
Deep Generative Models

Score-Based Generative Models

Hamid Beigy

Sharif University of Technology

May 4, 2025



Table of contents

1. Introduction

2. Score-Based Generative Models

3. References

Hamid Beigy (Sharif University of Technology) 1 / 36



Introduction



Generative models categories

Generative models

Explicit density

Tractable density Approximate density Unnormalized density

Implicit density

Autoregressive

Normalizing Flows

VAEs

Diffusion models

Energy-based

GANs

Directly learn

density

Learn approximation

of density, e.g.

lower bound

Learn unnormalized

density

compare real vs

generated samples
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,

whose true distribution pd(x) is unknown.

2. We attempt to approximate this process with a chosen model, pθ(x), with parameters θ

such that x ∼ pθ(x).

3. Learning is the process of searching for the parameter θ such that pθ(x) well approximates

pd(x) for any observed x, i.e.

pθ(x) ≈ pd(x)

4. We wish pθ(x) to be sufficiently flexible to be able to adapt to the data for obtaining

sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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Deep generative models

Autoregressive models

1. Tractable density

2. Density is estimated as

pθ(x) =
m∏

j=1

pθ(xj | x<j)

3. Tractable likelihood

4. No inferred latent factors

Latent variable models

1. Approximated density

2. Density is estimated as

pθ(x) =

∫
pθ(x, z)dz

3. Intractable likelihood

4. Latent feature representation

Normalizing flow models

1. Exact density

2. Density is estimated as

pθ(x) = pz(z)|det (Jf )|
where z = f (x)

3. Tractable likelihood

4. Latent feature representation

Generative adversarial networks

1. Implicit density

2. Can optimize f-divergences and Wasserstein distance

min
G

max
D

Ex∼ pd(x)
[logD(x)] + Ez∼ pz(z)[log(1− D(G (z)))]

3. Latent feature representation

4. Very flexible model architectures, unstable training, hard

evaluation, mode collapse
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Representing probability distributions

1. The parametrized versions of the probability density functions

pθ(x) =
1

Zθ
exp(−Eθ(x)) where Zθ =

∫
exp(−Eθ(x))dx

2. A benefit of EBM is that

energy functions are not constrained to be non-negative.

energy functions can be very flexible parametrized.

3. An energy function and its corresponding probability distributions
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Representing probability distributions

1. The density function given by an EBM is

pθ(x) =
exp(−Eθ(x))

Zθ

2. Evaluation and differentiation of log pθ(x) w.r.t. its parameters involves a typically

intractable integral.

max
θ

m∑

k=1

log pθ(xk)

3. Pros:

Extreme flexibility: can use any function Eθ(x) you want

4. Cons:

Sampling from pθ(x) is hard.

Evaluating and optimizing likelihood pθ(x) is hard (learning is hard).

No feature learning (but we can add latent variables)

5. Problem: A fundamental problem is that computing Zθ numerically scales exponentially

in the number of dimensions of x.
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Tractability/flexibility of generative models

1. In generative modeling there are two opposing forces: tractability and flexibility.

2. Tractable models are usually analytically computable, thus easy to evaluate and fit.

3. But they are usually not flexible enough to learn the true data structure.

4. Flexible models can fit arbitrary structures in data.

5. But they are usually expensive to evaluate, fit, or sample from

6. Diffusion/score-matching models are both tractable and flexible.
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Representing probability distributions

1. GAN-like quality and better, while having the advantages of explicit probabilistic models.

Explicit likelihood computation

Representation learning

2. State-of-the results in generation, audio synthesis, shape generation. etc.

Score-based models: impressive results

• GAN-like quality and better, while 
having the advantages of explicit 
probabilistic models 
• Explicit likelihood computation 
• Representation learning 

• State-of-the-art results in 
generation, audio synthesis, shape 
generation, etc

Song et al., Score-Based Generative Modeling through Stochastic Di!erential Equations, ICLR 2021 (outstanding paper award)

