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Introduction



Introduction

How do machine learning algorithms understand complex and unstructured inputs?

Computer vision
Computational speech

Natural language processing Robotics

Credit: Aditya Grover
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Representing input raw data

Computer vision

x = (x1, . . . , xd)

Computational speech

x = (x1, . . . , xT ) and xi = (xi1, . . . , xid)

Natural language processing

x = (x1, . . . , xT ) and xi = (xi1, . . . , xid)

Robotics

This process may be: handicrafted or learning-based.
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Representation learning



Representation learning

Representation
learning model

Input raw date

Fixed feature
extraction
algorithm

Machine Learning
Task  such as

Classification or
clustering or ....

Representation Learning:

1. Supervised representation learning

2. Unsupervised representation learning
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Supervised representation learning

1. Let D = {(x1, y1), . . . , (xn, yn)} be the dataset, where

xi ∈ X is input raw data and

yi ∈ Y is supervised signal

2. A supervised representation learning algorithm trains parameterized feature extractor f by

solving a supervised task on D.

3. Feature extractor f : RI 7→ Rd maps an input representation x to a feature representation

f (x) ∈ Rd , where d � I .

4. Depending on the supervised task, an additional function, h : Rd 7→ RO , yields the output

representation to evaluate a supervised objective function given feature representation

f (x).

5. The objective is to minimize training loss function R̂(f , h) such as a cross-entropy loss to

obtain pre-trained f̂ and ĥ as follows:

f̂ , ĥ = arg minf ,h

{
R̂(f , h)

}
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Unsupervised representation learning

1. Let D = {x1, . . . , xn} be the dataset, where xi ∈ X is input raw data.

2. A unsupervised representation learning algorithm trains parameterized feature extractor f

by solving an unsupervised task on D.

3. Feature extractor f : RI 7→ Rd maps an input representation x to a feature representation

f (x) ∈ Rd , where d � I .

4. For example, auto-encoders consider h : Rd 7→ RI reconstruct the input as

5. Auto-encoders are trained by minimizing the following objective function.

f̂ , ĥ = arg minf ,h

{
R̂(f , h)

}

R̂(f , h) =
1

n

n∑

i=1

‖h(f (xi ))− xi‖2
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What makes a representation good?

1. Priors for representation learning

2. Smoothness and the curse of dimensionality

Smoothness is useful assumption but it is insufficient to deal with the curse of

dimensionality because the number of up/down of the target functions may grow

exponentially with the number of relevant interacting factors.

3. Distributed representations

4. Depth and Abstraction

Deep architectures promote the reuse of features

Deep architectures can potentially lead to progressively more abstract features at higher

layers of representations

5. Disentangling Factors of Variation
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Priors for representation learning

Why explicitly dealing with representations is interesting?

They can be convenient to express many general priors about the world around us (Bengio,

Courville, and Vincent 2013).

Examples of such general-purpose priors are the following:

1. Smoothness: Function f (to be learned) is smooth, if x ≈ y implies f (x) ≈ f (y).

2. Multiple explanatory factors: The data generating distribution is generated by different

underlying factors.

3. Hierarchical organization of explanatory factors: The concepts that are useful for

describing the world can be defined in terms of other concepts, in a hierarchy, with more

abstract concepts higher in the hierarchy, defined in terms of less abstract ones.

4. Semi-supervised learning: With inputs x and target y to predict, a subset of the factors

explaining x’s distribution explain much of y, given x. Hence, representations that are

useful for p(x) tend to be useful when learning p(y | x).

5. Shared factors across tasks: With many ys of interest or many learning tasks in general,

tasks are explained by factors that are shared with other tasks.
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Priors for representation learning (Cont.)

6. Manifolds: Probability mass concentrates near regions that have a much smaller

dimensionality than the original space where the data live.

7. Natural clustering: Different values of categorical variables such as object classes are

associated with separate manifolds.

More precisely, the local variations on the manifold tend to preserve the value of a

category, and a linear interpolation between examples of different classes in general

involves going through a low-density region, i.e., p(x | y = i) for different i tend to be well

separated and not overlap much.

8. Temporal and spatial coherence: Consecutive (from a sequence) or spatially nearby

observations tend to be associated with the same value of relevant categorical concepts or

result in a small move on the surface of the high-density manifold.

9. Sparsity: For any given observation x, only a small fraction of the possible factors are

relevant.

