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INTELLIGENCE
• Machine Learning vs. Animal’s Intelligence

§ Limited at Some Crucial Feats

§ Out of Distribu6on Generaliza6on (from one problem 
to another rather than one data point to another)

§ Interven6ons in the world

§ Domain ShiA

§ Temporal Structure

• Large-Scale Pa8ern Recogni;on on 
suitably collected i.i.d data
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CAUSATION(1/2)
4

x causes y if, were we to intervene and change the value 
of x, then the distribuBon of y would also change as a 
result.
x changing doesn’t always change y , but just changes the 
probability that y occurs. As we said earlier, it changes the 
distribu.on of y.



CAUSATION(2/2)
5

• For many research questions, in order to identify an answer 
to them we need to have an idea of the data generating 
process.

• If we can think of some variables as causing others, then the 
causal relationships between them must be a part of that 
data generating process. If x causes y , then x must be a part 
of what generates our observations of y.



CAUSALITY AND 
CORRELATION (1/2)

6

o CorrelaBon describes a staAsAcal 

associaAon between types of variables

o CausaBon means that changes in one 

variable brings about changes in the other

A correlaAon doesn’t imply causaAon, but 

causaAon always implies correlaAon.



CAUSALITY AND 
CORRELATION(2/2)
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There are two main reasons:
1. The third variable problem
§ Ice Cream Sale and Rubbery
 

2. The direc0onality problem
§ Vitamin D and Depression



CAUSALITY 
AND 

INTELLIGENCE
Issue 1. Robustness

§ Robustness of Prediction

§ Out of Control Observation in Real 
World

§ Changes in Distribution of Test Data 
§ Handy Tricks: Data Augmentation, 

Pre-Training, Self-Supervision, 

Inductive Biases
§ i.i.d Persumation
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CAUSALITY AND 
INTELLIGENCE

Issue 2. Learning Reusable Mechanisms
§ Infant’s Understanding of Physiscs

§ Consistency of Rules

§ Facing New Environment, Using TRUE Previous 

Knowledge

§ Adap6ng Parameters, NOT the RULES
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CAUSALITY PERSPECTIVE
§ Can’t be Fully Described by Boolean Logic or ProbabilisJc Inference

§ Needs AdiJonal NoJon of IntervenJon

§ CondiJonal probabiliJes (“seeing people with open umbrellas suggests 

that it is raining”) cannot reliably predict the outcome of acJve 

intervenJon (“closing umbrellas does not stop the rain”)

§ Causal relaJons can be viewed as components of reasoning chain when 

predicJon based on situaJons very far from trained distribuJon

§ Discovering causal relaJons means acquiring robust knowledge that holds 

beyond the support of observed data distribuJon and set of training tasks.
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SO …

§ In the following slides, we’ll argue that causality, with its focus on represenAng STRUCTURAL 

KNOWLEDGE about data generaAng process that allows intervenAons and changes, can 

contribute toward understanding and resolving some limitaAons of current ML methods.
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LEVELS OF CAUSAL MODELING
• For natural phenomena, set of differen4al equa4ons modeling mechanisms 

responsible for 4me evolu4on to:

ü Reason about the effect of interven4ons

ü Predict sta4s4cal dependencies between variables

ü Predict future behavior of physical system

!"
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LEVELS OF CAUSAL MODELING
• Although differential equation is a rather comprehensive description of a 

system, a statistical model can be veiwed as a much more superficial one.

• It often doesn’t refer to dynamic processes, but tells us how some of variables 
allow the prediction of the others as long as experimental conditions do not 
change. Statistical models learn from observed data and do not have dynamics 
of the system.
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Schölkopf et al.: Toward Causal Representation Learning

Table 1 Simple Taxonomy of Models. The Most Detailed Model (Top) Is a Mechanistic or Physical One, Usually in Terms of Differential Equations.