3. Score-based models we do not need a tractable normalizing constant.
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Score-Based Generative Models



Score function

1. The (Stein) score function is the gradient of

the log-probability of a distribution w.r.t. to

the input.

s(x) = ∇x log p(x)

2. A model sθ(x), which models the score function

explicitly, is a score-based model

sθ(x) = ∇x log pθ(x)

Score function

• The (Stein) score function is the gradient 
of the log-probability of a distribution w.r.t. 
to the input 

 

• A model , which models the score 
function explicitly, is a score-based model 

∇xlog p(x)
sθ(x)

sθ(x) ≈ ∇xlog p(x)
The score function of a mixture of two Gaussians
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Score function (One-dimensional Gaussian distribution)

1. Consider one-dimensional Gaussian distribution N (µ, σ2) = 1√
2π σ

e−
1
2 ( x−µ

σ )2

.

2. Its log probability logN (µ, σ2) = − log
(√

2π σ
)
− 1

2

(
x−µ
σ

)2
.

3. The score of point x is s(x) = d logN (µ,σ2)
dx =

(
µ−x
σ2

)
.Score function example: 1D Gaussian J. Fessler

Generative

p(x) = 1Ô
2fi‡2 e≠(x≠µ)2/2‡2 =∆ s(x) = d

dx log p(x) = 1
‡2 (x ≠ µ)

13 / 54
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Score function (One-dimensional Gamma distribution)

Score function example: 1D Gamma J. Fessler
Generative

Note sign of score function to left and right of mode.
14 / 54
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Score function (One-dimensional GMM distribution)

Score function example: 1D GMM J. Fessler
Generative

I

Could you recover the pdf p(x) from its score function s(x) in 1D?

15 / 54
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Score-based generative models

1. Score-based models we do not need a tractable normalizing constant

sθ(x) = ∇x log pθ(x)

= −∇x Eθ(x)−∇x logZθ︸ ︷︷ ︸
=0

= −∇x Eθ(x)

Energy-based model

Energy network

Score-based model

Score network
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Score-based generative models

1. In Langevin dynamics, initially draws a sample x0 from a simple prior distribution.

2. Then uses a process for K steps with step size ε > 0 and zk ∼ N (0, I):

xk+1 ← xk +
ε2

2
∇x log pθ(x) + εzk

= xk +
ε2

2
sθ(x) + εzk .

220 9 Score-Based Generative Models

Fig. 9.2 (a) An illustration of the score function . s(x) plotted as vectors (white arrows) on a regular 
grid for a multimodal distribution (dark colors correspond to low probability; bright colors depict 
high probability). (b) A trajectory after applying the SGLD (consecutive points are represented by 
white crosses, and their scores are denoted by gray arrows). 

differentiable function of . x, we cannot solve (9.3) using autograd. There is a so-
lution, though, by adding some small Gaussian noise with variance . σ2 to data, 
i.e., .x̃n = xn + σ · ε , where .ε ∼ N(0, I). The resulting distribution is Gaussian, 
.N(x̃n |xn,σ2). In other words, we can turn .pdata(x) into a mixture of Gaussians with 
data as means and some small variance . σ2, namely: 

.qdata(x̃n) =
1
N

N∑
n=1

N(x̃n |xn,σ2). (9.4) 

Eventually, instead of using the non-differentiable objective in (9.3), we can 
formulate a differentiable objective by replacing .pdata(xn) with .qdata(x̃n) in (9.3) 
[7–9]: 

.L(θ) = 1
2N

N∑
n=1

∫
‖sθ (x̃) − ∇x̃ lnN(x̃|xn,σ2)‖2 N(x̃n |xn,σ2) dx̃. (9.5) 

One may say that there is still a problem because we have a gradient to calculate. 
However, we know the closed formof the score function for theGaussian distribution: 

.∇x̃ lnN(x̃n |xn,σ2) = ∇x̃

(
− ln(2πσD) − 1

2σ2 (x̃n − xn)2
)