10. Simplicity of factor dependencies: In good high-level representations, the factors are

related to each other through simple, typically linear dependencies.
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Disentangled representation



Progress in Deep Generative Models

1. When humans observe an object, they seek to understand the various properties of this

object such as

shape,

size,

color

with certain prior knowledge (Wang et al. 2024).
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Object Color

Object Size

Wall Color

Floor Color

Viewing Angle

Object Shape

Factors of VariationFeature SpaceObservable Data

Fig. 1. The scene of Shape3D [4], where the six rectangles in the gray
circle represent the six factors of variation in the Shape3D respectively.
DRL is expected to encode these distinct factors with independent latent
variables in the latent feature space.

representations while optimizing the inherent task objec-
tive, e.g., generation or discrimination objective. Given the
efficacy of DRL at capturing explainable, controllable and
robust representations, it has been widely used in many
fields such as computer vision [8], [19], [20], [21], [22],
natural language processing [23], [24], [25], recommender
systems [26], [27], [28], [29] and graph learning [29], [30] etc.,
boosting the performances of various downstream tasks.

Contributions. In this paper, we comprehensively re-
view DRL through summarizing the theories, methodolo-
gies, evaluations, applications and design schemes, to the
best of our knowledge, for the first time. In particular, we
present the definitions of DRL in Section 2 and comprehen-
sively review DRL approaches in Section 3. In Section 4,
we discuss popular evaluation metrics for DRL implementa-
tion. We discuss the applications of DRL for various down-
stream tasks in Section 5, followed by our insights in de-
signing proper DRL models for different tasks in Section 6.
Last but not least, we summarize several open questions and
future directions for DRL in Section 7. Existing work most
related to this paper is Liu et al.’s work [31], which only
focuses on imaging domain and applications in medical
imaging. In comparison, our work discusses DRL from
a general perspective, taking full coverage of definitions,
taxonomies, applications and design scheme.

2 DRL DEFINITIONS

Intuitive Definition. Bengio et al. [2] propose an intuitive
definition about disentangled representation:

Definition 1. Disentangled representation should separate the
distinct, independent and informative generative factors of varia-
tion in the data. Single latent variables are sensitive to changes
in single underlying generative factors, while being relatively
invariant to changes in other factors.

The definition also indicates that latent variables are
statistically independent. Following this intuitive definition,
early DRL methods can be traced back to independent
component analysis (ICA) and principal component anal-
ysis (PCA). Numerous Deep Neural Network (DNN) based
methods also follow this definition [5], [6], [7], [9], [32], [33],
[34], [35], [36], [37]. Most models and metrics hold the view
that generative factors and latent variables are statistically
independent.

Definition 1 is widely adopted in the literature, and is
followed by the majority of DRL approaches discussed in
Section 3.
Group Theory Definition. For a more rigorous mathemati-
cal definition, Higgins et al. [18] propose to define DRL from
the perspective of group theory, which is later adopted by
a series of works [38], [39], [40], [41]. We briefly review the
group theory-based definition as follows:

Definition 2. Consider a symmetry group G, world state space
W (i.e., ground truth factors which generate observations), data
space O, and representation space Z . Assume G can be decom-
posed as a direct product G = G1⇥G2⇥· · ·⇥Gn. Representation
Z is disentangled with respect to G if:

(i) There is an action of G on Z : G⇥ Z ! Z .
(ii) There exists a mapping from W to Z , i.e., f : W ! Z

which is equivariant between the action of G on W and Z . This
condition can be formulated as follows:

g · f(w) = f(g · w), 8g 2 G, 8w 2W (1)

which can be illustrated as Figure. 2.
(iii) The action of G on Z is disentangled with respect to

the decomposition of G. In other words, there is a decomposition
Z = Z1 ⇥ . . .⇥ Zn or Z = Z1 � . . .� Zn such that each Zi is
affected only by Gi and invariant to Gj , 8j 6= i.

Definition 2 is mainly adopted by DRL approaches orig-
inating from the perspective of group theory in VAE (Group
theory based VAEs in Section 3.1.1).

𝑊

𝑍 𝑍

𝑊
𝑔.

𝑔.

𝑓 𝑓

Fig. 2. The illustration of
condition (ii).

Fig. 3. Swinging pendulum, light
and shadow, figure from [11].

Discussions. All the two definitions hold the assumption
that generative factors are naturally independent. However,
Suter et al. [14] propose to define DRL from the perspec-
tive of the structural causal model (SCM) [42], where they
additionally introduce a set of confounders which causally
influence the generative factors of observable data. Yang et
al. [11] and Shen et al. [43] further discard the independence
assumption by considering that there might be an under-
lying causal structure which renders generative factors. For
example, in Figure 3, the position of the light source and the
angle of the pendulum are both responsible for the position
and length of the shadow. Consequently, instead of the in-
dependence assumption, they use SCM which characterizes
the causal relationship of generative factors as prior. We
refer to these works holding the assumption of causal factors
as causal disentanglement methods, which will be discussed
in detail in Section 3.4.

3 DRL TAXONOMY

In this section, we categorize DRL approaches (Figure 4)
i) from the perspective of representation structure, i.e.,

Representation learning and generation

Encoder Generator

male
young
smile
glasses

...

