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For a deterministic signal x(t), the spectrum is well defined: If             
represents its Fourier transform, i.e., if

then                 represents its energy spectrum. This follows from 
Parseval’s theorem since the signal energy is given by

Thus                       represents the signal energy in the band                  
(see Fig 18.1).
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However for stochastic processes, a direct application of (18-1) 
generates a sequence of random variables for every      Moreover,
for a stochastic process, E{| X(t) |2} represents the ensemble average
power (instantaneous energy) at the instant t. 

To obtain the spectral distribution of power versus frequency for 
stochastic processes, it is best to avoid infinite intervals to begin with, 
and start with a finite interval (– T,  T ) in (18-1). Formally, partial 
Fourier transform of a process X(t) based on (– T,  T ) is given by

so that 

represents the power distribution associated with that realization based
on (– T,  T ). Notice that (18-4) represents a random variable for every

and its ensemble average gives, the average power distribution 
based on (– T,  T ). Thus 
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represents the power distribution of X(t) based on (– T,  T ). For wide 
sense stationary (w.s.s) processes, it is possible to further simplify 
(18-5). Thus if X(t) is assumed to be w.s.s, then                                  
and (18-5) simplifies to

Let                   and proceeding as in (14-24), we get

to be the power distribution of the w.s.s. process X(t) based on 
(– T, T ). Finally letting                 in (18-6), we obtainT →∞
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to be the power spectral density of the w.s.s process X(t). Notice that 

i.e., the autocorrelation function and the power spectrum of a w.s.s
Process form a Fourier transform pair, a relation known as the 
Wiener-Khinchin Theorem. From (18-8), the inverse formula gives

and in particular for            we get 

From (18-10), the area under              represents the total power of the
process X(t), and hence             truly represents the power 
spectrum. (Fig 18.2). 
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Fig 18.2
The nonnegative-definiteness property of the autocorrelation function
in (14-8) translates into the “nonnegative” property for its Fourier
transform (power spectrum), since from (14-8) and (18-9)

From (18-11), it follows that
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If X(t) is a real w.s.s process, then                              so that

so that the power spectrum is an even function, (in addition to being
real and nonnegative).
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Power Spectra and Linear Systems

If a w.s.s process X(t) with autocorrelation
function                                      is 
applied to a linear system with impulse
response h(t), then the cross correlation
function             and the output autocorrelation function    are
given by (14-40)-(14-41). From there 

But if

Then

since
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Fig 18.3
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Using (18-15)-(18-17) in (18-14) we get 

since

where
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From (18-18), the cross spectrum need not be real or nonnegative;
However the output power spectrum is real and nonnegative and is
related to the input spectrum and the system transfer function as in
(18-20). Eq. (18-20) can be used for system identification as well.

W.S.S White Noise Process: If W(t) is a w.s.s white noise process, 
then from (14-43)

Thus the spectrum of a white noise process is flat, thus justifying its 
name. Notice that a white noise process is unrealizable since its total 
power is indeterminate.

From (18-20), if the input to an unknown system in Fig 18.3 is
a white noise process, then the output spectrum is given by

Notice that the output spectrum captures the system transfer function 
characteristics entirely, and for rational systems Eq (18-22) may be 
used to determine the pole/zero locations of the underlying system.
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Example 18.1: A w.s.s white noise process W(t) is passed
through a low pass filter (LPF) with bandwidth B/2. Find the 
autocorrelation function of the output process.
Solution: Let X(t) represent the output of the LPF. Then from (18-22)

Inverse transform of              gives the output autocorrelation function
to be
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Eq (18-23) represents colored noise spectrum and (18-24) its 
autocorrelation function (see Fig 18.4).
Example 18.2: Let

represent a “smoothing” operation using a moving window on the input
process X(t). Find the spectrum of the output Y(t) in term of that of X(t).

