Deep learning

Sum Product Networks

Hamid Beigy

Sharif University of Technology

December 28, 2024

Table of contents

- 1. Introduction
- 2. Sum Product Networks
- 3. Applications
- 4. Reading

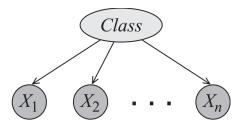
Introduction

- 1. We assume x_1, x_2, \dots, x_m are IID random variables are sampled from an unknown distribution \mathcal{D} , where each x_i is k-dimensional vector.
- 2. We require to specify a high-dimensional distribution $p(x_1, ..., x_k)$ on the data and possibly some latent variables.
- 3. The specific form of p will depend on some parameters w.
- 4. The basic operations will be to
 - Structure learning: Specifying the parametric/non-parametric form of $p(x_1, \ldots, x_k)$.
 - Parameter learning: Adjusting $p(x_1, ..., x_k)$ to the data.
 - Inference: Computing marginals and modes of $p(x_1, \ldots, x_k)$.
- 5. Working with fully flexible joint distributions is intractable!

- 1. How the form of density function is specified?
- 2. We specify the form of density function in such a way that parameter learning and inference become easier.
- 3. For example, we can consider the following conditional form.

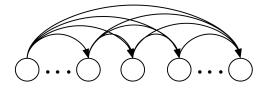
$$p(x_1,...,x_k) = p(x_1|x_2)p(x_1|x_3)...p(x_1|x_k)$$

4. Consider the Naive Bayes classifier. We have $p(class, x) = p(class) \prod_{j=1}^{n} p(x_j \mid class)$



1. Or consider the following forms

$$p(x_1,...,x_k) = p(x_k|x_{k-1})p(x_{k-1}|x_{k-2})...p(x_2|x_1)$$
$$p(x_1,...,x_k) = \prod_{i=1}^k p(x_i|x_1,x_2,...,x_{i-1})$$



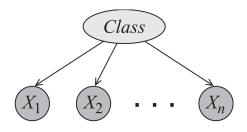
- 2. We must work with structured or compact distributions.
- 3. For example, distributions in which the random variables interact directly with only very few others in simple ways (why?).
- 4. One solution is to use probabilistic graphical models.

- 1. Simple queries: computing posterior marginal $p(x_1|E=e)$
- 2. Conjunctive queries: Computing $p(x_1, x_2|E=e)$
- 3. How do you answer the following query?

$$p(x_1) = \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3)$$

4. How do you answer the query $p(x_1)$ when density function has the following form?

$$p(x_1,...,x_k) = p(x_1|x_2)p(x_1|x_3)...p(x_1|x_k)$$

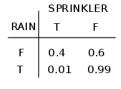


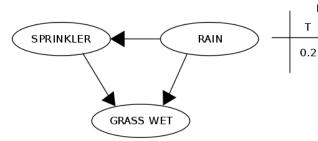
RAIN

F

8.0

1. A simple Bayesian network





		GRASS WET	
SPRINKLER	RAIN	T	F
F	F	0.0	1.0
F	Т	0.8	0.2
Т	F	0.9	0.1
Т	Т	0.99	0.01

$$p(G, S, R) = p(G|S, R)p(S|R)p(R)$$

- 1. How calculate $p(x_1, ..., x_k)$ using Bayesian networks?
- 2. If a Bayesian network can be factorized, then we can write

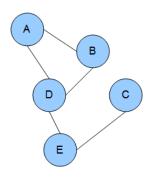
$$p(x_1,\ldots,x_k)=\prod_{v\in V}p(x_v|pa(v))$$

where pa(v) is the set of parents of v.

3. Cooper proved that exact inference in Bayesian networks is NP-hard.

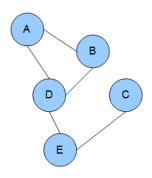
Markov networks

1. A Markov network is a set of random variables having a Markov property described by an undirected graph.



- 2. Each edge represents dependency.
 - A depends on B and D.
 - B depends on A and D.
 - D depends on A, B, and E.
 - E depends on D and C.
 - C depends on E.