Data DataLatent
Representation learning Data generation

Observed data x ⇠ qx on X ✓ Rd

Latent variable z ⇠ pz on Z ✓ Rk

Bidirectional generative model: learning an encoder E : X ! Z (to
learn representations) and a generator G : Z ! X (to generate data).

Example: variational auto-encoder (VAE)

X. Shen (HKUST) Causal Disentanglement Learning March 9, 2021 3 / 34

2. A disentangled representation can be defined as one where single latent units are sensitive

to changes in single generative factors, while being relatively invariant to changes in other

factors (Bengio, Courville, and Vincent 2013).
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Categorization of disentangled representation learning approaches
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Dimension-wise vs Vector-wise DRL

1. In dimension-wise methods, generative factors are fine-grained and a single dimension (or

several dimensions) represents one generative factor.

2. In vector-wise methods, generative factors are coarse-grained and different vectors

represent different types of semantic meanings.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, NOVEMBER 2022 3
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Flat vs Hierarchical DRL

1. In flat DRL, all the factors are parallel and at the same abstraction level.

2. In hierarchical DRL, the factors of variation have different levels of semantic abstraction

(hierarchical structures), either dependent or independent across levels.
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focus more on how to incorporate vector-wise DRL to tackle
real-world applications. It might be a trend to explore the
power of vector-wise DRL in various realistic tasks.

3.2 Flat DRL vs. Hierarchical DRL

The aforementioned DRL methods hold an assumption
that the architecture of generative factors is flat, i.e., all the
factors are parallel and at the same abstraction level. For ex-
ample, as for dimension-wise DRL, �-VAE [6] disentangles
face rotation, smile, skin color, fringe, etc. on CelebA dataset.
InfoGAN [9] disentangles azimuth, elevation, lighting, etc.
on 3D Faces dataset. As for vector-wise DRL, DR-GAN [54]
disentangles face identity and pose. MAP-IVR [55] disen-
tangles motion and appearance features for video. Dis-
enBooth [60] disentangles the identity-preserved and the
identity-irrelevant features. In summary, there doesn’t exist
a hierarchical structure among these disentangled factors.

However, in practice, generative processes might nat-
urally involve hierarchical structures [64], [65] where the
factors of variation have different levels of semantic abstrac-
tion, either dependent [64] or independent [65] across levels.
For example, the factor controlling gender has a higher level
of abstraction than the independent factor controlling eye-
shadow on CelebA dataset [65], while there exist depen-
dencies between factors controlling shape (higher level) and
phase (lower level) on Spaceshapes dataset [64], e.g., the
dimension of “phase” is active only when the object shape
equals to “moon”. To capture these hierarchical structures, a
series of works have been proposed to achieve hierarchical
disentanglement. Figure 8 demonstrates the paradigm of
hierarchical DRL.

subtle styles

digit identity

stroke width

factors of variation latent space

Hierarchical DRL

Fig. 8. The illustration of hierarchical DRL. There exists a hierarchical
structure among generative factors, i.e., the factors belong to different
abstraction levels, resembling a pyramid.

Li et al. [65] propose a VAE-based model which learns
hierarchical disentangled representations through formulat-
ing the hierarchical generative probability model in Eq. (42),

p(x, z) = p (x | z1, z2, . . . , zL)

LY

l=1

p (zl) , (42)

where zl denotes the latent representation of the l-th level
abstraction, and a larger value of l indicates a higher level
of abstraction. The authors estimate the level of abstraction

with the network depth, i.e., the deeper network layer
is responsible for outputting representations with higher
abstraction level. It is worth noting that Eq.(42) assumes
that there is no dependency among latent representations
with different abstraction levels. In other words, each latent
representation tends to capture the factors that belong to a
single abstraction level, which will not be covered in other
levels. The corresponding inference model is formulated in
Eq.(43) as follows,

q (z1, z2, . . . , zL | x) =

LY

l=1

q
�
zl | hl(x)

�
, (43)

where hl(x) represents the abstraction of l-th level. In the
training stage, the authors design a progressive strategy of
learning representations from high to low abstraction levels
with modified ELBO objectives. The hierarchical progressive
learning is shown in Figure 9, where hi and gi are a set
of encoders and decoders at different abstraction levels.
The framework can disentangle digit identity, stroke width,
and subtle digit styles on MNIST dataset, from high to
low abstraction levels. It can also disentangle gender, smile,
wavy-hair, and eye-shadow on CelebA.

Fig. 9. The architecture of the hierarchical framework proposed by Li et
al. [65]. The figure is from the original paper.

