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8. One Function of Two Random 
Variables 

Given two random variables X and Y and a function g(x,y), 
we form a new random variable Z as

Given the joint p.d.f                    how does one obtain    
the p.d.f of Z ?  Problems of this type are of interest from a 
practical standpoint. For example, a receiver output signal 
usually consists of the desired signal buried in noise, and 
the above formulation in that case reduces to Z = X + Y.
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It is important to know the statistics of the incoming signal  
for proper receiver design. In this context, we shall analyze 
problems of the following type: 

Referring back to (8-1), to start with
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where       in the XY plane represents the region such           
that                  is satisfied. Note that      need not be simply 
connected (Fig. 8.1). From (8-3), to determine          it is 
enough to find the region      for every z, and then evaluate 
the integral there.

We shall illustrate this method through various examples.

zD
zyxg ≤),(

)( zFZ

zD

zD

X

Y

zD

zD

Fig. 8.1
PILLAI



4

Example 8.1:   Z = X + Y.   Find                                        
Solution:

since the region      of the xy plane where               is the 
shaded area in Fig. 8.2 to the left of the line           
Integrating over the horizontal strip along the x-axis first 
(inner integral) followed by sliding that strip along the y-axis 
from         to          (outer integral) we cover the entire shaded 
area.
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We can find          by differentiating          directly. In this 
context, it is useful to recall the differentiation rule in   (7-
15) - (7-16) due to Leibnitz. Suppose 

Then

Using (8-6) in (8-4) we get

Alternatively, the integration in (8-4) can be carried out first 
along the y-axis followed by the x-axis as in Fig. 8.3.
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In that case

and differentiation of (8-8)  
gives
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If X and Y are independent, then

and inserting (8-10) into (8-8) and (8-9), we get
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The above integral is the standard convolution of the 
functions          and          expressed two different ways. We
thus reach the following conclusion: If two r.vs are 
independent, then the density of their sum equals the 
convolution of their density functions.

As a special case, suppose that               for          and  
for          then we can make use of Fig. 8.4 to determine the 
new limits for 
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In that case

or

On the other hand, by considering vertical strips first in  
Fig. 8.4, we get

or 

if X and Y are independent random variables.
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Example 8.2: Suppose X and Y are independent exponential 
r.vs with common parameter λ, and let Z = X + Y.  
Determine                                                       
Solution: We have                                               
and we can make use of (13) to obtain the p.d.f of Z = X + Y.

As the next example shows, care should be taken in using 
the convolution formula for r.vs with finite range.

Example 8.3: X and Y are independent uniform r.vs in the 
common interval (0,1). Determine           where Z = X + Y. 
Solution: Clearly,                                here, and as Fig. 8.5 
shows there are two cases of z for which the shaded areas are 
quite different in shape and they should be considered 
separately.
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For                 notice that it is easy to deal with the unshaded
region. In that case
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Using (8-16) - (8-17), we obtain

By direct convolution of           and            we obtain the 
same result as above. In fact, for                (Fig. 8.6(a))

and for                 (Fig. 8.6(b))

Fig 8.6 (c) shows           which agrees with the convolution 
of two rectangular waveforms as well.
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Example 8.3: Let                        Determine its p.d.f 
Solution: From (8-3) and Fig. 8.7

and hence

If X and Y are independent, then the above formula reduces 
to

which represents the convolution of            with
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As a special case, suppose

In this case, Z can be negative as well as positive, and that 
gives rise to two situations that should be analyzed 
separately, since the region of integration for          and    
are quite different. For           from Fig. 8.8 (a)

and for           from Fig 8.8 (b)

After differentiation, this gives
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Example 8.4: Given Z = X / Y, obtain its density function.
Solution: We have                                               
The inequality               can be rewritten as             if 
and            if           Hence the event                in (8-24) need 
to be conditioned by the event                 and its compliment     
Since                 by the partition theorem, we have

and hence by the mutually exclusive property of the later 
two events

Fig. 8.9(a) shows the area corresponding to the first term, 
and Fig. 8.9(b) shows that corresponding to the second term 
in (8-25).  
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Integrating over these two regions, we get 

Differentiation with respect to z gives

Note that if X and Y are nonnegative random variables, then 
the area of integration reduces to that shown in Fig. 8.10.
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This gives

or

Example 8.5: X and Y are jointly normal random variables 
with zero mean so that

Show that the ratio Z = X / Y has a Cauchy density function 
centered at                                                     
Solution: Inserting (8-29) into (8-27) and using the fact             
that                                 we obtain   
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where 

Thus

which represents a Cauchy r.v centered at             Integrating 
(8-30) from         to  z, we obtain the corresponding 
distribution function to be
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Solution: We have 
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But,                 represents the area of a circle with radius
and hence from Fig. 8.11,

This gives after repeated differentiation 

As an illustration, consider the next example.
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Example 8.7 : X and Y are independent normal r.vs with zero
Mean and common variance      Determine        for 
Solution: Direct substitution of (8-29) with                             
Into (8-34) gives

where we have used the substitution                    From (8-35)
we have the following result: If X and Y are independent zero
mean Gaussian r.vs with common variance        then               

is an exponential r.vs with parameter                   

Example 8.8 : Let                       Find                  
Solution: From Fig. 8.11, the present case corresponds to a 
circle with radius         Thus
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And by repeated differentiation, we obtain

