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20. Extinction Probability for Queues
and Martingales

(Refer to section 15.6 in text (Branching processes) for 
discussion on the extinction probability).

20.1 Extinction Probability for Queues:

• A customer arrives at an empty server and immediately goes    
for service initiating a busy period. During that service period, 
other  customers may arrive and if so they wait for service. 
The server continues to be busy till the last waiting customer 
completes  service which indicates the end of a busy
period. An interesting question is whether the busy periods  
are bound to terminate at some point ? Are they ? PILLAI
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Do busy periods continue forever?  Or do such 
queues come to an end sooner or later? If so, how ?

•Slow Traffic (         )
Steady state solutions exist and the probability of extinction
equals 1. (Busy periods are bound to terminate with
probability 1. Follows from sec 15.6, theorem 15-9.)

•Heavy Traffic (         )
Steady state solutions do not exist, and such queues can be 
characterized by their probability of extinction.

•Steady state solutions exist if the traffic rate             Thus           

•What if too many customers rush in, and/or the service
rate is slow (        ) ?  How to characterize such queues ?
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• Offspring moment generating function:
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Queues and Population Models
• Population models

: Size of the nth generation                     
: Number of offspring for the ith member of 

the nth generation. From Eq.(15-287), Text
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Extinction probability       satisfies the equation             
which can be solved iteratively as follows:                     
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• Left to themselves, in the long run, populations either 
die out completely with probability      , or explode with 
probability 1- (Both unpleasant conclusions).
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• Review Theorem 15-9 (Text)
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Note that the statistics       depends both on the arrival as well 
as the service phenomena.
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• : Inter-departure statistics generated by arrivals  )(
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• : Traffic Intensity                 Steady  state
Heavy traffic
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• Termination of busy periods corresponds to extinction of 
queues. From the analogy with population models the
extinction probability       is the unique root of the equation0π
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• Slow Traffic  :                                         
Heavy Traffic :
i.e., unstable queues             either terminate their busy periods 
with probability           ,  or they will continue to be busy with 
probability 1- . Interestingly, there is a finite probability of  
busy period termination even for unstable  queues.            

: Measure of stability for unstable queues.
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Example 20.1 : M/M/ 1 queue
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From (15-221), text,we have
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Number of arrivals between any two departures follows 
a geometric random variable.
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Example 20.2 : Bulk Arrivals M[x]/M/ 1 queue

Compound Poisson Arrivals : Departures are exponential
random variables as in a Poisson process with parameter 
Similarly arrivals are Poisson with parameter       However each
arrival can contain multiple jobs.
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Inter-departure Statistics of Arrivals
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Bulk Arrivals (contd)
• Compound Poisson arrivals with geometric rate
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Example 20.3 : M/En / 1 queue (n-phase exponential service)

From (16-213)

11 =→ n/M/M
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Example 20.4 : M/D/1 queue
Letting               in (16.213),text, we obtain
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20.2 Martingales

Martingales refer to a specific class of stochastic processes 
that maintain a form of “stability” in an overall sense. Let 

refer to a discrete time stochastic process. If n refers
to the present instant, then in any realization the random 
variables                      are known, and the future values

are unknown. The process is “stable” in the sense 
that conditioned on the available information (past and 
present), no change is expected on the average for the future
values, and hence the conditional expectation of the 
immediate future value is the same as that of the present 
value. Thus, if

{ , 0}iX i ≥

0 1, , , nX X X"
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for all n, then the sequence {Xn} represents a Martingale.

Historically martingales refer to the “doubling the stake”
strategy in gambling where the gambler doubles the bet on 
every loss till the almost sure win occurs eventually at which
point the entire loss is recovered by the wager together with
a modest profit. Problems 15-6 and 15-7, chapter 15, Text 
refer to examples of martingales. [Also refer to section 15-5,
Text].

If {Xn} refers to a Markov chain, then as we have 
seen, with 

Eq. (20-19) reduces to the simpler expression [Eq. (15-224), 
Text]
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For finite chains of size N, interestingly, Eq. (20-20) reads

implying that x2 is a right-eigenvector of the           transition
probability matrix associated with the eigenvalue 1. 
However, the “all one” vector                               is always
an eigenvector for any P corresponding to the unit eigenvalue
[see Eq. (15-179), Text], and from Perron’s theorem and the 
discussion there [Theorem 15-8, Text] it follows that, for 
finite Markov chains that are also martingales, P cannot be 
a primitive matrix, and the corresponding chains are in fact 
not irreducible. Hence every finite state martingale has 
at least two closed sets embedded in it. (The closed sets in the
two martingales in Example 15-13, Text correspond to two 
absorbing states. Same is true for the Branching Processes 
discussed in the next example also. Refer to remarks 
following Eq. (20-7)).

