oε(m
2−3β/2) Oε(m

2−3β/2) Oε(m
3β/4) 2

Our result O(m2−3β/2 logm) O(m2−3β/2) O(1
δ2
mβ/2 logm) 2 + δ

Our result O(n2 log n) O(n2) O(
√
n log n) 1.5 + δ

2 Definitions and the main theorems

For each point a′ ∈ si, let
−→
pa′ be the ray emanating from the query point p toward a′ and

let a = pr(a′) be the first intersection point of
−→
pa′ and a segment in S or the bounding

box right after touching a′. We say that a = pr(a′) is covered by a′ or the projection of
a′ is a. Also, suppose that x′y′ is a subsegment of si and xy is a subsegment of sj , such
that pr(x′) = x and pr(y′) = y and for any point z′ ∈ x′y′, pr(z′) ∈ xy, then we say that
xy is covered by x′y′.

For each query point p, we construct a multi-graph denoted by G(p) as follows: a
vertex vi is associated to each segment si ∈ S, and an undirected edge between vi and vj
is put if sj covers one end-point of si (or vice-versa; that is, if si covers one end-point of
sj). Obviously, there are two edges between vi and vj , if sj (or si) covers both end-points
of si (or sj). As an example, refer to Fig. 1.(a) and (d). Note that the bounding box is
not considered in the construction of G(p).

For any segment s ∈ S, let l(s) and r(s) be the first and second end-points of s,
respectively swept by a ray around p in clockwise order (Fig. 1.(a)).

Lemma 2.1. G(p) has a planar embedding.

Proof. A planar embedding for G(p) is as follows. For each end-point a ∈ si not visible
from p, there is a point a′ ∈ sj such that pr(a′) = a. Draw the segment aa′. Doing this,
we have a collection of non-intersecting segments. For each sk ∈ S, we create a vertex vk
located very close to the mid-point of sk, on the side of p. Also, for each segment aa′ as
above, we connect a to vi and a′ to vj . This creates an edge consisting of three consecutive
straight-line segments via, aa′, and a′vj that connects vi to vj . Obviously, none of these
edges intersect. Finally, all the original segments are removed. The remaining is the
vertices and edges of a planar embedding of G(p) (These steps can be seen in Fig. 1).

�

From now on, we use this planar embedding of the graph G(p). Euler’s Formula for
any non-connected planar graph G with multiple edges is:

V (G)− E(G) + F (G) = 1 + C(G),

4

s1l(s1) r(s1)

s2l(s2)

r(s2)

s3
l(s3)

r(s3)

s4l(s4)

r(s4)

s5l(s5)

r(s5)

p

(a)

s1a

a′s2

s3

s4

s5

p

(b)

v1

v2

v3

v4

v5

p

(c)

v1

v2

v3

v4

v5

p

(d)

Figure 1: The steps to draw a planar embedding of G(p). (a) The segments are s1, . . . , s5
with their left and right end-points and a given query point is p. (b) For each end-point
a ∈ si not visible to p and a′ ∈ sj such that pr(a′) = a, we draw aa′. (c) Put a vertex
vi for each segment si in a distance sufficiently close to the middle of si on the side of p.
For each a and a′ (described in (b)), connect a to vi and a′ to vj . This creates an edge
between vi and vj (shown by thick lines) (d) Remove the segments and the remaining is
the planar embedding of G(p). Note that the final embedding has 5 vertices and 5 edges
and each edge is drawn as a chain of 3 straight-line segments.

5

where E(G), V (G), F (G), and C(G) are the number of edges, vertices, faces, and con-
nected components of G, respectively. The following theorem provides a method to cal-
culate mp, using G(p).

Theorem 2.1. The number of segments not visible from p is equal to F (G(p))− 2 if p is
inside a bounded face of G(p), or is equal to F (G(p))− 1, otherwise.

si
l(s1) = q0 r(s1) = q5

s′1
s′2

q1 q2 q3 q4

s′3

s′4

s′5

s′6

p

Figure 2: The segment si is not visible from p. It can be partitioned into 5 subseg-
ments q0q1, q1q2, q2q3, q3q4, and q4q5, each one is covered respectively by subsegment of
s′1, s′2, s′3, s′4, and s′3 shown above.