At the Other End of the Spectrum (Bottom), We Have a Purely Statistical Model; This Can Be Learned From Data, but It Often Provides Little Insight

Beyond Modeling Associations Between Epiphenomena. Causal Models Can Be Seen as Descriptions That Lie in Between, Abstracting Away From

Physical Realism While Retaining the Power to Answer Certain Interventional or Counterfactual Questions

data augmentation, and pretraining. We discuss
examples at the intersection between causality and
machine learning in scientific applications and spec-
ulate on the advantages of combining the strengths of
both fields to build a more versatile AI.

II. L E V E L S O F C A U S A L M O D E L I N G
The gold standard for modeling natural phenomena is
a set of coupled differential equations modeling physical
mechanisms responsible for time evolution. This allows us
to predict the future behavior of a physical system, reason
about the effect of interventions, and predict statistical
dependencies between variables that are generated by
coupled time evolution. It also offers physical insights,
explaining the functioning of the system, and lets us read
off its causal structure. To this end, consider the coupled
set of differential equations:

dx
dt

= f(x), x ∈ Rd (1)

with initial value x(t0) = x0. The Picard–Lindelöf theorem
states that, at least locally, if f is Lipschitz, there exists a
unique solution x(t). This implies, in particular, that the
immediate future of x is implied by its past values.

If we formally write this in terms of infinitesimal differ-
entials dt and dx = x(t + dt)− x(t), we get

x(t + dt) = x(t) + dt · f(x(t)). (2)

From this, we can ascertain which entries of the vector x(t)
mathematically determine the future of others x(t + dt).
This tells us that if we have a physical system whose
physical mechanisms are correctly described using such an
ordinary differential equation (1), solved for (dx/dt) (i.e.,
the derivative only appears on the left-hand side), then its
causal structure can be directly read off.2

2Note that this requires that the differential equation system describes
the causal physical mechanisms. If, in contrast, we considered a set
of differential equations that phenomenologically correctly describe the
time evolution of a system without capturing the underlying mechanisms
(e.g., due to unobserved confounding or a form of course graining
that does not preserve the causal structure [208]), then (2) may not
be causally meaningful [186], [217].

While a differential equation is a rather comprehensive
description of a system, a statistical model can be viewed
as a much more superficial one. It often does not refer
to dynamic processes; instead, it tells us how some of
the variables allow the prediction of others as long as
experimental conditions do not change. For example, if we
drive a differential equation system with certain types
of noise, or we average over time, then it may be the
case that statistical dependencies between components of
x emerge and those can then be exploited by machine
learning. Such a model does not allow us to predict the
effect of interventions; however, its strength is that it
can often be learned from observational data, while a
differential equation usually requires an intelligent human
to come up with it. Causal modeling lies in between these
two extremes. Like models in physics, it aims to provide
the understanding and predict the effect of interventions.
However, causal discovery and learning try to arrive at
such models in a data-driven way, replacing expert knowl-
edge with weak and generic assumptions. The overall situ-
ation is summarized in Table 1, adapted from [188]. In the
following, we address some of the tasks listed in Table 1 in
more detail.

A. Predicting in the i.i.d. Setting
Statistical models are a superficial description of real-

ity as they are only required to model associations. For
a given set of input examples X and target labels Y ,
we may be interested in approximating P (Y |X) to answer
questions, such as “what is the probability that this par-
ticular image contains a dog?” or “what is the probability
of heart failure given certain diagnostic measurements
(e.g., blood pressure) carried out on a patient?” Subject
to suitable assumptions, these questions can be provably
answered by observing a sufficiently large amount of i.i.d.
data from P (X, Y ) [257]. Despite the impressive advances
of machine learning, causality offers an underexplored
complement: accurate predictions may not be sufficient
to inform decision-making. For example, the frequency
of storks is a reasonable predictor for human birth rates
in Europe [168]. However, as there is no direct causal
link between these two variables, a change to the stork
population would not affect the birth rates, even though a
statistical model may predict so. The predictions of a statis-
tical model are only accurate within identical experimental
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PREDICTING IN THE I.I.D SETTING
• Sta4s4cal models model the associa4ons of given data and target 

labels, P(Y|X):It can be proved these ques4ons can be answered 

by observing a sufficiently large amount of i.i.d data from P(X,Y).