Tong et al. [66] propose to learn a set of hierarchical
disentangled representations z =

�
zi

l

 cl

i=1
, where zi

l is the
i-th latent variable of the l-th layer in the hierarchical
structure and cl is the total number of latent variables of the
l-th layer. To ensure disentanglement at each hierarchical
level, they design a loss function shown in Eq.(44),

Ldisentangle =
X

l

2

cl (cl � 1)

clX

i 6=j

dCov2
⇣
zi

l, z
j
l

⌘
, (44)

where dCov2(·, ·) denotes the distance covariance.
Singh et al. [67] propose an unsupervised hierarchical

disentanglement framework FineGAN for fine-grained ob-
ject generation. They design three latent representations for
different hierarchical levels, i.e., background code b, parent
code p and child code c, which represent background, object
shape and object appearance respectively. Background is
the lowest level, followed by shape and appearance. In
the generation process, FineGAN first generates a realistic
background image by taking b and noise z as input. Then it
generates the shape and stitches it on top of the background
image through taking p and noise z as input. Finally, by
taking c as input conditioned on p, the model fills in
the shape (parent) outline with appearance (child) details.
The authors further employ information theory (similar

Latent Variable Models: Motivation

1 Only shaded variables x are observed in the data (pixel values)
2 Latent variables z correspond to high level features

If z chosen properly, p(x|z) could be much simpler than p(x)
If we had trained this model, then we could identify features via
p(z | x), e.g., p(EyeColor = Blue|x)

3 Challenge: Very di�cult to specify these conditionals by hand

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 5 / 28
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Supervised vs Unsupervised DRL

1. In unsupervised learning, the goal is automated discovery of interpretable factorized latent

representations.

2. The pure unsupervised DRL is theoretically impossible without inductive bias on methods

and data sets.

3. In other words, disentanglement itself does not occur naturally.

4. In supervised DRL, the learner has access to annotations (labels) of the representation for

a very limited number of observations, for example through human annotation.

5. The supervised DRL setting is not universally applicable, especially when the observations

are not human interpretable.

6. Hence, a completely unsupervised approach would be elegant, collecting a small number of

human annotations is simple and cheap.
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Independent and Casual DRL

1. In independent DRL, that latent factors are statistically independent, so that they are

supposed to be independently disentangled through independent or factorial regularization.

2. The causal DRL, underlying factors are not independent and hold certain causal relations.

3. Casual DRL methods potentially achieve more interpretable and robust representations via

disentangling causal factors.

Generative model with a causal prior

x

�

z x

Inference Generation

Data Data

Encoder Generator

Latent

SCM

�1

�2

�3

�4
z1

z2

z3

z4

Prior

We adopt the general nonlinear Structural Causal Model (SCM):

f (z) = A>f (z) + h(✏), (3)

z = f �1((I � A>)�1h(✏)) := F�(✏), (4)

where ✏ denotes the exogenous variables, A 2 Rk⇥k is the weighted
adjacency matrix, f and h are element-wise nonlinear transformations.

(3) enables intervention; (4) enables generation.

X. Shen (HKUST) Causal Disentanglement Learning March 9, 2021 15 / 34
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Disentangled representation learning

1. Given a dataset D = (x1, . . . , xn), where each data point is associated with M labeled

factor of variation v = (v1, . . . , vK ).

2. Assume that there exists a mapping from x to m groups of latent representations

z = (z1, . . . , zm) which follows distribution q(z | x).

.

.

.

.

.

.

3. Disentangled representation learning can be defined as a process of decorrelating

information in the data into separate informative representation, each of which

corresponds to a concept defined by humans.

4. Important properties of disentangled representation (Do and Tran 2020).

Informativeness

Separability and independence

Interpretability

Hamid Beigy (Sharif University of Technology) 16 / 38



Informativeness

1. Informativeness of a particular representation (or a group of representation) zi w.r.t the

data x is defined as mutual information between zi and x:

I (x, zi ) =

∫

x

∫

z

pd(x) q(zi | x) log
q(zi | x)

q(zi )
dz dx

where

q(zi ) =

∫

x

pd(x) q(zi | x)dx

2. To represent the data faithfully, a representation zi should be informative of x, meaning

I (x, zi ) should be large.

3. Since I (x, zi ) = H(zi )− H(zi | x), a large value of I (x, zi ) means that H(zi | x) ≈ 0 given

that H(zi ) can be chosen to be relatively fixed.

4. In other words, if zi is informative w.r.t to x, then q(zi | x) usually has small variance.

5. Assume that there exists a mapping from x to m groups of latent representations

z = (z1, . . . , zm) which follows distribution q(z | x).
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Separability and independence

1. Two representation zi and zj are separable w.r.t the data x if they do not share common

information about x, that is:

I (x, zi , zj) = 0

where I (x, zi , zj) denotes multivariate mutual information defined as:

I (X ,Y ,Z ) =
∑

x

∑

y

∑

z

p(x , y , z) ln
p(x , y) p(x , z) p(y , z)

p(x , y , z) p(x) p(y) p(z)

2. I (x, zi , zj) can be decomposed into standard bivariate mutual information terms as:

I (x, zi , zj) = I (zi , zj)− I (zi , zj | x)

3. If I (x, zi , zj) > 0, then if zi and zj contain redundant information about x.

4. Achieving separability w.r.t to x does not guarantee that zi and zj are separable in general.

5. zi and zj are fully separable or statistically independent if and only if I (zi , zj) = 0.