Proof. We construct a bijection φ between the segments not visible from p to the faces
of G(p) except the unbounded face and the face that contains p. This will complete the
proof of our theorem.

Suppose that si is a segment not visible from p. Then, we can partition si into k
subsegments, q0q1, q1q2, . . . , qk−1qk such that q0 = l(si), qk = r(si), and for each qiqi+1,
there is a subsegment q′iq

′
i+1 ⊆ sj that covers qiqi+1. Let s′1, s′2, . . . , s′k be the set of

segments such that xy ⊆ s′i+1 covers qiqi+1 (note that some segments may appear more
than once in the above sequence) (Fig. 2). We claim that the vertices vi, v

′
1, v

′
2, . . . , v

′
k

corresponding to si, s
′
1, s

′
2, . . . , s

′
k form a bounded face of G(p) that does not contain p. In

φ, we associate this face to si. Since v′1 is the vertex associated to the first segment that
covers q0q1, s

′
1 covers l(si) and vi is adjacent to v′1. Similarly, since s′k covers r(si), vi is

adjacent to v′k. The next subsegment that covers a subsegment of si comes from s′2. This
means that r(s′1) is covered by s′2 or l(s′2) is covered by s′1. This implies that v′1 is adjacent
to v′2. Similarly, we can show that v′i is adjacent to v′i+1 for all 1 ≤ i < k. To complete the
construction, we need to show that the closed path formed by vi → v′1 → v′2, · · · → v′k → vi
is a bounded face not containing p. Consider a ray around p in clockwise order. The area
that this ray touches under si and above s′1, . . . , s′k is a region bounded by vi, v

′
1, v

′
2, . . . , v

′
k.

Obviously, p is not inside this region. To show that the loop constructed above constitute
a face of G(p), note that since we take all the segments which cover parts of si, the region
bounded by this loop is empty, i.e. it contains no other segment or rays from p other
than those on its boundary. This shows that even if we have other edges that correspond
to the vertices of our loop, all these edges must be outside this region. Hence, this loop
is a face of G(p).

6

Now, we show that our map φ is one-to-one and onto. The proof of injectivity is
easier. If φ(si) = φ(sj), then according to the construction of φ, a subsegment of si
covers a subsegment of sj and a subsegment of sj covers a subsegment of si. This is a
contradiction since these segments do not intersect. To prove the surjectivity, we need to
show for any bounded face f that does not contain p, there is a vertex vi corresponding
to a segment si that is not visible to p such that φ(si) = f .

To find si, we use the sweeping ray around p. Since f is assumed to be bounded and not
containing p, the face f is between two rays from p; one from the left and the other from
the right. If we start sweeping from left to right, there is a segment si corresponding to a
vertex of f whose end-point is the first to be covered by the other segments corresponding
to the vertices of f . We claim that si is the desired segment , i.e. si is not visible to p and
φ(si) = f . For example in Fig. 2, the closed path vi → v′1 → v′2 → v′3 → v′4,→ v′3,→ vi
forms a face and si is the first segment among {si, s′1, s′2, s′3, s′4} such that l(si) is covered
by one of the segments in {si, s′1, s′2, s′3, s′4}.

Obviously, l(si) is not visible from p. Also, v′1 is adjacent to vi which means that a
subsegment of s′1 covers a subsegment of si. Since v

′
1 and v′2 are adjacent, this means that a

subsegment of s′2 consecutively covers the next subsegment of si right after s
′
1. Continuing

this procedure, we conclude that a subsegment of each s′i covers some subsegment of si
continuously right after s′i−1. Also, v′k and vi are adjacent, so r(si) is not visible from
p. We conclude that subsegments of s′1, s′2 . . . , s′k completely cover si and hence si is not
visible from p.