(9.6) 

= −∇x̃ 
1 

2σ2 (x̃n − xn)2 (9.7) 

= − 1 
σ2 (x̃n − xn) (9.8) 

= − 1 
σ2 (xn + σ · ε − xn) (9.9) 

= − 1 
σ
ε, (9.10)
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Score-based generative models

1. In Langevin dynamics, initially draws a sample x0 from a simple prior distribution.

2. Then uses a process for K steps with step size ε > 0 and zk ∼ N (0, I):

xk+1 ← xk +
ε2

2
∇x log pθ(x) + εzk

= xk +
ε2

2
sθ(x) + εzk .

Theorem 3.1. In the context of our problem, the solution xt of the Langevin equation will have a
probability distribution p(x, t) at time t satisfying the Fokker-Planck Equation

@tp(x, t) = �@x

n
[@x(log p(x))]p(x, t)

o
+ @2

xp(x, t), (3.2)

where log p(x) is the log-likelihood of the ground truth distribution.

Deriving the Fokker-Planck equation will take a tremendous amount of e↵ort. However, if we are given a
candidate solution, verifying whether it satisfies the Fokker-Planck equation is not hard.

Verification of Theorem. Suppose that we have run Langevin equation for long enough that we have
reached a converging solution xt as t ! 1. We argue that this limiting distribution is p(x). Indeed,
we can show that

@x

n
log p(x)

o
=

@xp(x)

p(x)
.

Then, substituting p(x, t) by p(x) when t!1, we can show that

�@x

n
[@x(log p(x))]p(x)

o
+ @2

xp(x) = @x

n
[�@x(log p(x))]p(x) + @xp(x)

o

= @x

n
� @xp(x)

p(x)
p(x) + @xp(x)

o

= @x

n
� @xp(x) + @xp(x)

o
= 0.

On the other hand, when t ! 1, it holds that @tp(x) = 0. Therefore, the Fokker-Planck equation is
verified.

Example 3.2. Consider a Gaussian mixture p(x) = ⇡1N (x | µ1,�
2
1)+⇡2N (x | µ2,�

2
2). We can calculate

the gradient rx log p(x) analytically or numerically. For demonstration, we choose ⇡1 = 0.6. µ1 = 2,
�1 = 0.5, ⇡2 = 0.4, µ2 = �2, �2 = 0.2. We initialize x0 = 0. We choose ⌧ = 0.05. We run the
above gradient descent iteration for T = 500 times, and we plot the trajectory of the values p(xt) for
t = 1, . . . , T . As we can see in the figure below, the sequence {x1, x2, . . . , xT } simply follows the shape
of the Gaussian and climb to one of the peaks.

What is more interesting is when we add the noise term. Instead of landing at the peak, the
sequence xt moves around the peak and finishes somewhere near the peak. (Remark: To terminate the
algorithm, we can gradually make ⌧ smaller or we can early stop.)

xt+1 = xt + ⌧rx log p(xt) xt+1 = xt + ⌧rx log p(xt) +
p

2⌧z

Figure 3.2: Deterministic algorithm aiming to pick a sample that maximizes the likelihood,
versus a stochastic algorithm which adds noise at every iteration.

Figure 3.3 shows an interesting description of the sample trajectory. Starting with an arbitrary location,
the data point xt will do a random walk according to the Langevin dynamics equation. The direction of the

© 2024 Stanley Chan. All Rights Reserved. 46
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Score-based generative models

random walk is not completely arbitrary. There is a certain amount of pre-defined drift while at every step
there is some level of randomness. The drift is determined by rx log p(x) whereas the randomness comes
from z.

Figure 3.3: Trajectory of sample evolutions using the Langevin dynamics. We colored the two
modes of the Gaussian mixture in di↵erent colors for better visualization. The setting here is
identical to the example above, except that the step size is ⌧ = 0.001.