6. If we have access to all representations z , we can generally say that representation zi is

fully separable from z 6=i if and only if I (zi , z 6=i ) = 0.

7. There is a trade-off between informativeness, independence, and the number of

latent variables.
Hamid Beigy (Sharif University of Technology) 18 / 38



Interpretability

1. Obtaining independence and informative representations does not guarantee

interpretability by humans.

2. To achieve interpretability, we should provide model with a set of predefined concepts v.

3. In this case, a representation zi is interpretable w.r.t vk if it only contains information

about vk .

4. Full interpretability can be defined as

I (zi , vk) = H(zi ) = H(vk)

5. If we want zi to generalize beyond the observed vk , the model should accurately predict vk
given zi .
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Evaluating DRL methods



Properties disentangled representation

1. Eastwood and Williams proposed a framework for the evaluation of disentangled

representations (Eastwood and Williams 2018).

2. They proposed three desirable properties of a disentangled representation: explicitness,

compactness, and modularity.

Explicitness: The amount of information that a representation captures about the underlying

factors of variation. This property is called informativeness in (ibid.).

Compactness: The degree to which each underlying factor is captured by a single code

variable. This property is called completeness in (ibid.).

Modularity: The degree to which a representation factorizes or disentangles the underlying

factors of variation, with each variable (or dimension) capturing at most one generative

factor. This property is called disentanglement in (ibid.).

3. Holistic methods capture two or more properties in a single score.

Hamid Beigy (Sharif University of Technology) 20 / 38



Taxonomy of disentanglement metrics

Taxonomy of supervised disentanglement metrics (Carbonneau et al. 2023).
4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Taxonomy of disentanglement metrics. Metrics are grouped in families based on their underlying working principle. Each family is divided into
groups based on the disentanglement property that they are designed to measure.

Fig. 2. Illustration of the notation.

the same value for the chosen factor (v1
i = v2

i ). Pairs are
represented by the absolute difference of the codes associated
with the samples (p = |z1 − z2|). The intuition is that code
dimensions associated with the fixed factor should have the
same value, which means a smaller difference than the other
code dimensions. The mean of all pair differences in the
subset creates a point in a final training set. The process
is repeated several times to constitute a sizable training set.
Finally, a linear classifier is trained on the dataset to predict
which factor was fixed. The accuracy of the classifier is the
Z-diff score. For a completely random classifier, we expect an
accuracy of 1/M , where M is the number of factors. This can
be used to scale the output closer to the [0, 1] range.

2) Z-Min Variance: The Z-min variance2 metric [2], also
called the FactorVAE metric, was introduced to address some
of the weaknesses of the Z-diff metric. The intuition is the
same as for the Z-diff; code dimensions encoding a factor
should be equal if the factor value is the same. First, all codes
are normalized by their standard deviation computed over the
complete dataset. For a subset, a factor is randomly selected
and fixed at a random value. The subset contains sampled
instances for which the selected factor is fixed at the selected
value. Variance is computed over the normalized codes in
the subset. The code dimension with the lowest variance is
associated with the fixed factor. Several subsets are created
and the factor–code associations are used as data points in
a majority vote classifier. The Z-min Variance score is the
mean accuracy of the classifier. As for Z-diff, random classifier
accuracy of 1/M can be used to scale the output closer to the
[0, 1] range.

3) Z-Max Variance: Z-max Variance2 metric [3], also
known as R-FactorVAE, is similar to Z-min Variance. The
main difference is the approach used to collect subsets of

2We renamed the metric to avoid confusion with the model of the same
name.

samples. Here, all factor values are fixed except one. This
time the intuition is that if all factors are the same except
one, code dimensions corresponding to the free factor should
exhibit higher variance. A majority vote classifier is also used
to compute the score, but it is the code dimension with the
highest variance that is chosen as a training point.

4) Interventional Robustness Score: Interventional robust-
ness score (IRS) [4] measures the difference in the code
dimensions after modifying some factors while keeping others
fixed. The intuition is that changes in nuisance factors should
not impact code dimensions attributed to factors of interest.
The metric revolves around a measure called post interven-
tional disagreement (PIDA), which compares the codes from
a set of instances before and after modification of the nui-
sance factors. In practice, the authors compute the maximum
distance (e.g., !2) incurred by a modification of the nuisance
factors for each factor of interest realization. Then, a weighted
average of the maximum distances over all these realizations is
computed. The distances are weighted by the frequency of the
factor realizations in the dataset. In that paper, they refer to this
quantity as the expected maximal PIDA (EMPIDA). Finally,
EMPIDA is normalized by the expected maximal deviation
from the mean codes when there are not any fixed factors.
We obtain a score between 0 and 1, which yields the final IRS
score: IRS = 1−normalize(EMPIDA). One caveat in practice
when using IRS is that one must identify which codes are
associated with each factor.