So, if p is in the unbounded face of G(p), the number of segments which are not visible
from p is F (G(p))− 1, otherwise it is F (G(p))− 2. �

Euler’s Formula is used to compute F (G(p)). Obviously, V (G(p)) is n. For each end-
point not visible from p, an edge is added to G(p); therefore, E(G(p)) is 2n− vep (Note
that, vep was defined above as the number of visible end-points from p). Euler’s Formula
and Theorem 2.1 indicate the following lemma.

Lemma 2.2. If p is inside a bounded face of G(p), then mp = vep−C(G(p))+1, otherwise,
mp = vep − C(G(p)).

In the rest of this paper, three algorithms are presented; two algorithms to approximate
vep and another one to approximate C(G(p)). By applying Lemma 2.2, an approximated
value of mp is calculated. The main result of this paper is thus derived from the following
two theorems.

Theorem 2.2. For any 0 < δ ≤ 1 and 0 ≤ β ≤ 2
3 , VCP can be approximated in

O(1
δ2
mβ/2 logm) expected query time, using O(m2−3β/2 logm) expected preprocessing time

and O(m2−3β/2) expected space. This algorithm returns a value m′
p such that with the

probability at least 1− 1
m , (1− δ)mp ≤ m′

p ≤ (2 + 2δ)mp when mp >
3
δ2
mβ/2 log(2m) and

returns the exact value when mp ≤ 3
δ2
mβ/2 log(2m).

Theorem 2.3. For any 0 < δ ≤ 1, VCP can be approximated in O(1
δ2
√
n log n) expected

query time, using O(n2 log n) preprocessing time and O(n2) space. This algorithm returns
a value m′′

p such that with the probability at least 1− 1
logn , (1−3δ)mp ≤ m′

p ≤ (1.5+3δ)mp

when mp >
1
δ2
√
n log n and returns the exact value when mp ≤ 1

δ2
√
n log n.

7

3 Two approximation algorithms to compute the number
of visible end-points

In this section, we present two algorithms to approximate vep, the number of visible
end-points. Both algorithms are similar.

3.1 The first algorithm to approximate the number of visible end-points

In the preprocessing phase, we build the data structure of the algorithm presented in
[18] which calculates V PS(p) in O(|V PS(p)| log(n/|V PS(p)|)) time, where |V PS(p)| is the
number of vertices of V PS(p). In [18], the algorithm for computing V PS(p), consists of
a rotational sweep of a line around p. During the sweep, the subsegments visible from p
along the sweep-line are collected. In the preprocessing phase, we choose a fixed parameter
β, where 0 ≤ β ≤ 2

3 . In the query time we also choose a fixed parameter 0 < δ ≤ 1 where
2 + δ is the value of approximation factor of the algorithm.

We use the algorithm presented in [18] to find the visible end-points, but for any query
point, we stop the algorithm if more than 3

δ2
mβ/2 log(2m) of the visible end-points are

found.
If the sweep line completely sweeps around p before counting 3

δ2
mβ/2 log(2m) of the

visible end-points, then we have completely computed V PS(p) and we have |V PS(p)| ≤
3
δ2
mβ/2 log(2m). In this case, the number of visible segments can be calculated exactly in

O(1
δ2
mβ/2 logm) time. Otherwise, vep > 3

δ2
mβ/2 log(2m) and the answer is calculated in

the next step of algorithm, that we now explain.
Let m(a) be the number of edges of EV G(S) ∪ S incident to an end-point a. The

visibility polygon of a is a star shaped polygon consisting of m(a) + 1 = O(n) non-
overlapping triangles [5, 17], which are called the visibility triangles of a, denoted by
V TS(a). The query point p is visible to an end-point a, if and only if it lies inside one of
the visibility triangles of a. Let V TES be the set of visibility triangles of all the end-points
of the segments in S. Then, the number of visible end-points from p is the number of
triangles in V TES containing p. We can construct V TES in O(m logm) = O(n2 log n)
time using EV G(S) because to construct the visibility triangles of each end-point we need
the edges of EV G(S) that are incident to that end-point and these edges can be extracted
from EV G(S). Notice that |V TES | = O(m) = O(n2).