Example 3.3. Following the previous example we again consider a Gaussian mixture

p(x) = ⇡1N (x | µ1,�
2
1) + ⇡2N (x | µ2,�

2
2).

We choose ⇡1 = 0.6. µ1 = 2, �1 = 0.5, ⇡2 = 0.4, µ2 = �2, �2 = 0.2. Suppose we initialize M = 10000
uniformly distributed samples x0 ⇠ Uniform[�3, 3]. We run Langevin updates for t = 100 steps. The
histograms of generated samples are shown in the figures below.

Figure 3.4: Samples generated by Langevin dynamics. Initially the samples are uniformly dis-
tributed. As time progresses, the distribution of the samples become the desired distribution.

Remark 1: Stochastic Gradient Langevin Dynamics. The dynamical behavior of xt governed
by the Langevin equation is often known as the Langevin dynamics. Langevin dynamics uses gradient
descent plus noise. This is not the same as stochastic gradient descent (SGD). SGD uses minibatches
to approximate the full gradient. There is no noise. The randomness in SGD comes from the minibatch
which are uniformly sampled from the training dataset. SGD can be paired with Langevin dynamics
to make stochastic gradient Langevin dynamics as outlined in [46] which provided a clear comparison
in the context of classical maximum-a-posteriori (MAP) estimation.

Stochast Gradient Descent �✓t =
✏t
2

 
r✓ log p(✓t) + N

n

nX

i=1

r log p(yti
|✓t)

!

Langevin Dynamics �✓t =
✏

2

 
r✓ log p(✓t) +

NX

i=1

r log p(yi|✓t)

!
+ ⌘t

SG Langevin Dynamics �✓t =
✏t
2

 
r✓ log p(✓t) + N

n

nX

i=1

r log p(yti
|✓t)

!
+ ⌘t,

© 2024 Stanley Chan. All Rights Reserved. 47
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Score Matching (SM)

1. Let f (x) and g(x) be two continuously differentiable real-valued functions.

2. If f (x) and g(x) have equal first derivatives everywhere, then f (x) = g(x) + Constant.

3. When f (x) and g(x) are log-pdfs with equal first derivatives, the normalization

requirement implies that

∫
exp(f (x))dx =

∫
exp(g(x))dx = 1

and

f (x) ≡ g(x)

.

4. We can approximately learn an EBM by matching the first derivatives of its log-pdf to the

first derivatives of the log-pdf of the data distribution.

5. If they match, then the EBM captures the data distribution exactly.

6. The first-order gradient function of a log-pdf is also called the score of that

distribution (Hyvärinen 2005).

7. For training EBMs, it is useful to transform the equivalence of distributions to the

equivalence of scores, because the score of an EBM can be easily obtained.
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Score Matching (SM)

1. The main problem is that the probability distribution function pd(x) is unknown.

2. A simple way to approximate pd(x) is to use kernel density estimator, denoted by q(x).

q(x) =
1

m

m∑

k=1

1

h
K

(
x− xk

h

)
,

where h is a hyper-parameter for kernel K (.) and xk is kth sample in the training set.

3. By using the definition of kernel density estimator, loss function equals to

Jesm(θ) =

∫

x

‖sθ(x)−∇x log q(x)‖2 q(x)dx

=

∫

x

‖sθ(x)−∇x log q(x)‖2 1

m

m∑

k=1

1

h
K

(
x− xk

h

)
dx

=
1

m × h

m∑

k=1

∫

x

‖sθ(x)−∇x log q(x)‖2K
(

x− xk
h

)
dx

4. Explicit score matching has a drawback because kernel density estimation is not a very

effective way to estimate the actual data distribution when we have a small number of

samples in a high-dimensional space.
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Score Matching (SM)

1. The score of an EBM can be easily obtained by ∇x log pθ(x) = −∇xEθ(x).

2. The score does not involve the typically intractable normalizing constant Zθ.

3. The basic score matching minimizes a discrepancy between two distributions called the

Fisher divergence:

DFS( pd(x) || pθ(x)) = E pd(x)

[
1

2
‖∇x log pd(x)−∇x log pθ(x)‖2

]

4. The first term admits a trivial unbiased Monte Carlo estimator using the empirical mean

of samples x ∼ pd(x).