C. Predictor-Based Metrics
These metrics train regressors or classifiers to predict factor

realizations from codes ( f (z) "→ v). Then, the predictor is
analyzed to assess the usefulness of each code dimension
in predicting the factors. These methods are naturally suited
to measure explicitness. They are typically equipped to deal
with continuous factors as well as categorical factors simply
by choosing an appropriate predictor. However, compared to
information-based metrics, they require more design choices
and hyperparameter tuning. This means that a metric is
more likely to behave differently from one implementation
to another.

1) Disentanglement, Completeness, and Informativeness:
Eastwood and Williams [5] proposed a complete framework

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Macquarie University. Downloaded on January 14,2024 at 02:31:16 UTC from IEEE Xplore.  Restrictions apply. 
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Intervention-Based Metrics

1. The metrics in this family evaluate disentanglement by fixing factors and creating subsets

of data points.

Factors Observation
Codes /

Representations

2. Codes and factors in the subsets are compared to produce a score.

3. To sample the fixed-size data subsets, these methods discretize the factor space.

4. This sampling procedure necessitates large quantities of diverse data samples to produce a

meaningful score.

5. Advantages: These metrics do not make any assumptions on the factor–code relations.

6. Disadvantages: There are several hyper-parameters to adjust such as the size and the

number of data subsets, the discretization granularity, classifier hyper-parameters, or the

choice of a distance function.
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Intervention-Based Metrics (Z-Diff)

Factors Observation
Codes /

Representations

1. The Z-diff metric (β-VAE metric) selects pairs of instances to create batches. In a batch,

a factor vi is chosen randomly.

2. Then, a fixed number of pairs are formed with samples v1 and v2 that have the same

value for the chosen factor (v1
i = v2

i ).

3. Pairs are represented by the absolute difference of the codes associated with the samples

(p = |z1 − z2|).

4. The intuition is that code dimensions associated with the fixed factor should have the

same value, which means a smaller difference than the other code dimensions.

5. The mean of all pair differences in the subset creates a point in a final training set.

6. The process is repeated several times to constitute a sizable training set.

7. Finally, a linear classifier is trained on the dataset to predict which factor was fixed.

8. The accuracy of the classifier is the Z-diff score.
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Intervention-Based Metrics (Z-Min Variance)

Factors Observation
Codes /

Representations

1. In Z-min variance (FactorVAE metric), code dimensions encoding a factor should be equal

if the factor value is the same.

2. All codes are normalized by their standard deviation computed over the complete dataset.

3. For a subset, a factor is randomly selected and fixed at a random value. The subset

contains sampled instances for which the selected factor is fixed at the selected value.

4. Variance is computed over the normalized codes in the subset. The code dimension with

the lowest variance is associated with the fixed factor.

5. Several subsets are created and the factor–code associations are used as data points in a

majority vote classifier.

6. The Z-min Variance score is the mean accuracy of the classifier.

Other metrics such as Z-Max Variance (R-FactorVAE) and Interventional Robustness Score

were proposed.
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Predictor-Based Metrics

Factors Observation
Codes /

Representations

Predictor / Regrossor

1. These metrics train regressors or classifiers to predict factor realizations from codes

(r(z) 7→ v).

2. Then, the predictor is analyzed to assess the usefulness of each code dimension in

predicting the factors.

3. These methods are naturally suited to measure explicitness.

4. They are typically equipped to deal with continuous factors as well as categorical factors

simply by choosing an appropriate predictor.

5. However, compared to information-based metrics, they require more design choices and

hyperparameter tuning. This means that a metric is more likely to behave differently from

one implementation to another.
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Predictor-Based Metrics (DCI score)

Factors Observation
Codes /

Representations

Predictor / Regrossor

1. Eastwood and Williams proposed a complete framework to evaluate disentangled

representations instead of a single metric (Eastwood and Williams 2018).

2. They report separate scores for modularity, compactness, and explicitness, which they call

disentanglement, completeness, and informativeness (DCI).

3. Regressors are trained to predict factors from codes. Modularity and compactness are

estimated by inspecting the regressor’s inner parameters to infer predictive importance

weights Rij for each factor and code dimension pair.

4. They use a linear lasso regressor or a random forest for nonlinear factor–code mappings.

5. For lasso regressor, the importance weights Rij are the magnitudes of the weights learned

by the model, while the Gini importance of code dimensions is used with random forests.
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Predictor-Based Metrics (DCI score)

Factors Observation
Codes /

Representations

Predictor / Regrossor

1. The compactness for factor vi is given by

Ci = 1 +
d∑

j=1

pij logd pij

where pij is the probability that code dimension zj is important to predict vi .