We can preprocess a given set of triangles using the following lemma to count the
number of triangles containing any query point.

Lemma 3.1. Let Δ be a set of m triangles. There exists a data structure of size O(m2),
such that in the preprocessing time of O(m2 logm), the number of triangles containing a
query point p can be calculated in O(logm) time.

Proof. Consider the planar arrangement of the edges of the triangles in Δ as a planar
graph. Let f be a face of this graph. Then, for any pair of points p and q in f , the number
of triangles containing p and q are equal. Therefore, we can compute these numbers for
each face in a preprocessing phase and then, for any query point locate the face containing
that point. There are O(m2) faces in the planar arrangement of Δ, so a point location
structure of size O(m2) can answer each query in O(logm) time as in [13]. Note that, in
the preprocessing time we compute the exact value of an arbitrary face in O(m), then we
move to an adjacent face through an edge e of this planar graph. The difference of these
two adjacent faces depends on the triangles that contain e as a part of their edges. We
can find each of these triangles in O(logm) and compute the number of that face. We
continue moving to adjacent faces until visiting all of them.

8

So, if an edge of a triangle is divided into t parts in the planar graph, then it has to
be considered at most t times. Since the total number of edges of this planar graph is
O(m2), then in O(m2 logm), we can calculate the numbers associated to all the faces. �

3.2 The algorithm

Here, we present an algorithm to approximate vep. We use this algorithm when the
first attempt for finding the exact value of vep, using the algorithm of [18], does not
finish in 3

δ2
mβ/2 log(2m) steps. In the preprocessing phase, we take a random subset

RV TE1 ⊂ V TES such that each member of V TES is chosen with the probability of 1
mβ .

Lemma 3.2. E(|RV TE1|) = O(m1−β).

Proof. Let V TES = {Δ1,Δ2, . . . ,Δm′}, where m′ = O(m) = O(n2) and Xi = 1 if
Δi ∈ RV TE1, and Xi = 0 otherwise. We have,

E(|RV TE1|) = E(
∑m′

i=1Xi) =
∑m′

i=1E(Xi) =
∑m′

i=1
1

mβ = m′
mβ = O(m1−β).

�

Suppose that in the preprocessing time, we choose mβ/2 independent random subsets
RV TE1, . . . , RV TEmβ/2 as above of V TES . Using Lemma 3.1, for any query point p,
the number of triangles of each RV TEi containing p denoted by (vep)i, is calculated in
O(logm) time by O(m2−2β logm) expected preprocessing time and O(m2−2β) expected

space. Then, ve′p = mβ
∑mβ/2

i=1 (vep)i
mβ/2 is returned as the approximation value of vep.

3.3 Analysis of the approximation factor

In this section the approximation factor of the algorithm will be given. The following
lemma is trivial. Let Zi = mβ(vep)i.

Lemma 3.3. E(Zi) = vep and therefore E(
∑mβ/2

i=1 Zi

mβ/2) = vep.

So, Z1, Z2, . . . , Zmβ/2 are random variables with E(Zi) = vep. We use the following
well known lemma:

Lemma 3.4. (Chernoff’s Lemma) Given a sequence X1, X2, . . . , XN of i.i.d. Bernoulli
random variables with finite expected value E(X1) = E(X2) = · · · = μ and for any
0 < δ < 1, we have,

P (|X1 + · · ·+XN −Nμ| > Nμδ) ≤ 2 exp(−Nμδ2/3).

Lemma 3.5. With the probability at least 1− 1
m we have,

(1− δ)vep ≤ ve′p ≤ (1 + δ)vep.

Proof. Let Xi,1, . . . , Xi,vep be the random variables for the vep visibility triangles of the
end-points that contain the query point p. That is Xi,j = 1 if the triangle Δj is in the ith
sample and is zero otherwise. Then (vep)i is (Xi,1 + · · · +Xi,vep). If |ve′p − vep| > δvep,
then

|
mβ/2∑

i=1

vep∑

j=1

Xi,j −m−β/2vep| > m−β/2vepδ.