1. Consider the following network.



2. We'll assume p is a general undirected model of the following form

$$p(x_1,...,x_n;w) = \frac{\bar{p}(x_1,...,x_n;w)}{Z(w)} = \frac{1}{Z(w)} \prod_k \phi_k(x\{k\};w),$$

where the ϕ_k are the factors and Z(w) is the normalization constant and $x\{k\}$ is a subset of variables .

3. How do yo compute Z(w)?

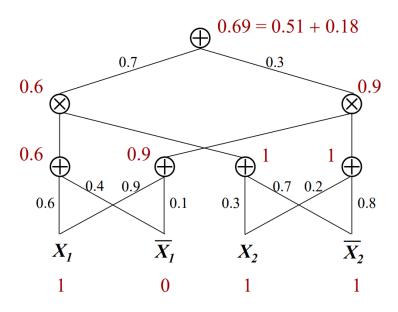
Limitations of Graphical Models

- 1. Graphical models are limited in some aspects
 - Many compact distributions cannot be represented as a GM.
 - The cost of exact inference in GM is exponential in the worst case (using approximate techniques).
 - Because learning requires inference, learning GM will be difficult.
 - Some distributions require GM with many layers of hidden variables to be compactly encoded.
- 2. An alternative are sum product networks (Poon and Domingos 2011).
 - New deep model with many layers of hidden variables.
 - Exact inference is tractable (linear in the size of the model).

Sum Product Networks

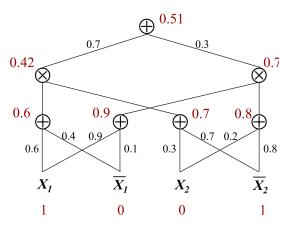
- 1. A SPN is rooted DAG whose leaves are x_1, \ldots, x_n and $\bar{x}_1, \ldots, \bar{x}_n$ with internal sum and product nodes, where each edge (i,j) emanating from sum node i has a weight $w_{ij} \geq 0$.
- 2. The value of a product node is the product of the value of its children.
- 3. The value of a sum node i is $\sum_{j \in Ch(i)} w_{ij} v_j$, where Ch(j) are the children of node i and v_j is the value of node j
- 4. The value of a SPN is the value of the root after a bottom up evaluation.
- 5. Layers of sum and product nodes usually alternate.

1. An example of SPN

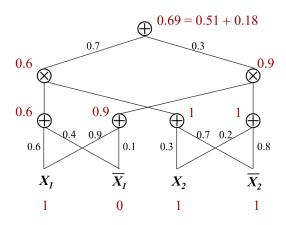


2. What is the output of the above network?

SPN represents a joint distribution over a set of random variables. What is value of $p(x_1 = 1, x_2 = 0)$?

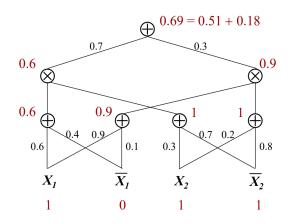


SPN represents a joint distribution over a set of random variables. What is value of $p(x_1 = 1)$?

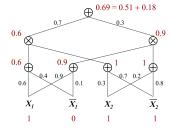


A valid SPN encodes a hierarchical mixture distribution.

- Sum nodes: hidden variables (mixture)
- Product nodes: factorization (independence)



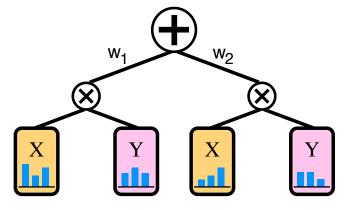
- The scope of a node is the set of variables that appear in the sub-SPN rooted at the node
- An SPN is decomposable iff no variable appears in more than one child of a product node.
- An SPN is complete when each sum node has children with identical scopes.
- An SPN is consistent iff no variable appears negated in one child of a product node and non-negated in another.
- A consistent and complete SPN is a valid SPN. An SPN is valid if it always correctly computes the probability of evidence.



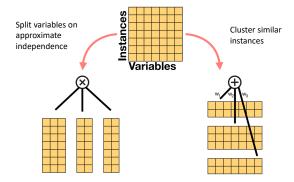
Building and using an SPN

- 1. We must specify the structure of SPN (structure Estimation or structure learning).
- 2. We must find the parameters of SPN (parameter learning).
- 3. We must answer queries (inference).