• Despite the impressive advances of machine learning, causality 

offers an underexplored complement: accurate predic4ons may 

not be sufficient to inform decision-making. For example, the 

frequency of storks is a reasonable predictor for human birth rates 

in Europe. 

• However, as there is no direct causal link between these two 

variables, a change to the stork popula4on would not affect the 

birth rates, even though a sta4s4cal model may predict so. 
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PREDICTING UNDER DISTRIBUTION SHIFTS

• Interven4ons may affect both the value of a subset of causal 
variables and their rela4ons. For example, “is increasing the 
number of storks in a country going to boost its human birth 
rate?” and “would fewer people smoke if cigareQes were more 
socially s4gma4zed?” 

• As interven4ons change the joint distribu4on of the variables of 
interest, classical sta4s4cal learning guarantees no longer apply. 

• On the other hand, learning about interven4ons may allow 
training predic4ve models that are robust against the changes in 
distribu4on that naturally happen in the real world.

• Sta4s4cal rela4ons may change due to 4me or mismatch in 
train/test. Robustness must be guaranteed in any case. 
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ANSWERING COUNTERFACTUAL QUESTIONS

• Harder than Interventions

• This may be a key challenge for AI, as an intelligent agent may benefit from 

imagining the consequences of its actions and understanding in retrospect 

what led to certain outcomes, at least to some degree of approximation. 

• An interventional question would be “how does the probability of heart 

failure change if we convince a patient to exercise regularly?” A 

counterfactual one would be “would a given patient have suffered heart 

failure if they had started exercising a year earlier?” 

• Counterfactuals, or approximations thereof, are especially critical in RL. 

They can enable agents to reflect on their decisions and formulate 

hypotheses that can be empirically verified in a process akin to the 

scientific method.
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NATURE OF DATA

The data format plays a substan4al role in which type of rela4on can 
be inferred. We can dis4nguish two axes of data modali4es: 

1. Observa4onal vs. Interven4onal Data: This is observa4onal in the 
sense that the data is only observed passively, but it is 
interven4onal in the sense that there are interven4ons/shiZs, 
but unknown to us. 

2. Hand-Engineered vs. Raw Data: In classical AI, data are oZen 
assumed to be structured into high level and seman4cally 
meaningful variables, which may par4ally correspond to the 
causal variables of the underlying graph. Raw data, in contrast, 
are unstructured and do not expose any direct informa4on 
about causality. 
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CASUAL MODELS AND INFERENCE

ü Methods Driven by i.i.d. data

ü Reichenbach Principle: From Sta;s;cs to Causality

ü Structural Causal Models

ü Differences Between Sta;s;cal Models, Causal Graphical Models, and SCMs 
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METHODS DRIVEN BY I.I.D. DATA

• Strong universal consistency results from sta6s6cal learning 

theory apply, guaranteeing convergence of a learning 

algorithm to the lowest achievable risks. 

• With i.i.d. assump6on, the direc6onality of cause-effect will 

be lost. 

• Recommending is such an interven6on, which takes us 

outside the i.i.d. seUng. We no longer work with the 

observa6onal distribu6on but a distribu6on where certain 

variables or mechanisms have changed.
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REICHENBACH PRINCIPLE: FROM STATISTICS TO CAUSALITY

• Common Cause Principle: If two observables X and Y are 
sta6s6cally dependent, then there exists a variable Z that 
causally influences both and explains all the dependence in 
the sense of making them independent when condi6oned 

on Z. 