Using Lemma 3.4 with μ = 1
mβ and N = mβ/2vep we have:

9

P = P (|ve′p − vep| > δvep) ≤ 2 exp(−m−β/2vepδ
2/3).

We know that vep ≥ 3
δ2
mβ/2 log(2m), so

P = P (|ve′p − vep| > δvep) ≤ 1
m .

With the probability of at least 1− P, we have,

(1− δ)vep ≤ ve′p ≤ (1 + δ)vep.

Also, for a large m, we have P ∼ 0.
�

3.4 Analysis of time and space complexity

In the first step of the query time, we run the algorithm of [18]. The preprocessing time and
space for constructing the data structure of [18] are O(m logm) and O(m), respectively,
which computes V PS(p) in O(|V PS(p)| log(n/|V PS(p)|)) time. As we run this algorithm
for at most 3

δ2
mβ/2 log(2m) steps, the query time of the first step is O(1

δ2
mβ/2 logm).

According to Lemma 3.2, E(|RV TEi|) = O(m1−β). Using Lemma 3.1, the expected
preprocessing time and space for each RV TEi are O(m2−2β logm) and O(m2−2β) respec-
tively, such that in O(logm) we can calculate (vep)i. So, the expected preprocessing time

and space are mβ/2O(m2−2β logm) = O(m2− 3
2
β logm) and mβ/2O(m2−2β) = O(m2− 3

2
β)

respectively.
In the second step, for each RV TEi the value of (vep)i is calculated in O(logm).

Therefore, the expected query time is O(1
δ2
mβ/2 logm) + O(mβ/2 logm). According to

[2], vep is a 2 approximation answer for VCP, therefore, ve′p is a 2 + 2δ approximation
answer for VCP as well. Theorem 2.2 is derived.

3.5 Second algorithm to approximate the number of visible end-points

Now, we introduce another method to approximate the number of visible end-points, vep.
This will be used in the next section to produce a (1.5+3δ)-approximation for mp. First,
we state the following theorem.

Theorem 3.1. [15] Given a set of n disjoint line segments S, we can preprocess the
segments using O(n2 log n) time, and O(n2) space such that for a given query point p and
a direction �d, the first segment in S intersected by ray shot from p in the direction �d, is
determined in O(log n) time.

So, by Theorem 3.1 we can answer if an end-point is visible from a query point p in
O(log n) time. Similar to the previous algorithm, first we run the algorithm of [18] for
1
δ2
√
n log n steps, if it does not terminate then 1

δ2
√
n log n < mp ≤ vep.

Now, we choose a random sample from 2n end-points by choosing each end-point randomly
and independently with probability 1

n
2
3
, to produce a sample of expected size 2n

1
3 . We

count the number of visible end-points in this sample and multiply it with n
2
3 to report

(vep)1. Note that E((vep)1) = vep. To compute V ar((vep)1), we use the fact that (vep)1

is n
2
3 (X1 + · · ·+Xvep) where Xi’s are independent Bernoulli random variables which are

1 with probability n− 2
3 and 0 with probability 1 − n− 2

3 . So, V ar(Xi) = n− 2
3 (1 − n− 2

3)

and V ar((vep)1) = n
4
3 vepn

− 2
3 (1− n− 2

3) < n
2
3 vep.

We use the following well known lemma:

10

Lemma 3.6. (Chebyshev’s Lemma) Given a sequence X1, . . . , XN of i.i.d. random vari-
ables with E(Xi) = μ and δ > 0, we have:

P (|X1 + · · ·+XN

N
− μ| > δ) ≤ V ar(X1)

Nδ2
.

We repeat the process of random sampling for n
1
6 times and report ve′p =

(vep)1+···+(vep)
n
1
6

n
1
6

.

We show that ve′p is a 1 + δ approximation of vep with probability at least 1 − 1
logn . In

fact:

P (|ve′p − vep| > δvep) ≤ n
2
3 vep

n
1
6 ve2pδ

2
≤ 1

log n
.