Solution: If we define an LTI system
with impulse response h(t) as in Fig 18.5,
then in term of h(t), Eq (18-25) reduces to

so that 
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so that 
2

 ( ) ( ) sinc ( ).YY XXS S Tω ω ω= (18-29)

Notice that the effect of the smoothing operation in (18-25) is to 
suppress the high frequency components in the input             
and the equivalent linear system acts as a low-pass filter (continuous-
time moving average) with bandwidth             in this case.
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Discrete – Time Processes
For discrete-time w.s.s stochastic processes X(nT) with

autocorrelation sequence             (proceeding as above) or formally
defining a continuous time process                              we get
the corresponding autocorrelation function to be 

Its Fourier transform is given by

and it defines the power spectrum of the discrete-time process X(nT).
From (18-30),

so that               is a periodic function with period
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This gives the inverse relation

and

represents the total power of the discrete-time process X(nT). The 
input-output relations for discrete-time system h(nT) in (14-65)-(14-67)
translate into

and 

where

represents the discrete-time system transfer function.
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Matched Filter
Let r(t) represent a deterministic signal s(t) corrupted by noise. Thus 

where r(t) represents the observed data,
and it is passed through a receiver 
with impulse response h(t). The 
output y(t) is given by

where 

and it can be  used to make a decision about the presence of absence
of s(t) in r(t). Towards this, one approach is to require that the 
receiver output signal to noise ratio (SNR)0 at time instant t0  be 
maximized. Notice that

h(t) r(t)
y(t)

Fig 18.7 Matched Filter
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represents the output SNR, where we have made use of (18-20) to
determine the average output noise power, and the problem is to 
maximize (SNR)0 by optimally choosing the receiver filter 

Optimum Receiver for White Noise Input: The simplest input 
noise model assumes w(t) to be white noise in (18-38) with spectral
density N0, so that (18-41) simplifies to

and a direct application of Cauchy-Schwarz’ inequality 
in (18-42) gives
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and equality in (18-43) is guaranteed if and only if 

or 

From (18-45), the optimum receiver that maximizes the output SNR 
at t = t0 is given by (18-44)-(18-45). Notice that (18-45) need not be
causal, and the corresponding SNR is given by (18-43).
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Fig 18-8 shows the optimum h(t) for two different values of t0. In Fig
18.8 (b), the receiver is noncausal, whereas in Fig 18-8 (c) the 
receiver represents a causal waveform.
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If the receiver is not causal, the optimum causal receiver can be
shown to be

and the corresponding maximum (SNR)0 in that case is given by

Optimum Transmit Signal: In practice, the signal s(t) in (18-38) may
be the output of a target that has been illuminated by a transmit signal
f (t) of finite duration T. In that case

where q(t) represents the target impulse response. One interesting 
question in this context is to determine the optimum transmit

(18-48)
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signal f (t) with normalized energy that maximizes the receiver output 
SNR at t = t0 in Fig 18.7. Notice that for a given s(t), Eq (18-45) 
represents the optimum receiver, and (18-43) gives the corresponding 
maximum (SNR)0. To maximize (SNR)0 in (18-43), we may substitute
(18-48) into (18-43). This gives

where                 is given by 

and         is the largest eigenvalue of the integral equation
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If the causal solution in (18-46)-(18-47) is chosen, in that case the 
kernel in (18-50) simplifies to 

and the optimum transmit signal is given by (18-51). Notice 
that in the causal case, information beyond t = t0 is not used.

and 

Observe that the kernal                 in (18-50) captures the target 
characteristics so as to maximize the output SNR at the observation 
instant, and the optimum transmit signal is the solution of the integral 
equation in (18-51) subject to the energy constraint in (18-52). 
Fig 18.10  show the optimum transmit signal and the companion receiver
pair for a specific target with impulse response q(t) as shown there .
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What if the additive noise in (18-38) is not white?

Let              represent a (non-flat) power spectral density. In that case,
what is the optimum matched filter?

If the noise is not white, one approach is to whiten the input 
noise first by passing it through a whitening filter, and then proceed 
with the whitened output as before (Fig 18.7).