• As a special case, this variable can coincide with X or Y . 
Suppose that X is the frequency of storks and Y the human 
birth rate. If storks bring the babies, then the correct causal 

graph is X → Y. If babies a\ract storks, it is X ← Y. If there is 
some other variable that causes both (such as economic 
development), we have X ← Z → Y . 

20



A graphical structure used to represent causal rela6onships between variables in a system. 

21

DIRECTED ACYCLIC GRAPH (DAG)

Each edge in the graph has a 
direc6on, indica6ng the direc6on of 
causality. For example, if variable A 
causes variable B, there will be a 
directed edge from A to B.

There are no cycles in the graph, 
meaning you can't follow a 
sequence of edges and return to the 
same node.

Directed Acyclic
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WHY DO WE USE DAG?

Interpretability

Causal Inference

Modeling Causal Mechanisms

Interven;onal Studies



STRUCTURAL CAUSAL 
MODEL(1/3)
The SCM viewpoint considers a set 
of observables !!  , . . . , !" 
associated with the ver6ces of a 
directed acyclic graph (DAG) and 
assumes that each observable is the 
result of an assignment :
!#: = $#(&'# , )#)	(,	 = 	1, . . . , /)	

$# is a determinis6c func6on 
depending on !# ’s parents in the 
graph (denoted by &'#) and on an 
unexplained random variable )# . 
the set of noises )!, . . . , )" is 
assumed to be jointly independent.

If we specify distribu6ons of )#  , 
recursive applica6on of the formula 
allows us to compute the entailed 
observa6onal joint distribu6on P(!! , . 
. . , !"  ). This distribu6on has 
structural proper6es inherited from 
the graph and sa6sfies caudal Markov 
condi6on:

Each node !$ 	 condi6oned on its 
parents, is independent of its non 
descendants.
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STRUCTURAL CAUSAL 
MODEL(2/3)
By considering the graph structure 
and the joint independence of the 
noises, a canonical factorization of 
the joint distribution can be 
defined, which requires causal 
conditions, which we refer to as 
causal (or disentangled) 
factorization:

	& !!, … , !" =1
#%!

"
&(!#|&'#)	

While many other entangled 
factoriza6ons are possible, for example:

	& !!, … , !" =1
#%!

"
&(!#|!#&!, … , !")	
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STRUCTURAL CAUSAL 
MODEL(3/3)

Difference between sta6s6cal (leA) and causal models (right) 
on a given set of three variables. While a sta6s6cal model 
specifies a single probability distribu6on, a causal model 
represents a set of distribu6ons, one for each possible 
interven6on.



CAUSAL LEARNING AND REASONING
• The conceptual basis of statistical learning is a joint distribution P(X1,...,Xn), and we make assumptions 

about function classes used to approximate. 

• Causal learning considers a richer class of assumptions and seeks to exploit the fact that the joint 

distribution possesses a causal factorization. It involves the causal conditionals P (Xi|PAi), how these 

conditionals relate to each other, and interventions or changes that they admit. 

• Once a causal model is available, either by external human knowledge or a learning process, causal 

reasoning allows drawing conclusions on the effect of interventions, counterfactuals, and potential 

outcomes. In contrast, statistical models only allow reasoning about the outcome of i.i.d. experiments. 
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WHY CAUSAL 
REPRESENTATION 
LEARNING?

Causal representation learning aims to incorporate ideas from 
both representation learning and causal inference in order to 
learn models from unstructured data which have desirable 
properties of causal models, such as robustness to data 
distribution shifts.