Where we have used the fact that vep > 1
δ2
√
n log n for the last inequality. This shows

with the probability at least 1− 1
logn we have:

(1− δ)vep ≤ ve′p ≤ (1 + δ)vep.

For this algorithm according to Theorem 3.1, the preprocessing time and space needed
is O(n2 log n) and O(n2) respectively, and the expected query time is O(n

1
6n

1
3 log n) =

O(
√
n log n).

4 An algorithm to approximate C(G(p)) and the proof of
Theorem 2.3

In this section, we explain an algorithm to estimate the number of connected components
of G(p). For simplicity, by a component, we mean a connected component of G(p).

Let c be a component such that p is not inside any of its faces. Without loss of
generality, we can assume that p lies below c. It is easy to see that there exist rays
emanating from p that do not intersect any segments corresponding to the vertices of c.
We start sweeping one of these rays in a clockwise direction. Let L(c) (left end-point of
c) be the first end-point of a segment of c and R(c) (right end-point of c) be the last
end-point of a segment of c that intersect this ray (Fig. 3). This way, every component
c has L(c) and R(c) except for the component that contains p in one of its faces. Also,
note that L(c) and R(c) do not depend on the choice of the starting ray and L(c)(R(c))
is always a left(right) end-point of a segment s, l(s)(r(s)), that corresponds to a vertex
of c. For example in Fig. 3, c1 = {s1, s2, s6} is a component with three vertices and
L(c1) = l(s2), R(c1) = r(s6) and they both project to the bounding box.

Now, we introduce the following lemma.

Lemma 4.1. For each component c, except for the one with a face containing p, the
projections of L(c) and R(c) are either on the same segment or both are on the bounding
box.

Proof. Let c be a component with left and right end-points L(c) and R(c). Assume that
one of these end-points, say L(c) projects on a segment s. We claim that the right end-
point of s is to the right of R(c). Otherwise, this end-point is covered by another segment
t, whose left end-point should be to the left of R(c), and is to the right of L(c), since
otherwise L(c) can not project on s. Therefore the left end-point of t is also not visible
from p and is covered by another segment t1. Similarly, the left end-point of t1 is between
L(c) and R(c) (with respect to the rotating ray from p) and hence, it is not visible from

11

s1

s6
l(s6)

s2
l(s2)

s3
l(s3)

s4
r(s4)s5

l(s5) r(s5)

p

a′a

b′b e

e′

Figure 3: In this figure, aa′ and bb′ are the visible subsegments of s1. The bounding box
has one visible part from e to e′. Here, G(p) has three components; c1 = {s1, s2, s6},
c2 = {s3, s4}, and c3 = {s5}. Also, L(c1) = l(s2), L(c2) = l(s3), and L(c3) = l(s5).
R(c1) = r(s6), R(c2) = r(s4), and R(c3) = r(s5).

p. So, it should be covered by another segment t2 and hence the process produces an
infinite sequence of segments, leading to a contradiction. Since, we showed that the right
end-point of s is to the right of R(c), R(c) can not project on the bounding box and
assume it projects on a segment t. We want to show that t = s. An argument identical to
the one given above, shows that the left end-point of t is to the left of L(c) or the point
of s that L(c) projects to. If s and t are different, the fact that the left end-point of t
is to the left of pr(L(c)) on s and the right end-point of s is to the right of pr(R(c)) on
t implies that they intersect which is clearly a contradiction. Notice that this argument
also shows that if one of the two end-points L(c) or R(c) projects on the bounding box,
the other one also projects on the bounding box. Since, we showed that if one of them
project on a segment, the other one should project on the same segment. �

Since the left and right end-point of a component are visible, every component has
at least one visible segment, so C(G(p)) ≤ mp. If C1 is the number of components with
only one visible segment and C2 is the number of components with more than one visible
segment then, since C(G(p)) = C1 + C2 and C2 ≤ mp

2 , we have:

C(G(p))− mp

2
≤ C1 ≤ C(G(p)).