- 1. What is SPN for univariate distribution?
- 2. \rightarrow A univariate distribution is an SPN
- 3. What is SPN for product of disjoint random variables?
- 4. \rightarrow A product of SPNs over disjoint variables is an SPN.
- 5. What is SPN for a mixture model?
- 6. \rightarrow A weighted sum of SPNs over the same variables is an SPN.



- 1. In a structure learning, one alternates between
 - Data Clustering: sum nodes
 - Variable partitioning: product nodes



2. Some others use SVD decomposition (Adel, Balduzzi, and Ghodsi 2015).

- 1. Initialize the SPN using a dense valid SPN.
- 2. Learn the SPN weights using gradient descent or EM.
- 3. Add some penalty to the weights so that they tend to be zero.
- 4. Prune edges with zero weights at convergence.

```
Algorithm 1 LearnSPN

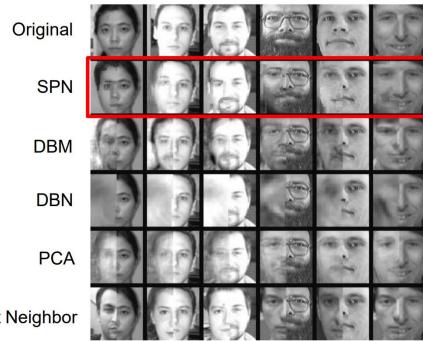
Input: Set D of instances over variables X.

Output: An SPN with learned structure and parameters. S \leftarrow \text{GenerateDenseSPN}(X)
InitializeWeights(S)
repeat
for all d \in D do
UpdateWeights(S, \text{Inference}(S, d))
end for
until convergence
S \leftarrow \text{PruneZeroWeights}(S)
return S
```

Applications

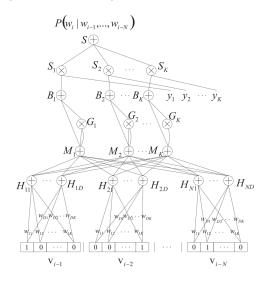
Image completion

- 1. Main evaluation: Caltech-101
 - 101 categories, e.g., faces, cars, elephants
 - Each category: 30 800 images
- 2. Each category: Last third for test
- 3. Test images: Unseen objects



Nearest Neighbor

1. Fixed structure SPN encoding the conditional probability $p(w_i|w_{i-1}...,w_{i-N})$ as an Nth order language model (Cheng et al. 2014).



1. Perplexity scores (PPL) of different language models

Model	Individual PPL	+KN5
TrainingSetFrequency	528.4	
KN5 [3]	141.2	
Log-bilinear model [4]	144.5	115.2
Feedforward neural network [5]	140.2	116.7
Syntactical neural network [8]	131.3	110.0
RNN [6]	124.7	105.7
LDA-augmented RNN [9]	113.7	98.3
SPN-3	104.2	82.0
SPN-4	107.6	82.4
SPN-4'	100.0	80.6

Other applications

- 1. Image completion
- 2. Image classification
- 3. Activity recognition
- 4. Click-through logs
- 5. Nucleic acid sequences
- 6. Collaborative filtering

Advantages of SPNs

- 1. Unlike graphical models, SPNs are tractable over high treewidth models.
- 2. SPNs are deep architectures with full probabilistic semantics
- 3. SPNs can incorporate features into an expressive model without requiring approximate inference.

Reading

Readings

1. Read the survey paper (Paris, Sanchez-Cauce, and Diez 2020).

- Adel, Tameem, David Balduzzi, and Ali Ghodsi (2015). "Learning the Structure of Sum-Product Networks via an SVD-based Algorithm". In: *Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence*, pp. 32–41.
- Cheng, Wei-Chen et al. (2014). "Language modeling with sum-product networks". In: Proceedings of the 15th Annual Conference of the International Speech Communication Association, pp. 2098–2102.
- Paris, Iago, Raquel Sanchez-Cauce, and Francisco Javier Diez (2020). "Sum-product networks: A survey". In: CoRR abs/2004.01167. arXiv: 2004.01167.
- Poon, Hoifung and Pedro M. Domingos (2011). "Sum-Product Networks: A New Deep Architecture". In: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp. 337–346.

Questions?