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11. Conditional Density Functions and
Conditional Expected Values

As we have seen in section 4 conditional probability density 
functions are useful to update the information about an 
event based on the knowledge about some other related 
event (refer to example 4.7). In this section, we shall 
analyze the situation where the related event happens to be a 
random variable that is dependent on the one of interest.

From (4-11), recall that the distribution function of X given 
an event B is
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Suppose, we let

Substituting (11-2) into (11-1), we get

where we have made use of (7-4). But using (3-28) and (7-7) 
we can rewrite (11-3) as

To determine, the limiting case                     we can let  
and                  in (11-4).
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This gives

and hence in the limit

(To remind about the conditional nature on the left hand 
side, we shall use the subscript  X | Y (instead of X) there). 
Thus

Differentiating (11-7) with respect to x using (8-7), we get 
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It is easy to see that the left side of (11-8) represents a valid 
probability density function. In fact

and 

where we have made use of (7-14).  From (11-9) - (11-10),   
(11-8) indeed represents a valid p.d.f, and we shall refer to it 
as the conditional p.d.f of the r.v X given Y = y. We may 
also write                                                      

From (11-8) and (11-11), we have 
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and similarly

If the r.vs X and Y are independent, then          
and (11-12) - (11-13) reduces to

implying that the conditional p.d.fs coincide with their 
unconditional p.d.fs. This makes sense, since if X and Y are 
independent r.vs, information about Y shouldn’t be of any 
help in updating our knowledge about X.

In the case of discrete-type r.vs, (11-12) reduces to
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Next we shall illustrate the method of obtaining conditional 
p.d.fs through an example.

Example 11.1: Given

determine                 and                                   
Solution: The joint p.d.f is given to be a constant in the 
shaded region. This gives

Similarly

and
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From (11-16) - (11-18), we get 

and

We can use (11-12) - (11-13) to derive an important result. 
From there, we also have

or

But  

and using (11-23) in (11-22), we get 
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Equation (11-24) represents the p.d.f version of Bayes’
theorem. To appreciate the full significance of (11-24), one 
need to look at communication problems where 
observations can be used to update our knowledge about 
unknown parameters. We shall illustrate this using a simple 
example.

Example 11.2: An unknown random phase θ is uniformly 
distributed in the interval              and                where            
n ∼ Determine                                       
Solution: Initially almost nothing about the r.v θ is known, 
so that we assume its a-priori p.d.f to be uniform in the 
interval
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In the equation                  we can think of n as the noise 
contribution and r as the observation. It is reasonable to 
assume that θ and n are independent. In that case

∼

since it is given that is a constant,                behaves 
like n. Using (11-24), this gives the a-posteriori p.d.f of θ
given r to be (see Fig. 11.2 (b))

where
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Notice that the knowledge about the observation r is 
reflected in the a-posteriori p.d.f of θ in Fig. 11.2 (b). It is 
no longer flat as the a-priori p.d.f in Fig. 11.2 (a), and it 
shows higher probabilities in the neighborhood of .r=θ

)|(| rf r θθ

θ

(b) a-posteriori p.d.f of θ

r=θ

Fig. 11.2
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Conditional Mean:

We can use the conditional p.d.fs to define the conditional 
mean. More generally, applying (6-13) to conditional p.d.fs
we get 
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and using a limiting argument as in (11-2) - (11-8), we get

to be the conditional mean of X given Y = y. Notice              
that                    will be a function of y.  Also

In a similar manner, the conditional variance of X given      
Y = y is given by

we shall illustrate these calculations through an example. 
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Example 11.3: Let

Determine               and                                     
Solution: As Fig. 11.3 shows,                                   
in the shaded area, and zero elsewhere.                         
From there

and

This gives
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Hence

It is possible to obtain an interesting generalization of the 
conditional mean formulas in (11-28) - (11-29). More 
generally, (11-28) gives

But
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Obviously, in the right side of (11-37), the inner 
expectation is with respect to X and the outer expectation is 
with respect to Y. Letting  g( X ) =  X in (11-37) we get the 
interesting identity

where the inner expectation on the right side is with respect 
to X and the outer one is with respect to Y. Similarly, we 
have

Using (11-37) and (11-30), we also obtain
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Conditional mean turns out to be an important concept in 
estimation and prediction theory. For example given an 
observation about a r.v X, what can we say about a related
r.v Y ?  In other words what is the best predicted value of Y
given that  X = x ? It turns out that if “best” is meant in the
sense of minimizing the mean square error between Y and 
its estimate    , then the conditional mean of Y given X = x,
i.e.,                     is the best estimate for Y (see Lecture 16
for more on Mean Square Estimation).

We conclude this lecture with yet another application
of the conditional density formulation.
Example 11.4 : Poisson sum of Bernoulli random variables
Let                             represent independent, identically 
distributed Bernoulli random variables with
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and N a Poisson random variable with parameter     that is 
independent of all      .  Consider the random variables

Show that Y and Z are independent Poisson random variables.

Solution : To determine the joint probability mass function 
of Y and Z, consider
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Thus                                                            

and Y and Z are independent random variables.
Thus if a bird lays eggs that follow a Poisson random 
variable with parameter    , and if each egg survives
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with probability p,  then the number of chicks that survive  
also forms a Poisson random variable with parameter    . λp
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