For example in Fig. 3, {s1, s2, s6} is a component with three visible segments and {s5} is
a component with only one visible segment. Using Lemma 2.2 and ignoring the additive
constant one, we get

mp ≤ vep − C1 ≤ 1.5mp.

Hence, if we have a (1 + δ) approximation for the values of vep and C1, we will get
a (1.5 + δ) approximation for mp. In the next subsection we propose an algorithm to
approximate the value of C1 that uses random sampling of the segments.

12

4.1 Algorithm

In this subsection, we propose an algorithm to give a (1.5 + 3δ)-approximation solution
for mp. To start, we run the algorithm of [18] for 1

δ2
√
n log n steps, if it terminates, then

we have an exact answer for mp. Otherwise, we run the following algorithm.
Our goal is to estimate C1, the number of components with only one visible segment.

Any component c with only one visible segment, corresponds to a segment that both
of its end-points are visible and their projections are on the same segment or on the
bounding box. This follows from Lemma 4.1. In fact, the two end-points of the only
visible segment of c are the left and right end-points of c. To estimate C1, we need to
estimate the number of such segments. Let s1, . . . , sC1 be these segments. We choose a
random sample of segments by choosing any segment with probability 1

n2/3 . We use the
algorithm of Theorem 3.1 to answer if an end-point a is visible from a query point p or
not and also to find the projection of a by shooting a ray from a in the direction of �pa.

For each segment in our sample, using O(log n) time, we can decide if both of its
end-points are visible and if both of them project onto the same segment or the bounding
box. This way we can count the number of components with only one visible segment in
that sample, say C1,1 in O(n

1
3 log n) expected time. We repeat taking these samples for

n
1
6 times, and report C ′

1 = n
2
3

C1,1+···+C
1,n

1
6

n
1
6

as the approximated value of C1. Then, since

E(C1,i) =
1

n
2
3
C1 and V ar(C1,i) = n

4
3C1n

− 2
3 (1− n− 2

3) ≤ n
2
3C1, by Chebyshev’s lemma:

P (|C ′
1 − C1| > δmp) ≤ n

2
3C1

n
1
6m2

pδ
2
≤ 1

log n

where for the last inequality, we used the fact that mp > 1
δ2
√
n log n and C1 ≤ mp.

Therefore, with the probability at least 1− 1
logn , we have:

C1 − δmp ≤ C ′
1 ≤ C1 + δmp.

Now, by the algorithm of Subsection 3.5, we get ve′p for the visible end-points such that
(1− δ)vep ≤ ve′p ≤ (1 + δ)vep. Therefore:

(1− δ)vep − C1 − δmp ≤ ve′p − C ′
1 ≤ (1 + δ)vep − C1 + δmp.

If we use the facts that mp ≤ vep − C1 ≤ 1.5mp and vep ≤ 2mp, we can derive:

(1− 3δ)mp ≤ ve′p − C ′
1 ≤ (1.5 + 3δ)mp.

4.2 Analysis of time and space complexity

In the first phase, we run the algorithm of [18] for O(1
δ2
√
n log n) steps. In the second

phase, the expected number of segments in each sample is n
1
3 and the number of samples

is n
1
6 . In O(log n) we can check whether a segment is the only visible segment of a compo-

nent. So, the overall expected query time is O(1
δ2
√
n log n). The preprocessing time and

space of the algorithm of [18] are O(n2 log n) and O(n2) and the space and preprocessing
time of Theorem 3.1 are O(n2 log n) and O(n2). So, the overall preprocessing time and
space are O(n2 log n) and O(n2).

So, if we return ve′p − C ′
1, we have a (1.5 + 3δ)-approximation for mp. Therefore,

Theorem 2.3 is proved.