 2 2 2,       [1,  2,  3,  ,  ]TP x x x N= = " (20-21)
N N×

1 [1,  1,  1,  ,  1]Tx = "
( )ijP p=
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Example 20.5: As another example, let {Xn} represent the 
branching process discussed in section 15-6, Eq. (15-287), 
Text. Then Zn given by

is a martingale, where Yi s are independent, identically 
distributed random variables, and       refers to the extinction
probability for that process [see Theorem 15.9, Text]. 
To see this, note that

where we have used the  Markov property of the chain,
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the common moment generating function P(z) of Yi s, and 
Theorem 15-9, Text.
Example 20.6 (DeMoivre’s Martingale): The gambler’s ruin
problem (see Example 3-15, Text) also gives rise to various 
martingales. (see problem 15-7 for an example).

From there, if Sn refers to player A’s cumulative capital
at stage n, (note that S0 = $ a ), then as DeMoivre has observed

generates a martingale. This follows since

where the instantaneous gain or loss given by Zn+1 obeys

and hence 
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since {Sn} generates a Markov chain.
Thus 

i.e., Yn in (20-24) defines a martingale!
Martingales have excellent convergence properties

in the long run. To start with, from (20-19) for any given
n, taking expectations on both sides we get 

Observe that, as stated, (20-28) is true only when n is known
or n is a given number. 

As the following result shows, martingales do not fluctuate 
wildly. There is in fact only a small probability that a large 
deviation for a martingale from its initial value will occur.

(20-27)

1 0{ } { } { }.n nE X E X E X+ = = (20-28)



20

PILLAI

Hoeffding’s inequality: Let {Xn} represent a martingale and 
be a sequence of real numbers such that the random

variables

Then

Proof: Eqs. (20-29)-(20-30) state that so long as the 
martingale increments remain bounded almost surely, then 
there is only a very small chance that a large deviation occurs
between Xn and X0. We shall prove (20-30) in three steps.
(i) For any convex function f (x), and               we have

(Fig 20.8)
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which for                                   
and 

gives

Replacing a in (20-32) with any zero mean random variable 
Y that is bounded  by unity almost everywhere, and taking 
expected values on both sides we get

Note that the right side is independent of Y in (20-33).
On the other hand, from (20-29)

and since Yi s are bounded by unity, from (20-32) we get
(as in (20-33))
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(ii) To make use of (20-35), referring back to the Markov 
inequality in (5-89), Text, it can be rewritten as 

and with                                                        

But 

2 / 2
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Substituting (20-38) into (20-37) we get 

(iii) Observe that the exponent on the right side of (20-39) is 
minimized for                      and hence it reduces to

The same result holds when Xn – X0 is replaced by X0 – Xn, 
and adding the two bounds we get (20-30), the Hoeffding’s 
inequality.

From (20-28), for any fixed n, the mean value 
E{Xn} equals E{X0}. Under what conditions is this result 
true if we replace n by a random time T ? i.e., if T is a 
random variable, then when is

PILLAI
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The answer turns out to be that T has to be a stopping time.
What is a stopping time?

A stochastic process may be known to assume a 
particular value, but the time at which it happens is in general
unpredictable or random. In other words, the nature of the 
outcome is fixed but the timing is random. When that outcome
actually occurs, the time instant corresponds to a stopping 
time. Consider a gambler starting with $a and let T refer to the
time instant at which his capital becomes $1. The random 
variable T represents a stopping time. When the capital 
becomes zero, it corresponds to the gambler’s ruin and that 
instant represents another stopping time (Time to go home for 
the gambler!) 

PILLAI
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Recall that in a Poisson process the occurrences of the first, 
second,      arrivals correspond to stopping times              
Stopping times refer to those random instants at which there
is sufficient information to decide whether or not a specific 
condition is satisfied.
Stopping Time: The random variable T is a stopping time 
for the process X(t), if for all       is a
function of the values                             of the process up to 
t, i.e., it should be possible to decide whether T has occurred
or not by the time t, knowing only the value of the process
X(t) up to that time t. Thus the Poisson arrival times T1 and T2
referred above are stopping times; however T2 – T1 is not 
a stopping time.

A key result in martingales states that so long as 
PILLAI
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T is a stopping time (under some additional mild restrictions)

Notice that (20-42) generalizes (20-28) to certain random 
time instants (stopping times) as well.

Eq. (20-42) is an extremely useful tool in analyzing 
martingales. We shall illustrate its usefulness by rederiving the
gambler’s ruin probability in Example 3-15, Eq. (3-47), Text.

From Example 20.6, Yn in (20-24) refer to a martingale in the 
gambler’s ruin problem. Let T refer to the random instant at
which the game ends; i.e., the instant at which either player A
loses all his wealth and Pa is the associated probability of ruin
for player A, or player A gains all wealth $(a + b) with 
probability (1 – Pa). In that case, T is a stopping time 
and hence from (20-42), we get PILLAI

0{ } { }.TE X E X= (20-42)
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since player A starts with $a in Example 3.15. But

Equating (20-43)-(20-44) and simplifying we get

that agrees with (3-47), Text. Eq. (20-45) can be used to derive
other useful probabilities and advantageous plays as well. [see 
Examples 3-16 and 3-17, Text]. 
Whatever the advantage, it is worth quoting the master 
Gerolamo Cardano (1501-1576) on this: “The greatest
advantage in gambling comes from not playing at all.”
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