8. One Function of Two Random
Variables

Given two random variables X and Y and a function g(x,y),

we form a new random variable Z as

7 =g(X.,Y). (8-1)

Given the joint p.d.f [ (x,»), how does one obtain £, (z),
the p.d.f of Z? Problems of this type are of interest from a
practical standpoint. For example, a receiver output signal
usually consists of the desired signal buried 1n noise, and
the above formulation in that case reduces to Z=X+ Y.
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It 1s important to know the statistics of the incoming signal
for proper receiver design. In this context, we shall analyze
problems of the following type:

X+Y
maX(X,Y)\ X-Y
min(X,Y) «— — XY (8-2)
i Xy
tan” (X /Y)

Referring back to (8-1), to start with
F(2)=P(Z(§)<z)=P(g(X.Y)<z)=P[(X.Y)e D]

:.[ Jx,yeDZ Sy (x,y)dxdy , (8-3) ,
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where D. 1n the XY plane represents the region such

that g(x,y) <z 1s satisfied. Note that D. need not be simply
connected (Fig. 8.1). From (8-3), to determine F,(z) 1t 1s
enough to find the region b, for every z, and then evaluate
the integral there.

We shall illustrate this method through various examples.

L a
\V

Fig. 8.1 3
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Example 8.1: Z=X+7Y. Find f,(2).
Solution:

F,(z)= P(X+Y<z J J- iy (x, v)dxdy, (8-4)

y=—00d x=—00

since the region D, of the xy plane where x+y<z 1sthe
shaded area 1n Fig. 8.2 to the left of the line x+y==z.
Integrating over the horizontal strip along the x-axis first
(inner integral) followed by sliding that strip along the y-axis
from — oo to +oo (outer integral) we cover the entire shaded
area.

Fig. 8.2 4
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We can find /2(z) by differentiating F,(z) directly. In this

context, it 1s useful to recall the differentiation rule in (7-
15) - (7-16) due to Leibnitz. Suppose

b(z)
H(z)= ja(z)h(x,z)dx. (8-5)
Then
dH (z) db(z) da(z) b Oh(x, )
e h(b(z),z)- — hla(z),z)+ ja(z) ~ dx.  (3.6)

Using (8-6) in (8-4) we get
/2(2) :r:(;;r:fxy(x,y)dxjdy =" (fXY(z yn) -0+

2=y O
W vy (X5 )) y
0z

=[ " fuz=p.p)dy. (8-7)
Alternatively, the integration in (8-4) can be carried out first

along the y-axis followed by the x-axis as in Fig. 8.3.
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In that case
F@=[" [ fuleyddy, (3-8) ¥

and differentiation of (8-8)
g1ves

()= (Z)

=] [ ) NG y)dyj "

=| fXY(XDZ — x)dx. (8—9) Fig. 8.3

If X and Y are independent, then
Sy (6, ¥) = [ (%) fy (¥) (8-10)

and 1nserting (8-10) 1nto (8-8) and (8-9), we get

f@=] " fGE=nfdy =" fi@fE-Ddn (8-11)
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The above integral 1s the standard convolution of the
functions f,(z) and f,(z) expressed two different ways. We
thus reach the following conclusion: If two r.vs are
independent, then the density of their sum equals the
convolution of their density functions.

As a special case, suppose that £, (x)=0for x<o0 and f,(y)=0
for y < 0, then we can make use of Fig. 8.4 to determine the
new limits for D..

(2,0)
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In that case

Fy(2)= | [ far (e p)dudy

or

L@ =] (217 foms |y = oGy 2200
=0\ oz 0, z<0.

On the other hand, by considering vertical strips first in
Fig. 8.4, we get

Fy(2)=] [ o Cx )y
or
fz(z) _ _[;zofXY(x’Z_x)dx _ {J‘yofX(x)gY(ZX)dx, A Z g, (8_13)

if X and Y are independent random variables.
8
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Example 8.2: Suppose X and Y are independent exponential
r.vs with common parameter A, and let Z= X+ Y.
Determine £, (z).

Solution: We have fy(x)=%U(x), f,(»)=re"U(y), (8-14)
and we can make use of (13) to obtain the p.d.fof Z=X+ Y.

f(2) = | Weeax SWe [ dx = 20 MU (2). (8-15)

As the next example shows, care should be taken in using
the convolution formula for r.vs with finite range.