2. These probabilities for all factors obtained by dividing each importance weight by the sum

of all importance weights related to this factor:

pij =
Rij∑d

k=1 Rkj

3. The compactness of the whole representation is the average compactness over all factors.
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Predictor-Based Metrics (DCI score)

1. The modularity for code dimension zj is given by

Dj = 1 +
m∑

i=1

pij logm pij

where pij is the probability that code dimension zj is important to predict vi .

2. These probabilities are for all factors obtained as:

pij =
Rij∑m

k=1 Rkj

3. The modularity score for the whole representation is a weighted average of the individual

code dimension modularity scores
∑d

j=1 ρjDj .

4. The scores are weighted by ρj to account for codes that are less important to predict

factors.

ρj =

∑m
i=1 Rij∑d

k=1

∑m
i=1 Rik
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Predictor-Based Metrics (DCI score)

Factors Observation
Codes /

Representations

Predictor / Regrossor

1. The prediction error of the regressor measures the explicitness of the representation.

2. With normalized inputs and outputs, it is possible to compute the estimation error for a

completely random mapping and use it to normalize the score between 0 and 1.

3. A representation is not explicit if the mean squared error (MSE) of the predictor is higher

than the expected MSE between two uniformally distributed random variables (x and y).

It can be shown that MSE = E
[
(x− y)2

]
= 1

6 .

4. Thus, explicitness can be written as 1− 6MSE .
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Predictor-Based Metrics (Explicitness score)

Factors Observation
Codes /

Representations

Predictor / Regrossor

1. Ridgeway and Mozer use a classifier trained on the entire latent code to predict factor

classes, assuming that factors have discrete values.

2. They suggest using a simple classifier such as logistic regression and report classification

performance using the AUC-ROC.

3. The final score is the average AUC-ROC over all classes for all factors.

4. The AUC-ROC minimal value is 0.5, which means that the score needs to be normalized

to obtain a value between 0 and 1.
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Information-Based Metrics

Factors Observation
Codes /

Representations

MI

1. Information-based metrics compute a disentanglement score by estimating the MI between

factors and codes.

I (v , z) =
Bv∑

i=1

Bz∑

j=1

p(i , j)log
p(i , j)

p(i)× p(j)

Factor and code spaces are discretized in Bv and Bz bins, and p(i) and p(j) are estimated as

the proportion of samples assigned to bins i and j , respectively, over all samples.

Similarly, p(i , j) is the proportion of samples assigned to both bins i and j .

2. These methods require fewer hyperparameters than intervention- and predictor-based

metrics.

3. In addition, they do not make assumptions on the nature of the factor–code relations.
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Information-Based Metrics (Mutual Information Gap)

Factors Observation
Codes /

Representations

MI

1. Mutual Information Gap (MIG) computes the MI between each code and factor, I (vi , zj).

2. Then, the code dimension with maximum MI is identified I (vi , z∗) for each factor.

3. Next, the second highest MI, I (vi , zo), is subtracted from this maximal value.

4. This difference constitutes the gap, which is normalized by the entropy of the factor.

MIG =
I (vi , z∗)− I (vi , zo)

H(vi )

5. The MIG score of all factors is averaged to report one score.
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Information-Based Metrics (JEMMIG)

1. MIG verifies that the information related to a factor is expressed by only one code

dimension (compactness).

2. However, modularity is not directly measured. For instance, a code dimension could

contain information about more than one factor.

3. Joint entropy minus mutual information gap (JEMMIG) addresses this drawback by

including the joint entropy of the factor and its best code as

JEMMIG = H(vi , z∗)− I (vi , z∗) + I (vi , zo)

4. This metric indicates a high disentanglement quality with a lower score.

5. The maximum value is bounded by H(vi ) + logBz , where Bz is the number of bins used in

the code space discretization.

6. Hence, the normalized version of JEMMIG is being used

̂JEMMIG = 1− H(vi , z∗)− I (vi , z∗) + I (vi , zo)

H(vi ) + logBz

7. JEMMIG is reported as the average for all factors.
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Information-Based Metrics (DCIMIG )

1. DCIMIG is a metric inspired by DCI and MIG. But it reports a single score for all three

properties.

As MIG, it computes MI gaps between factors and code dimensions.

As DCI, it analyzes a factor–code importance matrix.

2. Then, factor with I (v∗, zj) and I (vo , zj) is identified for each code and obtain the gap

Rj = I (v∗, zj)− I (vo , zj).

3. Each of these gaps Rj relates to a code dimension and the factor for which MI is maximal.

4. For each factor vi , finds all associated gaps Rj and use them as score Si for this factor.

5. If there are more than one Rj associated with the factor, Si equals the highest vi . If there

are none, Si = 0.