be learned from unstructured data 
such as images and text

predict reliably under real-
world data distribution shifts

Statistical models 
Causal models 



INTERVENTION(1/6)
The University of Winnipeg study that showed that heavy text messaging in 
teens was correlated with “shallowness.” Media outlets jumped on this as 
proof that texting makes teenagers more shallow. (Or, to use the language 
of intervention, that intervening to make teens text less would make them 
less shallow.) The study, however, proved nothing of the sort. It might be 
the case that shallowness makes teens more drawn to texting. It might be 
that both shallowness and heavy texting are caused by a common factor—
a gene, perhaps—and that intervening on that variable, if possible, would 
decrease both. 
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INTERVENTION(2/6)
The difference between intervening on a variable and conditioning on that 

variable should, hopefully, be obvious. When we intervene on a variable in 

a model, we fix its value. We change the system, and the values of other 

variables often change as a result. When we condition on a variable, we 

change nothing; we merely narrow our focus to the subset of cases in 

which the variable takes the value we are interested in. What changes, 

then, is our perception about the world, not the world itself. 
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INTERVENTION(3/6)
When we intervene to fix the value of a variable, we curtail the natural 
tendency of that variable to vary in response to other variables in nature. 
This amounts to performing a kind of surgery on the graphical model, 
removing all edges directed into that variable. 

30
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University of Winnipeg study that showed that heavy text messaging in teens was correlated
with “shallowness.” Media outlets jumped on this as proof that texting makes teenagers more
shallow. (Or, to use the language of intervention, that intervening to make teens text less
would make them less shallow.) The study, however, proved nothing of the sort. It might be
the case that shallowness makes teens more drawn to texting. It might be that both shallowness
and heavy texting are caused by a common factor—a gene, perhaps—and that intervening on
that variable, if possible, would decrease both.
The difference between intervening on a variable and conditioning on that variable should,

hopefully, be obvious. When we intervene on a variable in a model, we fix its value. We change
the system, and the values of other variables often change as a result. When we condition on a
variable, we change nothing; we merely narrow our focus to the subset of cases in which the
variable takes the value we are interested in. What changes, then, is our perception about the
world, not the world itself.
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Figure 3.1 A graphical model representing the relationship between temperature (Z), ice cream sales
(X), and crime rates (Y)

Consider, for instance, Figure 3.1 that shows a graphical model of our ice cream sales
example, with X as ice cream sales, Y as crime rates, and Z as temperature. When we inter-
vene to fix the value of a variable, we curtail the natural tendency of that variable to vary
in response to other variables in nature. This amounts to performing a kind of surgery on
the graphical model, removing all edges directed into that variable. If we were to intervene
to make ice cream sales low (say, by shutting down all ice cream shops), we would have
the graphical model shown in Figure 3.2. When we examine correlations in this new graph,
we find that crime rates are, of course, totally independent of (i.e., uncorrelated with) ice
cream sales since the latter is no longer associated with temperature (Z). In other words, even
if we vary the level at which we hold X constant, that variation will not be transmitted to
variable Y (crime rates). We see that intervening on a variable results in a totally different
pattern of dependencies than conditioning on a variable. Moreover, the latter can be obtained

YX

Z
UY

UZ

Figure 3.2 A graphical model representing an intervention on the model in Figure 3.1 that lowers ice
cream sales
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INTERVENTION(4/6)
The no;on of an interven;on is a defining characteris;c of 
causal modeling that differen;ates it from sta;s;cal modeling. 
Consider X → Y :
• If we intervene on X, then P (Y | do(X = x)) is the popula;on 

distribu;on of Y if we fix everyone in the popula;on’s X value 
to x

• The condi;onal probability P (Y | X = x) is the distribu;on of Y 
in the subset of the popula;on where X was x

In general, P (Y | do(X = x)) does not equal P (Y | X = x))
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INTERVENTION(5/6)
1) No intervention: Only observational data are 
obtained from the causal model.

2) Hard/perfect: The function in the structural 
assignment of a variable (or, analogously, of multiple 
variables) is set to a constant (implying that the value 
of the variable is fixed), and then, the entailed 
distribution for the modified SCM is computed.
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INTERVENTION(6/6)
3) SoB/imperfect: The structural assignment for a 
variable is modified by changing the func;on or the 
noise term (this corresponds to changing the 
condi;onal distribu;on given its parents).