5. The second term is generally impractical to calculate since it requires knowing

∇x log pd(x).
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Implicit Score Matching (SM)

1. Score matching eliminates the data score using integration by parts. To simplify discussion,

we consider the Fisher divergence between distributions of 1-D random variables as

1

2
E pd(x)

[
(∇x log pd(x)−∇x log pθ(x))2

]
=

1

2

∫
pd(x)(∇x log pd(x)−∇x log pθ(x))2dx

=
1

2

∫
pd(x)(∇x log pd(x))2dx

︸ ︷︷ ︸
Constant

+
1

2

∫
pd(x)(∇x log pθ(x))2dx

−
∫

pd(x)∇x log pθ(x)∇x log pd(x)dx .

2. By integration by parts, we have

−
∫

pd(x)∇x log pθ(x)∇x log pd(x)dx = −
∫
∇x log pθ(x)∇x pd(x)dx

= − pd(x)∇x log pθ(x)

∣∣∣∣
∞

−∞

+

∫
pd(x)∇2

x log pθ(x)dx

(i)
= E pd(x)

[∇x
2 log pθ(x)],
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Implicit Score Matching (SM)

1. The line (i) holds if we assume pd(x)→ 0 as |x | → ∞.

2. Substituting the results of integration by parts into the 1-D Fisher divergence, we obtain

1

2
E pd(x)

[
(∇x log pd(x)−∇x log pθ(x))2

]
= E pd(x)

[
∇2

x log pθ(x)
]

+
1

2
E pd(x)

[
(∇x log pθ(x))2

]
+ Constant.

Therefore, the equivalent form of 1-D Fisher divergence does not involve ∇x log pd(x).

3. Generalizing the integration by parts argument to muti-dimensional data, we have the

following objective equivalent to Fisher divergencep̃arenciteHyvarinen05.

E pd(x)

[
tr
(
∇2

x log pθ(x)
)

+
1

2
‖∇x log pθ(x)‖22

]
+ Constant,

where ∇2
x denotes the Hessian with respect to x.

4. This objective is known as the implicit score matching objective, because it only involves

functions of ∇x log pθ(x) and it does not depend on the intractable partition function.

5. Therefore, it is ideal for learning unnormalized probability models.
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Implicit Score Matching (SM)

1. The Fisher divergence can be rewritten as:

DFS( pd(x) || pθ(x)) = E pd(x)

[
tr
(
∇2

x log pθ(x)
)

+
1

2
‖∇x log pθ(x)‖22

]
+ Constant,

= E pd(x)

[
1

2

D∑

i=1

(
∂Eθ(x)

∂xi

)2

+

(
∂2Eθ(x)

∂x2i

)2
]

+ Constant

2. SM only requires the trace of the Hessian, but it is still expensive to compute even with

modern hardware and automatic differentiation packages (Martens, Sutskever, and

Swersky 2012).

3. For this reason, the implicit SM formulation has only been applied to relatively simple

energy functions where computation of the second derivatives is tractable.

4. Score Matching assumes a continuous data distribution with positive density over the

space, but it can be generalized to discrete or bounded data distributions.
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Denoising Score Matching (DSM)

1. The Score Matching objective requires several regularity conditions for log pd(x):

it should be continuously differentiable

it should be finite everywhere

2. These conditions may not always hold in practice, such as distribution of gray level of

pixels in images.

3. The distribution of digital images is typically discrete and bounded.

4. Therefore, log pd(x) is discontinuous and is negative infinity outside the range, and

therefore SM is not directly applicable.

5. To alleviate this difficulty, one can add a bit of noise to each data point: x̃ = x + ε

6. As long as the noise distribution p(ε) is smooth, the resulting noisy data distribution

q(x̃) =
∫
q(x̃ | x) pd(x)dx is also smooth.