Notice that the signal part of the whitened output sg(t) equals

where g(t) represents the whitening filter, and the output noise n(t) is
white with unit spectral density. This interesting idea due to 

( )WWS ω

( ) ( ) ( )gs t s t g t= ∗ (18-54)
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Whitening Filter: What is a whitening filter? From the discussion
above, the output spectral density of the whitened noise process
equals unity, since it represents the normalized white noise by design. 
But from (18-20)

which gives

i.e., the whitening filter transfer function          satisfies the magnitude 
relationship in (18-55). To be useful in practice, it is desirable to have 
the whitening filter to be stable and causal as well. Moreover, at times
its inverse transfer function also needs to be implementable so that it 
needs to be stable as well. How does one obtain such a filter (if any)?
[See section 11.1 page 499-502, (and also page 423-424), Text 
for a discussion on obtaining the whitening filters.].
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Wiener has been exploited in several other problems including 
prediction, filtering etc. 
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From there, any spectral density that satisfies the finite power constraint

and the Paley-Wiener constraint (see Eq. (11-4), Text)

can be factorized as

where H(s) together with its inverse function 1/H(s) represent two 
filters that are both analytic in Re s > 0. Thus H(s) and its inverse 1/ H(s) 
can be chosen to be stable and causal in (18-58). Such a filter is known
as the Wiener factor, and since it has all its poles and zeros in the left 
half plane, it represents a minimum phase factor. In the rational case, 
if X(t) represents a real process, then              is even and hence (18-58) 
reads
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Example 18.3: Consider the spectrum

which translates into

The poles (   ) and zeros (    ) of this 
function are shown in Fig 18.12.
From there to maintain the symmetry
condition in (18-59), we may group 
together the left half factors as
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and it represents the Wiener factor for the spectrum        
Observe that the poles and zeros (if any) on the                appear in
even multiples in             and hence half of them may be paired with
H(s) (and the other half with H(– s)) to preserve the factorization
condition in (18-58). Notice that H(s) is stable, and so is its inverse.

More generally, if H(s) is minimum phase, then ln H(s) is analytic on
the right half plane so that 

gives

Thus 

and since                                are Hilbert transform pairs, it follows that
the phase function            in (18-60) is given by the Hilbert

axisjω −
( )XXS ω
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transform of                Thus

Eq. (18-60) may be used to generate the unknown phase function of
a minimum phase factor from its magnitude. 

For discrete-time processes, the factorization conditions take the form
(see (9-203)-(9-205), Text)

and 

In that case 

where the discrete-time system
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ω ω
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is analytic together with its inverse in |z| >1. This unique minimum
phase function represents the Wiener factor in the discrete-case.

Matched Filter in Colored Noise:
Returning back to the matched filter problem in colored noise, the 
design can be completed as shown in Fig 18.13.

(Here             represents the whitening filter associated with the noise 
spectral density              as in (18-55)-(18-58). Notice that G(s) is the 
inverse of the Wiener factor L(s) corresponding to the spectrum              
i.e.,

The whitened output sg(t) + n(t) in Fig 18.13 is similar

h0(t)=sg(t0 – t)1( ) ( )G j L jω ω−=
0t t=

( ) ( )
g

s t n t+
( ) ( ) ( )r t s t w t= +

Whitening Filter Matched Filter
Fig 18.13

( )G jω
( )WWS ω

( ).WWS ω

2( ) ( ) | | ( ) | ( ).WWs jL s L s L j Sω ω ω=− = = (18-64)
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to (18-38), and from (18-45) the optimum receiver is given by 

where 

If we insist on obtaining the receiver transfer function        for the 
original colored noise problem, we can deduce it easily from Fig 18.14

Notice that Fig 18.14 (a) and (b) are equivalent, and Fig 18.14 (b) is
equivalent to Fig 18.13. Hence (see Fig 18.14 (b))

or

0 0( ) ( )gh t s t t= −

1( ) ( ) ( ) ( ) ( ) ( ).g gs t S G j S L j Sω ω ω ω ω−↔ = =

( )H ω

( )H ω
0t t=

≡ L-1(s) L(s) ( )H ω
0t t=

( )r t( )r t

0 ( )

                             
H ω

����	���

(a) (b)

Fig 18.14

0 ( ) ( ) ( )H L j Hω ω ω=
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turns out to be the overall matched filter for the original problem. 
Once again, transmit signal design can be carried out in this case also.