4) Uncertain: The learner is not sure which 
mechanism/variable is affected by the interven;on.

33



INDEPENDENT CAUSAL MECHANISM 
PRINCIPLE (1/2)

The causal generative process of a system’s variables 
is composed of autonomous modules that do not 
inform or influence each other. In the probabilistic 
case, this means that the conditional distribution of 
each variable given its causes (i.e., its mechanism) 
does not inform or influence the other mechanisms.
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INDEPENDENT CAUSAL MECHANISM 
PRINCIPLE (2/2)

ICM principle
consequences

35

No flow of informaBon: knowing a 
mechanism !(#!|%&!)  does not give us 
informaAon about another mechanism 
! #" %&" , ) ≠ +

No flow of influence: intervening upon one 
mechanism !(#!|%&!) does not change the 
other mechanisms	! #" %&" , ) ≠ +



REPRESENTATION LEARNING
Representation Learning is a process in machine learning where algorithms extract 
meaningful patterns from raw data to create representations that are easier to 
understand and process. 

Representation learning can be divided into:
o Supervised representation learning
o Unsupervised representation learning

Goals of representation learning are:

• Interpretability

• Reveal hidden features

• Be used for transfer learning

36



CAUSAL 
REPRESENTATION 

LEARNING



CAUSAL 
REPRESENTATION 
LEARNING

Causal representation model is a mathematical framework 

used to understand causal relationships between variables 

in a system. It aims to uncover how changes in one variable 

affect other variables over time.



CAUSAL 
REPRESENTATION 
LEARNING
Due to SCM, noise terms are independent so the disentangled 
representation is feasible:

% -#, … , -$ =0
!%#

$
%(-!|%&!)

Suppose that we seek to reconstruct such a disentangled representation 
using independent mechanisms from data, but the causal variables -! are 
not provided to us a priori. Rather, we are given (possibly high- dimensional) 
X = ##, … , #& . we should construct causal variables (n ≪ d) as well as 
mechanisms 

-! 	≔ 4! %&!, 5!



CAUSAL 
REPRESENTATION 
LEARNING

1. Use an encoder !:	ℝ!→ℝ#  taking X to a latent “bo5leneck” representa8on 

comprising the unexplained noise variables & = &$, … , &#

2. Map f(U) determined by structural assignments *$, … , *#

3. Apply a decoder +:	ℝ#→ℝ!

For suitable n, the system can be trained using reconstruc8on error to sa8sfy p ○ f ○ q. If the 

causal graph is known, the topology of a neural network implemen8ng f can be fixed 

accordingly; if not, the neural network decoder learns the composi8on p  ̃= p○f. In prac8ce, 

one may not know f and, thus, only learn an autoencoder p  ̃○ q, where the causal graph 

effec8vely becomes an unspecified part of the decoder p ,̃ possibly aided by a suitable 

choice of architecture.



41

CAUSAL VAE
DISENTANGLED REPRESENTATION LEARNING VIA NEURAL 
STRUCTURAL CAUSAL MODELS

A new Varia;onal Autoencoder (VAE) based 
framework named CausalVAE, which includes 
a Causal Layer to transform independent 
exogenous factors into causal endogenous 
ones that correspond to causally related 
concepts in data.
VAE SCM Causal VAE



WHY CAUSAL VAE?
Most exisAng works of disentangled representaAon learning 
make a common assumpAon that the real world observaBons 
are generated by countable independent factors. 
we argue that in many real world applicaAons, latent factors 
with semanAcs of interest are causally related and thus we 
need a new framework that supports causal disentanglement.