7. Thus the Fisher divergence DFS( q(x̃) || pθ(x̃)) is a proper objective.
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Denoising Score Matching (DSM)

1. It has been shown that the objective with noisy data can be approximated by the

noiseless Score Matching objective plus a regularization term.

2. This regularization makes Score Matching applicable to a wider range of data

distributions, but still requires expensive second-order derivatives.

3. One elegant and scalable solution to the above difficulty, is to show

DFS( q(x̃) || pθ(x̃)) = E q(x̃)

[
1

2
‖∇x log q(x̃)−∇x log pθ(x̃)‖22

]

= E q(x̃,x)

[
1

2
‖∇x log q(x̃ | x)−∇x log pθ(x̃)‖22

]
+ Constant

4. The above expectation is again approximated by the empirical average of samples, thus

completely avoiding both the unknown term pd(x) and computationally expensive

second-order derivatives.

5. This estimation method is called Denoising Score Matching (DSM) (Vincent 2011).
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Denoising Score Matching (DSM)

1. The major drawback of adding noise to data arises when pd(x) is already a well-behaved

distribution that satisfies the regularity conditions required by Score Matching.

2. In this case, DFS( q(x̃) || pθ(x̃)) 6= DFS( pd(x) || pθ(x)), and DSM is not a consistent

objective because the optimal EBM matches the noisy distribution q(x̃) not pd(x).

3. This inconsistency becomes non-negligible when q(x̃) significantly differs from pd(x).

4. One way to attenuate the inconsistency of DSM is to choose q(x) ≈ pd(x).

5. This often significantly increases the variance of objective values and hinders optimization.

6. For example, suppose q(x̃ | x) = N (x̃ | x, σ2I), where σ ≈ 0. The corresponding DSM

objective is

DFS( q(x̃) || pθ(x̃)) = E pd(x)

[
Ez∼N (0,I)

[
1

2

∥∥∥ z

σ
+∇x log pθ(x + σz)

∥∥∥
2

2

]]

≈ 1

2m

m∑

i=1

∥∥∥∥
z(i)

σ
+∇x log pθ(x(i) + σz(i))

∥∥∥∥
2

2

where {x(1), . . . , x(m)} are some iid samples from pd(x).
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Denoising Score Matching (DSM)

1. When σ → 0, we can leverage Taylor series expansion to rewrite the Monte Carlo

estimator to obtain

DFS( q(x̃) || pθ(x̃)) ≈ 1

2m

m∑

i=1

{
2

σ

(
z(i)
)ᵀ
∇x log pθ(x(i)) +

∥∥z(i)
∥∥2
2

σ2

}
+ Constant

2. When estimating the above expectation with samples, the variances of
(
z(i)
)ᵀ∇x log pθ(x(i))/σ and

‖z(i)‖2
2

σ2 will both grow unbounded as σ → 0 due to division by

σ and σ2.

3. This enlarges the variance of DSM and makes optimization challenging.

4. Some methods were proposed to solve this issue.
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Denoising Score Matching (DSM)

Let x be a training data and we corrupt the training data using Gaussian noise, then the

corrupted version will be x̃ = x + ε.

Thus, we have the following relation for ∇x log qσ(x̃ | x).

∇x̃ log qσ(x̃ | x) = ∇x̃ logN (x, σ2I)

= ∇x̃ log
exp
(
− 1

2 (x̃− x)ᵀ ·
(
σ2I
)−1 · (x̃− x)

)
√

(2π)d(σ2I)

= ∇x̃

[
− 1

2σ2
(x̃− x)ᵀ · I · (x̃− x)

]
−∇x̃ log

√
(2π)d(σ2I)

︸ ︷︷ ︸
=0

= − 1

2σ2
∇x̃[(x̃− x)ᵀ · (x̃− x)]

= − 1

σ2
(x̃− x) =

1

σ2
(x− x̃) ≈ s(x̃).

