11. Conditional Density Functions and
Conditional Expected Values

As we have seen 1n section 4 conditional probability density
functions are useful to update the information about an
event based on the knowledge about some other related
event (refer to example 4.7). In this section, we shall
analyze the situation where the related event happens to be a
random variable that is dependent on the one of interest.

From (4-11), recall that the distribution function of X given
an event B 1s

Fy(x|B) = P(XE) < x| B)= X @ =00E)

P(B)

(11-1)
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Suppose, we let
B={y <Y(E)<y} (11-2)

Substituting (11-2) into (11-1), we get

_PX(E)<x,p <Y (E)< y,)
R Y TS T P
_ Foy (x,9,) = Fyy (X, )
Fy(y,)— Fy(y)) ,
where we have made use of (7-4). But using (3-28) and (7-7)

we can rewrite (11-3) as

(11-3)

f_xw _[yh Sy (u,v)dudy

[P nma (11-4)
To determine, the limiting case F,(x|Y =y), we can let » =y
and y,=y+Ay in (11-4).

Fy(x|y, <Y <y,)=

2
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This gives )
LI Lo dudy [ f (u, p)du Ay

F, Y<y+Ay)= — 11-5
(x| y<Y <y+Ay) Iy o TN (11-5)
and hence 1n the limit
X » , d
FX(x|Y:y):iimOFX(x|y<Y£y+Ay)=J.‘“)f (. 7) u. (11-6)

fr(¥)
(To remind about the conditional nature on the left hand

side, we shall use the subscript X'| Y (instead of X) there).

Thus

| for (u,y)du (11-7)
GO

Differentiating (11-7) with respect to x using (8-7), we get

Fyy(x|Y =y)=

fXY(xay).
fr (»)

fX|Y(x|Y:y): (11-8)
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It 1s easy to see that the left side of (11-8) represents a valid
probability density function. In fact

Sy (X, ))
Y = = XY 2 O 11'9
fX|Y(x| y) () ( )

and j_+:fn (x, y)dx _ SO

Fr () Jr ()

where we have made use of (7-14). From (11-9) - (11-10),
(11-8) indeed represents a valid p.d.f, and we shall refer to it
as the conditional p.d.f of the r.v X given Y = y. We may
also write

1 (11-10)

[ faw(x 1Y = p)dx =

fX|Y(x|Y:y):fX|Y(x|y)' (11-11)
From (11-8) and (11-11), we have
_ S (x,p) (11-12)
Sy (x 1Y) Oy 4
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and similarly

Jar (X, )
fx ()
If the r.vs X and Y are independent, then f, (x,») = fx (x) f, (»)

and (11-12) - (11-13) reduces to

Fap (X[ ¥)=Fx(X), Sy [X) = Fy (), (11-14)

implying that the conditional p.d.fs coincide with their
unconditional p.d.fs. This makes sense, since if X and Y are
independent r.vs, information about ¥ shouldn’t be of any
help in updating our knowledge about X.

fY|X(y|x): (11—13)

In the case of discrete-type r.vs, (11-12) reduces to
P(X =x,Y =y,)

P(XZXZ.|Y=)/J.): P(YZy)

(11-15)
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Next we shall 1llustrate the method of obtaining conditional

p.d.fs through an example. y
Example 11.1: Given !
F _Jk, O<x<y<l],
wr (60) = 0, otherwise , (11-16) ¥
determine f,,(x|y) and f,, (y|x). Fig. 11.1

Solution: The joint p.d.f is given to be a constant in the
shaded region. This gives

IL&ALymmy=1M;kwdy=ﬁky@wrgzhzk=2.

Similarly
fe@) = [ fa p)dy = [ kdy =k (1-x), 0<x<l, (11-17)
and

Lﬁ@ﬁzﬁ&ﬂmny:h%dx=k% 0<y<1.  (11-18)
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From (11-16) - (11-18), we get

Fep(alyy=LoeX) Loy oo, (11-19)
fy(y) Y
and
 (x, 1
fYX(y|x):ffX(Zcx)y):1—x’ 0<x<y<l. (11-20)

We can use (11-12) - (11-13) to derive an important result.
From there, we also have

Jar (X,9) = fX|Y(x|y)fY(y) = fY|X(y [ x) [y (x) (11-21)
or

fX|Y(x|y)fY(y).

Srx(¥x) = 7o) (11-22)

But
=] foCandy =] fo(xINLHOGNdy (11-23)

and using (11-23) in (11-22), we get '
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Lo INSHG)
j_+:leY(x | v) fy (¥)dy

Equation (11-24) represents the p.d.f version of Bayes’
theorem. To appreciate the full significance of (11-24), one
need to look at communication problems where
observations can be used to update our knowledge about
unknown parameters. We shall illustrate this using a simple
example.

S (¥ 1x) = (24)

Example 11.2: An unknown random phase 6 is uniformly

distributed in the interval (0,2 ), and » =0 +n, where

n~ N(0,c%). Determine f(0 |r).