42





43

HOW CASUAL VAE WORKS?
CasualVAE is a VAE-based causal disentangled representation learning framework by 
introducing a novel Structural Causal Model layer (Mask Layer), which allows it to 
recover the latent factors with semantics and structure via a causal DAG. 
The input signal passes through an encoder to obtain independent exogenous factors 
and then a Causal Layer to generate causal representation which is taken by the 
decoder to reconstruct the original input. 
additional information is required as weak supervision signals to achieve causal 
representation learning. By weak supervision the causal structure of the latent factors 
is automatically learned, instead of being given as a prior in. 
To train the model, a new loss function used which includes the VAE evidence lower 
bound (ELBO) loss and an acyclicity constraint imposed on the learned causal graph to 
guarantee its DAGness.
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HOW CASUAL VAE WORKS?



HOW CASUAL VAE WORKS?
FORMALIZED CAUSAL REPRESENTATION

To formalize causal representa6on, we consider n concepts of interest in data. The concepts 
in observa6ons are causally structured by a Directed Acyclic Graph (DAG) with an adjacency 
matrix A. Though a general nonlinear SCM is preferred, for simplicity, the Causal Layer exactly 
implements a Linear SCM as described in Equa6on:

z = 6'7 + 9 = : − 6' ()9, 9~= >, : 	 (1)

A is the parameters to be learnt in this layer.3 are independent 
Gaussian exogenous factors and 4 ∈ ℝ" is structured causal 
representation of n concepts that is generated by a DAG and thus 
A can be permuted into a strictly upper triangular matrix.



HOW CASUAL VAE WORKS?
STRUCTURAL CASUAL MODEL LAYER (1/2)

Once the causal representation z is obtained, it passes through a Mask Layer to 
reconstruct itself.

Let 4#  be the i-th variable in the vector 4. The adjacency matrix associated with the 
causal graph ,7	'	 = 	 ['!|	. . . |'"]	where '# ∈ ℝ" is the weight vector such that '#$  
encodes the causal strength from 4$  to 4#. We have a set of mild nonlinear and 
invertible functions [:!, :'. . . , :"]	that map parental variables to the child variable. 
Then we write: 

!;= ";(#; ○ !	; 	';) + (;
○ is the element-wise multiplication and A! is the parameter B!(.)



HOW CASUAL VAE WORKS?
STRUCTURAL CASUAL MODEL LAYER (2/2)

we find that adding a mild nonlinear func;on )< results in 
more stable performances. To show how this masking 
works, consider a variable *< and +< ○ *	equals a vector 
that only contains its parental informaIon as it masks 
out all *< ’s non-parent variables. By minimizing the 
reconstrucIon error, the adjacency matrix + and the 
parameter ,<  of the mild nonlinear func;on )<  are 
trained.



52RESULTS OF CAUSALVAE MODEL 
ON CELEBA(SMILE).

The controlled factors are GENDER, SMILE, EYES OPEN and MOUTH OPEN 
respectively.



CONCLUSION
1. Efficiency in Learning Causal Dynamics: Causal representation learning excels in understanding complex 
systems by directly modeling causal relationships, enabling efficient learning of dynamic systems' behavior.

2. Robust Decision Making: Causal representations provide a more robust foundation for decision-making in 
uncertain environments by capturing the underlying causal mechanisms driving observed phenomena.

3. Generalization Across Contexts: Unlike disentangled representations, causal representations generalize 
well across diverse contexts, facilitating transfer learning and adaptation to new environments without 
extensive retraining.

4. Interpretability and Explainability: Causal representations offer interpretable and explainable models, 
allowing humans to understand why certain predictions or actions are made, which is crucial in critical 
applications like healthcare and finance.

5. Counterfactual Reasoning: Causal representations enable sophisticated counterfactual reasoning, 
allowing systems to understand the consequences of different actions and interventions, essential for 
planning and policy-making.

6. Discovering Latent Variables: Causal representation learning can automatically discover latent variables 
and their causal relationships, leading to a more compact and informative representation of complex data.

7. Robustness to Distribution Shifts: Causal representations are more robust to distribution shifts and 
changes in the data generating process, making them suitable for real-world applications where data 
distribution may vary over time.
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