Since the network outputs sθ(x̃), then it is evident why this method is called denoising.

Figure 3.8: Training of s✓ for denoising score matching. The network s✓ is trained to estimate
the noise.

where the individual loss function is defined according to the noise levels �1, . . . ,�L:

`(✓;�) = Ep(x)


1

2

���s✓(x + �z) +
z

�

���
2
�

.

The coe�cient function �(�i) is often chosen as �(�) = �2 based on empirical findings [40]. The noise level
sequence often satisfies �1

�2
= . . . = �L�1

�L
> 1.

For inference, we assume that we have already trained the score estimator s✓. To generate an image,
we use the Langevin equation to iteratively draw samples by denoising the image. In case of NCSN, the
corresponding Langevin equation can be implemented via an annealed importance sampling:

xt+1 = xt +
↵i

2
s✓(xt,�i) +

p
↵izt, zt ⇠ N (0, I),

where ↵i = �2
i /�2

L is the step size and s✓(xt,�i) denotes the score matching function for noise level �i.
The iteration over t is repeated sequentially for each �i from i = 1 to L. For additional details of the
implementation, we refer readers to Algorithm 1 of the original paper by Song and Ermon [40].

3.4 Concluding Remark

Additional readings about score-matching should start with Vincent’s technical report [43]. A very popular
paper in the recent literature is Song and Ermon [40], their follow up work [41], and [42]. In their papers,
they brought up an important discussion that when training a score function, we need a noise schedule so
that the score function is trained better.

Score matching has a wide range of applicability beyond generating images. They can be used in solving
many important image restoration problems such as deblurring, denoising, super-resolution, etc. Kadkhodaie
and Simoncellil [19] is among the earlier papers to explicitly employ the score function as part of the image
reconstruction process. A similar concept is presented by Kawar et al. [21], where they sample from a
posterior distribution which contains the forward image formation model and the prior. For problems with
a better structured forward model, it has been shown that employing the ideas of proximal maps would
improve the performance. This line of work can be built upon the operator splitting strategy such as the
plug-and-play ADMM [8] by extending it to Plug-and-Play di↵usion model, e.g., Zhu et al. [?] or the
generative plug and play model by Bouman and Buzzard [5]. Recently, it was also observed that one can
directly perform the regression to mean when we do not have access to the degradation process [11]. Various
applications papers [9, 17, 37].
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Denoising Score Matching (DSM)

1. The denoising score matching uses a fixed noise level σ, which leads to much of the input

space unexplored.

2. Instead in Langevin dynamics, the score network, sθ(x), is trained to handle a variety of

discrete noise levels (Song and Ermon 2019).

3. Let noise levels {σ1, σ2, . . . , σT} be a decreasing geometric sequences such that
σ1

σ2
= σ2

σ3
= . . . , σT−1

σT
> 1.

4. The loss function for training the score network is

Jdsm(θ, σt) = σ2
t︸︷︷︸

Loss weight

Ex,x̃∼ qσt (x,x̃)

[
‖sθ(x)−∇x̃ log qσt (x, x̃)‖2

]

= Ex,x̃∼ qσt (x,x̃)

[∥∥∥∥σtsθ(x̃)−
(

x− x̃

σt

)∥∥∥∥
2
]

5. At training time, the scale of loss is roughly equal across σt , because x−x̃
σt
∼ N (0, I).

6. Also, it is empirically found that ‖sθ(x)‖2 ∝ 1
σ .

7. At inference time, they used ηt instead of η, where ηt is given by

ηt = η(
σt
σT

)2.
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Sliced Score Matching (SSM)

1. By adding noise to data, DSM avoids the expensive computation of second-order

derivatives.

2. However, DSM does not give a consistent estimator of the data distribution.

3. In order to use score matching for learning deep energy-based models, we have to compute

‖∇x log pθ(x)‖22 and tr
(
∇2

x log pθ(x)
)
.