13

5 Conclusion

In this paper, two randomized algorithms are proposed to compute an approximation
answer for VCP. The main ideas of these algorithms that reduce the complexity of previous
methods are random sampling and breaking the query into two steps. The time and space
complexity of the first algorithm depend on the size of EV G(S). In the second algorithm,
a planar graph is associated to each query point p. It is proven that the answer is equal
to vep−C(G(p)) or vep−C(G(p))+ 1, where vep is the number of visible end-points and
C(G(p)) is the number of connected components in this planar graph. To improve the
running time of our algorithm instead of finding the exact values of vep and C(G(p)), we
approximate these values. It is possible to compute the exact value of vep but, computing
the exact value of C(G(p)) with a tradeoff between the query time and the space is a
challenging problem.

References

[1] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B.
Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Compu-
tational Geometry, volume 223 of Contemporary Mathematics, pages 1–56. American
Mathematical Society Press, 1999.

[2] Alipour, S., Zarei, A.: Visibility Testing and Counting. FAW-AAIM 2011, Jinhua,
China, LNCS (Volume 6681) by Springer-Verlag, 343-351 (2011)

[3] Alipour, S., Ghodsi, M., Jafari, A.: An improved Constant-Factor Approximation Al-
gorithm for Planar Visibility Counting Problem. International Computing and Com-
binatorics Conference, Springer International Publishing, 209–221 (2016)

[4] Aronov, B., Guibas, L. J., Teichmann M. and Zhang L.: Visibility queries and mainte-
nance in simple polygons. Discrete and Computational Geometry. 27, 461–483 (2002)

[5] Asano, T.: An efficient algorithm for finding the visibility polygon for a polygonal
region with holes. IEICE Transactions. 557–589(1985)

[6] Bose, P., Lubiw, A. and Munro, J. I.: Efficient visibility queries in simple polygons.
Computational Geometry Theory and Applications. 23(7), 313–335(2002)

[7] Bondy, J. A., Murty, U. S. R.: Graph theory with applications (Vol. 290). London:
Macmillan (1976)

[8] Fischer, M., Hilbig, M., Jahn, C., Meyer auf der Heide F. and Ziegler M.: Planar
visibility counting. CoRR, abs/0810.0052. (2008)

[9] Fischer, M., Hilbig, M., Jahn, C., Meyer auf der Heide F. and Ziegler M.: Planar
visibility counting. In Proceedings of the 25th European Workshop on Computational
Geometry(EuroCG 2009).203–206(2009)

[10] Ghosh, S. K. and Mount, D.: An output sensitive algorithm for computing visibility
graphs. SIAM Journal on Computing. 20, 888–910 (1991)

[11] Ghosh, S. K.: Visibility algorithms in the plane. Cambridge university press. (2007)

[12] Gudmundsson, J., Morin, P.: Planar visibility: testing and counting. Annual Sym-
posium on Computational Geometry. 77–86 (2010)

14

[13] Kirkpatrick, D.:Optimal search in planar subdivisions. SIAM Journal on Comput-
ing.12(1), 28–35(1983)

[14] Nouri, M. and Ghodsi, M.: Space/query-time tradeoff for computing the visibility
polygon. Computational Geometry. 46(3), 371–381 (2013)

[15] Pocchiola, M.: Graphics in Flatland revisited. In Scandinavian Workshop on Algo-
rithm Theory(1990) pp. 85–96. Springer Berlin Heidelberg. Chicago (1990)

[16] Pocchiola, M. and Vegter, G.: The visibility complex. International Journal of Com-
putational Geometry and Applications. 6(3), 279–308 (1996)

[17] Suri, S. and O’Rourke, J.: Worst-case optimal algorithms for constructing visibility
polygons with holes. In Proceedings of the Second Annual Symposium on Computa-
tional Geometry (SCG 86), 14–23(1986)

[18] Vegter, G.: The visibility diagram: A data structure for visibility problems and
motion planning. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT(1990). LNCS, 447, pp.
97–110. Springer, Heidelberg (1990)

[19] Zarei, A. and Ghodsi, M.: Efficient computation of query point visibility in polygons
with holes. In Proceedings of the 21st Annual ACM Symposium on Computational
Geometry. (SCG 2005). (2005).

15