Now suppose X and Y are independent Gaussian as in 
Example 8.7. In that case, (8-36) simplifies to 

which represents a Rayleigh distribution. Thus, if              
where X and Y are real, independent normal r.vs with zero 
mean and equal variance, then the r.v                        has a 
Rayleigh density. W is said to be a complex Gaussian r.v 
with zero mean, whose real and imaginary parts are 
independent r.vs.  From (8-37), we have seen that its 
magnitude has Rayleigh distribution.
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What about its phase

Clearly, the principal value of θ lies in the interval                
If we let                             then from example 8.5, U has a 
Cauchy distribution with (see (8-30) with                    )

As a result

To summarize, the magnitude and phase of a zero mean 
complex Gaussian r.v has Rayleigh and uniform distributions 
respectively. Interestingly, as we will show later, these two 
derived r.vs are also independent of each other!
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Let us reconsider example 8.8 where X and Y have nonzero 
means      and        respectively. Then                      is said to 
be a Rician r.v. Such a scene arises in fading multipath
situation where there is a dominant constant component 
(mean) in addition to a zero mean Gaussian r.v. The constant 
component may be the line of sight signal and the zero mean 
Gaussian r.v part could be due to random multipath
components adding up incoherently (see diagram below). 
The envelope of such a signal is said to have a Rician p.d.f.

Example 8.9: Redo example 8.8, where X and Y have 
nonzero means      and      respectively.                       
Solution: Since

substituting this into (8-36) and letting                        

Xµ Yµ 22 YXZ +=

Xµ Yµ

,
2

1),(
222 2/])()[(

2
σµµ

πσ
YX yx

XY eyxf −+−−= Rician
Output

Line of sight 
signal (constant)

a

Multipath/Gaussian 
noise

∑

PILLAI



24

we get the Rician probability density function to be

where

is the modified Bessel function of the first kind and zeroth

order.

Example 8.10:                                               Determine             
Solution: The functions max and min are nonlinear
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operators and represent special cases of the more general 
order statistics. In general, given any n-tuple
we can arrange them in an increasing order of magnitude 
such that

where                                 and        is the second smallest 
value among                        and finally                  
If                       represent r.vs, the function        that takes on 
the value       in each possible sequence                      is 
known as the k-th order statistic.                             represent 
the set of order statistics among n random variables. In this 
context

represents the range, and when n = 2, we have the max and 
min statistics. 
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Returning back to that problem, since

we have (see also (8-25))

since             and              are mutually exclusive sets that 
form a partition. Figs 8.12 (a)-(b)  show the regions 
satisfying the corresponding inequalities in each term 
above. 
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(8-46)

Fig. 8.12 (c) represents the total region, and from there

If X and Y are independent, then

and hence 

Similarly
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Once again, the shaded areas in Fig. 8.13 (a)-(b) show the 
regions satisfying the above inequalities and Fig 8.13 (c) 
shows the overall region.

From Fig. 8.13 (c), 

where we have made use of (7-5) and (7-12) with                     
and 

( ) ( )
, ),()()(           
,11)(
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Example 8.11: Let X and Y be independent exponential r.vs
with common parameter λ. Define                        Find 
Solution: From (8-49)

and hence 

But                                  and                        so that

Thus min ( X, Y ) is also exponential with parameter 2λ.

Example 8.12: Suppose X and Y are as give in the above 
example. Define                                              Determine  

).,min( YXW = ?)(wfW

 )()()()( )( wFwFwFwFwF YXYXW −+=

).()()()()()( )( wfwFwFwfwfwfwf YXYXYXW −−+=

,)( )( w
YX ewfwf λλ −== ,1)( )( w

YX ewFwF λ−−==

).(2)1(22 )( 2 wUeeeewf wwww
W

λλλλ λλλ −−− =−−= (8-50)

[ ]. ),max(/),min( YXYXZ = ).(zfZ

PILLAI



30

Solution: Although                         represents a complicated 
function, by partitioning the whole space as before, it is 
possible to simplify this function. In fact

As before, this gives

Since X and Y are both positive random variables in this case, 
we have                The shaded regions in Figs 8.14 (a)-(b) 
represent the two terms in the above sum. 

Fig. 8.14
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From Fig. 8.14

Hence

Example 8.13 (Discrete Case): Let X and Y be independent 
Poisson random variables with parameters      and     
respectively. Let                    Determine the p.m.f of Z. 
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Solution: Since X and Y both take integer values                      
the same is true for Z. For any                                        gives 
only a finite number of options for X and Y. In fact, if X = 0, 
then Y must be n; if X = 1, then Y must be n-1, etc. Thus the 
event                     is the union of (n + 1) mutually exclusive 
events      given by 

As a result

If X and Y are also independent, then

and hence

{ }, ,2 ,1 ,0 "
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Thus Z represents a Poisson random variable with  
parameter            indicating that sum of independent Poisson 
random variables is also a Poisson random variable whose 
parameter is the sum of the parameters of the original 
random variables.

As the last example illustrates, the above procedure for 
determining the p.m.f of functions of discrete random 
variables is somewhat tedious. As we shall see in Lecture 10, 
the joint characteristic function can be used in this context 
to solve problems of this type in an easier fashion. 
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