Term ‖∇x log pθ(x)‖22 can be computed by one simple backpropagation of Eθ(x).

Term tr
(
∇2

x log pθ(x)
)

requires much more number of backpropagations to compute.

Computing tr
(
∇2

x log pθ(x)
)

requires a number of backpropagation that is proportional to

the data dimension D (Martens, Sutskever, and Swersky 2012).

4. Therefore, score matching is not scalable when learning deep energy-based models on

high-dimensional data.

5. Sliced Score Matching is an alternative to Denoising Score Matching that is both

consistent and computationally efficient (Song, Garg, et al. 2019).
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Sliced Score Matching (SSM)

1. The idea is that one dimensional data distribution is much easier to estimate for score

matching.

2. Song et. al. proposed to project the scores onto random directions, such that the vector

fields of scores of the data and model distribution become scalar fields (Song, Garg, et al.

2019).

3. Then comparing the scalar fields to determine how far the model distribution is from the

data distribution.

4. Two vector fields are equivalent if and only if their scalar fields corresponding to

projections onto all directions are the same.

5. Let v be a random projection direction and pv(x) as its distribution.

6. The random projected version of Fisher divergence is

DSF ( pd(x) || pθ(x)) =
1

2
E pd(x)

[
(vᵀ∇x log pd(x)− vᵀ∇x log pθ(x))2

]

called sliced Fisher divergence.

Hamid Beigy (Sharif University of Technology) 30 / 36



Sliced Score Matching (SSM)

1. Unfortunately, sliced Fisher divergence has the same problem as Fisher divergence, due to

the unknown data score function ∇x log pd(x).

2. By using integration by parts, we obtain the following tractable alternative form

DSF ( pd(x) || pθ(x)) = E pd(x)

[
vᵀ∇2

x log pθ(x)v +
1

2
(vᵀ∇x log pθ(x))2

]
+ Constant

Term vᵀ∇x log pθ(x) can be computed by one backpropagation for deep energy-based

models.

Term vᵀ∇2
x log pθ(x)v involves Hessian, but it is in the form of Hessian-vector products,

which can be computed within O(1) backpropagations.

3. Therefore, the computation of sliced score matching does not depend on the dimension of

data, and is much more scalable for training deep energy-based models on high

dimensional datasets.
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Sliced Score Matching (SSM)

1. Instead of minimizing the Fisher divergence between two vector-valued scores, SSM

randomly samples a projection vector v, takes the inner product between v and the two

scores, and then compare the resulting two scalars.

2. Sliced Score Matching minimizes the following divergence called the sliced Fisher

divergence

DSF ( pd(x) || pθ(x)) = E pd(x)


E pv(v)


1

2

D∑

i=1

(
∂Eθ(x)

∂xi
vi

)2

+
D∑

i=1

D∑

j=1

∂2Eθ(x)

∂xi∂xj
vivj






+ Constant

3. All expectations in the above objective can be estimated with empirical means.
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Theoretical guarantees of learning with SSM

1. Let {x1, . . . , xm} be iid samples from the data distribution pd(x).

2. For each xi , draw M random projection directions {vi1, . . . , viM} ∼ pv(v).

3. The sliced score matching objective can be estimated with empirical averages, giving rise

to the following finite-sample estimator:

1

mM

m∑

i=1

M∑

j=1

{
vᵀ
ij∇2

x log pθ(xi )vij +
1

2

(
vᵀ
ij∇x log pθ(xi )

)2}

4. Let θ̂mM be the minimizer of the above empirical estimator, and let θ∗ be the true

parameter corresponding to the data distribution such that pθ∗(x) = pd(x).

5. It has been shown that under some regularity conditions, θ̂mM is consistent and

asymptotically normal.

6. Formally, for any M ∈ N+, when m→∞, we have

θ̂mM
p→ θ∗

√
m
(
θ̂mM − θ∗

)
d→N (0,Σ)

where Σ is some covariance matrix.
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