AM/FM Noise Analysis:
Consider the noisy AM signal

and the noisy FM signal

where 

0

0

1 1 *
0

1 1 *

( ) ( ) ( ) ( ) ( )

( ){ ( ) ( )}

j t
g

j t

H L j H L S e

L L S e

ω

ω

ω ω ω ω ω

ω ω ω

−− −
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= =

= (18-65)

0( ) ( ) cos( ) ( ),X t m t t n tω θ= + + (18-66)

(18-67)0( ) cos( ( ) ) ( ),X t A t t n tω ϕ θ= + + +
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Here m(t) represents the message signal and     a random phase  jitter
in  the received signal. In the case of FM,                     so that 
the instantaneous frequency is proportional to the message signal. We 
will assume that both the message process m(t) and the noise process
n(t) are w.s.s with power spectra              and               respectively.
We wish to determine whether the AM and FM signals are w.s.s,
and if so their respective power spectral densities.
Solution: AM signal: In this case from (18-66), if we assume

then

so that (see Fig 18.15)

 ( ) ( ) ( )t t c m tω ϕ ′= =
θ

( )mmS ω ( )nnS ω

~ (0,2 ),Uθ π

0
1( ) ( ) cos ( )
2XX mm nnR R Rτ τ ω τ τ= + (18-69)

0 0( ) ( )( ) ( ).
2

XX XX
XX nn

S SS Sω ω ω ω
ω ω

− + +
= + (18-70)

( )mmS ω

ω ω
0ω0ω−0

( )XXS ω
0( )mmS ω ω−
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Thus AM represents a stationary process under the above conditions. 
What about FM?
FM signal: In this case (suppressing the additive noise component in 
(18-67)) we obtain 

since 

2
0

0
2

0

0
2

0
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(18-71)
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Eq (18-71) can be rewritten as 

where 

and 

In general             and            depend on both  t and     so that noisy FM
is not w.s.s in general, even if the message process m(t) is w.s.s.
In the special case when m(t) is a stationary Gaussian process, from
(18-68),         is also a stationary Gaussian process with autocorrelation
function 

for the FM case. In that case the random variable

τ( , )a t τ ( , )b t τ

2
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where 

Hence its characteristic function is given by

which for            gives 

where we have made use of (18-76) and (18-73)-(18-74). On comparing
(18-79) with (18-78) we get

and 

so that the FM autocorrelation function in  (18-72) simplifies into

(18-76)

2 2( (0) ( )).Y R Rϕϕ ϕϕσ τ= − (18-77)
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Notice that for stationary Gaussian message input m(t) (or         ), the
nonlinear output X(t) is indeed strict sense stationary with 
autocorrelation function as in (18-82).

Narrowband FM: If                    then (18-82) may be approximated 
as                                             

which is similar to the AM case in (18-69). Hence narrowband FM 
and ordinary AM have equivalent performance in terms of noise
suppression. 

Wideband FM: This case corresponds to                   In that case 
a Taylor series expansion or             gives
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2
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2XX
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and substituting this into (18-82) we get 

so that the power spectrum of FM in this case is given by 

where 

Notice that              always occupies infinite bandwidth irrespective
of the actual message bandwidth (Fig 18.16)and this capacity to spread 
the message signal across the entire spectral band helps to reduce the 
noise effect in any band.
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Spectrum Estimation / Extension Problem

Given a finite set of autocorrelations                    one interesting 
problem is to extend the given sequence of autocorrelations such that 
the spectrum corresponding to the overall sequence is nonnegative for 
all frequencies. i.e., given                    we need to determine                    
such that

Notice that from (14-64), the given sequence satisfies Tn > 0, and at
every step of the extension, this nonnegativity condition must be 
satisfied. Thus we must have

Let               Then
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so that after some algebra

or

where
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Eq. (18-91) represents the interior of a circle with center      and radius
as in Fig 18.17, and geometrically it represents the admissible

set of values for rn+1. Repeating this procedure for                       it 
follows that the class of extensions that satisfy (18-85) are infinite. 

It is possible to parameterically represent the class of all 
admissible spectra. Known as the trigonometric moment problem,
extensive literature is available on this topic.
[See section 12.4 “Youla’s Parameterization”, pages 562-574, Text for
a reasonably complete description and further insight into this topic.].
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