6. Finally, the metric is the sum of all scores normalized by the total factor entropy

DCIMIG =

∑m
i=1 Si∑m

i=1 H(vi )
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Information-Based Metrics (Modularity Score)

Factors Observation
Codes /

Representations

MI

1. The factor v∗, which shares the maximum MI for each code dimension zj , is identified.

2. This maximal MI value (I (v∗, zj)) is then compared with MI values of all other factors

modularityj = 1−
∑

i∈V 6=∗ I (vi , zj)
2

(m − 1)I (v∗, zj)2

where V6=∗ as the set of all factors except v∗ and m as the number of factors.

3. The average modularity score over all codes is reported.

Hamid Beigy (Sharif University of Technology) 35 / 38



Conclusions



Conclusions

CARBONNEAU et al.: MEASURING DISENTANGLEMENT: A REVIEW OF METRICS 13

TABLE II

SUMMARY OF FINDINGS FROM EXPERIMENTS AND ANALYSIS. FOR A METRIC TO POSSESS THE DESIRED CHARACTERISTIC (!), IT HAS TO BE TRUE IN
THEORY, AS WELL AS IN PRACTICE. THE ROBUSTNESS TO NOISE CHARACTERISTIC DOES NOT APPLY TO EXPLICITNESS METRICS

Using discretization is not trivial and has an impact on score.
As shown in Section V-E, discretization of the code and the
factor space has a considerable impact on the ability of metrics
to deal with nonlinear relations.

The granularity of the discretization has an impact on the
estimated MI, which is the centerpiece of information-based
metrics. Intuitively, MI informs on how easy it is to predict a
variable A knowing B . Suppose that A is a random variable
and B = A + σ , where σ is random noise. On one extreme,
if both variables are discretized in 1 bin, then the MI is
maximum. On the other end of the spectrum, A and B are
discretized in a large number of narrow bins. If the number of
samples is limited, it is unlikely that B will help predict the
exact bin of A. In that case, MI will appear to be low even if
there exists a strong relation between A and B . This being
said, when representation distributions are simple, MI can
be analytically computed and these considerations can be
avoided.

In intervention-based metrics, the discretization granularity
determines the degree of similarity/dissimilarity of examples
grouped in the same subset. A too coarse discretization creates
heterogeneous groups that are considered homogeneous, which
biases results. A too fine discretization makes it impossible to
create large enough subsets of data points with the same fixed
value. To our knowledge, no procedure has been proposed yet
to strike the right balance between coarse and fine discretiza-
tion for any type of metric.

DCI implemented with random forest is the best
all-around metric. Measuring disentanglement properties sep-
arately allows for accurate scoring. Because random forest is
an expressive model, it can discover nonlinear relationships
and does not suffer from problems related to discretization.
Moreover, random forests can be used as classifiers and
regressors, which makes them appropriate for applications
mixing continuous and categorical factors. DCI implements
a weighting scheme that accounts for dead codes in problems
where not all factors can be identified. However, there are three

disadvantages to DCI. First, modeling relations with random
forests requires a bit of expertise to set the hyperparameters
and determine a relevant criterion for code dimension impor-
tance. The hyperparameters must be tuned using an appropriate
cross-validation procedure, to ensure proper regularization of
the model; otherwise, it will overfit, which results in an
overestimation of explicitness as well as an underestimation of
modularity and compactness. This cross-validation procedure
is time-consuming, which is the second main disadvantage of
the method. In fact, DCI with random forest is by far the
most computationally expensive of all metrics implemented
in this article. Finally, training reliable RF models requires
appreciable quantity of data points when compared to some
other metrics.

In their current state, metrics in the intervention-based
family should be used with great caution. They require large
quantities of data to create subsets with fixed values. This
prohibits their application in problems with limited quantities
of data with labeled factors. They are subject to vulnerabilities
associated with discretization. Moreover, they are prone to
failure modes, which limits their reliability. Finally, unlike
most metrics from other families, they do not produce a
factor–code relation matrix, which makes their results difficult
to interpret and less helpful when debugging.

Information-based metrics are in theory flexible and elegant.
They can measure factor–code relations of any shape, contin-
uous or categorical, with a minimal amount of hyperparameter
tuning and few data points. However, the aforementioned
challenges with discretization limit their universality and make
them vulnerable to noise. Also, metrics based on information
gaps, such as MIG, only consider the difference between
the two best candidates. This limits their expressiveness. For
instance, in the experiment of Section V-D, MIG attributes the
same compactness score (0.0) to representations where a factor
corresponds to two and four code dimensions. We believe that
if these limitations were addressed, information-based metrics
would be more interesting solutions.
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Conclusions

1. Experimental results show different limitations for each metric.

2. Discretization hinders reliability under limited amount of data, noise, and nonlinear

factor–code relations.

3. Predictor-based metrics, when parameterized carefully, are the best performing family of

solutions.

4. It is better that each disentanglement property should be measured separately for better

interpretability.
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