Solution: Initially almost nothing about the r.v 6 1s known,

so that we assume its a-priori p.d.f to be uniform 1in the

interval (0,27). g
PILLAI



In the equation » =0 +n, we can think of # as the noise
contribution and r as the observation. It 1s reasonable to
assume that 0 and » are independent. In that case

f(r|0=0) ~N@®,5°) (11-25)

since 1t 1s given that @ =0 1s a constant, =0 +# behaves
like n. Using (11-24), this gives the a-posteriori p.d.f of 0
given r to be (see Fig. 11.2 (b))

f(r10)f,0) e /7020

f(e |7") — 27 o 1 27 2 2
Jo Fr10)f,0)d0 [z’ g
21 90
= (r)e @ 0<6 <2m, (11-26)
where
2
¢ (r)=—5—"

yis 2 2 '
J‘ e—(r—@) /26 4o
0 9
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Notice that the knowledge about the observation 7 1s
reflected 1n the a-posteriori p.d.f of 8 1n Fig. 11.2 (b). It 1s
no longer flat as the a-prior1 p.d.f in Fig. 11.2 (a), and 1t
shows higher probabilities 1n the neighborhood of 6 =7.

t£,©0) t Jo,©17)
1 s
2n
_/ i -
> 0 >0
o 0=r
(a) a-priori p.d.f of 6 (b) a-posteriori p.d.f of ©
Fig. 11.2

Conditional Mean:

We can use the conditional p.d.fs to define the conditional
mean. More generally, applying (6-13) to conditional p.d.fs

we get 10
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E(g(X)|B)=[ " g(x)f(x|B)dx. (11-27)

and using a limiting argument as i (11-2) - (11-8), we get

Hxy =E(X|Y=y)=

jj:x S (x| y)dx (11-28)

to be the conditional mean of X given Y = y. Notice
that E(X|Y =y) will be a function of y. Also

Myx :E(Y|X:x):

j:y Jrx (Y [x) dy. (11-29)

In a similar manner, the cond
Y =y 1s given by

1tional variance of X given

Var(X |Y) =0y, = EWX* Y =y)-(EX Y = y))’

— E((X 1y

VY =y). (11-30)

we shall illustrate these calculations through an example.
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Example 11.3: Let
Jor (x,9) = {

Determine E(X|Y) and E(Y | X).
Solution: As Fig. 11.3 shows, f, (x,y)=1
in the shaded area, and zero elsewhere.
From there

fr@) =] folrp)dy=2x, 0<x<l,

and

I, O<lylkx<l,

0, otherwise .

Ao =] Tdr=1-lyl <L
This gives e 1
_Ju\ V)
and nyY(x|J’) 1) 1_|y|,
_fXY(xay)_ 1
fY|X(y|x)_ £ () =5 O0<|lylkx<l.

(11-31)

Fig. 11.3

O<|ylkx<l1, (11-32)

(11-33)
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X

S S D S DY R 07 . (11-34
) 2], 20y 2 ik U159

2 .x
X

1
EQ1X) = [ fyu (v [0)dy = [* Z—dy = -~

=0, O0<x<l1. (11-35)

—X

It 1s possible to obtain an interesting generalization of the
conditional mean formulas 1n (11-28) - (11-29). More
generally, (11-28) gives

But E(g(X)|Y =y)=] " g(x)fyy (x| y)dx. (11-36)

E(g(X))=[ g fy(dx =" gx)| ~ fo (x.y)dydx

=[ [ ") fry oyydxdy = [ T 7 g(x) fry (x| p)dx fy (p)dy

—
E(g(X)lY=y)

=[ TE(e(X)|Y =) f,(0dy = E{E(g(X)|Y =y)} . 1
(11-37)PILLAI




Obviously, 1n the right side of (11-37), the inner
expectation 1s with respect to X and the outer expectation 1s
with respect to Y. Letting g( X)= X1in (11-37) we get the
interesting 1dentity

E(X)=E{E(X|Y =)}, (11-38)

where the 1mnner expectation on the right side 1s with respect
to X and the outer one 1s with respect to Y. Similarly, we
have

E(Y)=E{E(Y | X =x)}. (11-39)
Using (11-37) and (11-30), we also obtain
Var(X) = E(Var(X 1Y = y)). (11-40)
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Conditional mean turns out to be an important concept in
estimation and prediction theory. For example given an
observation about a r.v X, what can we say about a related
r.v Y ? In other words what 1s the best predicted value of ¥
given that X' =x ? It turns out that 1f “best” 1s meant in the
sense of minimizing the mean square error between Y and
its estimate y, then the conditional mean of Y given X = x,
1.e., E(Y|X =x) 1s the best estimate for Y (see Lecture 16
for more on Mean Square Estimation).

We conclude this lecture with yet another application
of the conditional density formulation.
Example 11.4 : Poisson sum of Bernoulli random variables
Let X, i=1,2,3,--- represent independent, identically
distributed Bernoulli random variables with

P(X,=D)=p, PX,=0)=1-p=g¢ 5



and N a Poisson random variable with parameter ), that is
independent of all X.. Consider the random variables

Y= x, Z=N-Y. (11-41)
Show that Y and Z are independent Poisson random variables.

Solution : To determine the joint probability mass function
of Y and Z, consider

PY=m, Z=n)=P(Y=m, N-Y=n)=P(Y=m, N=m+n)
=P(Y=m|N=m+n)P(N =m+n)

N
=P X,=m|N=m+n) P(N =m+n)
i=1
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m+n

(Note that ) X, ~B(m+n, p)and X,s areindependent of N)

i=1

_((m+n)! . ,,,j - A
U omin P (m+n)!

_ (epx (pw"] (eqx <q>u>”)
m! n!

= P(Y =m)P(Z =n). (11-43)

Thus
Y~P(pr) and Z~ P(gh) (11-44)

and Y and Z are independent random variables.
Thus 1f a bird lays eggs that follow a Poisson random

variable with parameter ), , and if each egg survives
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with probability p, then the number of chicks that survive
also forms a Poisson random variable with parameter pi .
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