Example 8.3: X and Y are independent uniform r.vs in the
common interval (0,1). Determine f,(z), where Z=X+ Y.
Solution: Clearly, z=x+Y =0<z<2 here, and as Fig. 8.5
shows there are two cases of z for which the shaded areas are
quite different in shape and they should be considered

separately. ’
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x:Z_y \vzzzzz:
R S|y
» X \ » X
(a) 0<z<l1 (b) 1<z<2
Fig. 8.5
For 0<z<«1,
2
N I [ (-— _Z 8-16
FZ(Z)—L:OL:O 1dxdy_jy:0(z Yy ==-, 0<z<l. (8-16)

For 1<z<2, notice that it 1s easy to deal with the unshaded
region. In that case
F(2)=1-P(Z>z)=1-[ [ 1 dxy
y=z—1d x=2z—y

2-z)°

=1—j1 (—z+y)dy=1- C 1<z<2. (8-17)
y=z-1 2
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Using (8-16) - (8-17), we obtain

_dF,(z) | z 0=sz<],
J2(2)= dz _{2—2, 1<z<2.

By direct convolution of fx(x) and f,(»). we obtain the
same result as above. In fact, for 0<z<1 (Fig. 8.6(a))

(8-18)

[ =] feE=0)fy(x)de=[ 1 dx=z (8-19)
and for 1<z<2 (Fig. 8.6(b))
f@=[ ldr=2-z (8-20)

Fig 8.6 (¢) shows f,(z) which agrees with the convolution
of two rectangular waveforms as well.

11
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t Sy (%) A]F)((Z_x) 1fv(z—x)fy (x)

> X > X > X
1 z—1 z z
(@) 0<z<1
tfr(x) t fi(z—x) (=) fy (%)
> X > X > X
1 z-1 z z—1 1
(b) 1<z<2
1 fz(z)
0 i 2 ¢
Fig. 8.6 (¢) 1
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Example 8.3: Let Z = X — Y. Determine its p.d.f f,(2).
Solution: From (8-3) and Fig. 8.7

F,(z)=P(X-Y<z)= J.:ioo J.:_yoo Sy (%, y)dxdy

and hence
dEAZ):

f7(2) = e

J :w ((%f yoo /. Xy(xay)dx)dy = | : Sy (¥ +2,9)dy. (8-21)

If X and Y are independent, then the above formula reduces

to
L@=[ £y =fi (D f,(),  (8-22)

which represents the convolution of f,(-z) with f, (2).

"

¥ X—y=z
Y44 ///////////,I(x:y_i_Z

> X
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As a special case, suppose
fy(x)=0, x<0, and f,(y)=0, y<O.

In this case, Z can be negative as well as positive, and that
gives rise to two situations that should be analyzed
separately, since the region of integration for z>0 and z<0
are quite different. For z >0, from Fig. 8.8 (a) y

Fp2)=[ [ fir(x.y)dxdy < 2+ y
and for z <0, from Fig 8.8 (b) L -
(a)
F2)=[ " [ fuy(x,y)dxdy )
y=—zd x=

mx/ZZ-i-y

After differentiation, this gives
> X

+OOXY z+y,y)dy, z20,
Iof( y,y)dy (8-23)

I“’Ofn (z+y,y)dy, z<0. Fig. 8.8 (b)
o 14
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Example 8.4: Given Z = X/ Y, obtain its density function.
Solution: We have F,(z)=P(X/Y <z). (8-24)
The inequality x /Y <z can be rewritten as X <yz 1f Y >0,
and X >Yz 1if ¥ <0. Hence the event (x/y <z) in (8-24) need
to be conditioned by the event 4= (Y >0) and its compliment 4.
Since 4 U 4 = Q, by the partition theorem, we have

XY <z}={XIY<)m(UAuD|={X /Y <)mnAlu{X /Y <z)n 4]}

and hence by the mutually exclusive property of the later
two events
P(X/Y<z)=P(X/Y<zY>0)+P(X/Y<zY <0)
= P(X <Yz,Y >0)+P(X >Y2,Y <0). (8-25)
Fig. 8.9(a) shows the area corresponding to the first term,
and Fig. 8.9(b) shows that corresponding to the second term
in (8-25). A

A

>

X=yz
> X

X=yz

> X 15
(a) Fig. 8.9 (b) PILLAI




Integrating over these two regions, we get

Fo2) =" foowddy+[ " [° foCepdxdy.  (8-26)

Differentiation with respect to z gives

1@ = [ MGz + [ (=9) iy (y2.y)dy
(8-27)

=| Sz, y)dy,  —oo<z<4o.

Note that if X and Y are nonnegative random variables, then
the area of integration reduces to that shown 1n Fig. 8.10.

16
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This gives
Fy(2)=] [ fu(x.y)dudy
or
f,(2)= {joy S ¥z, y)dy, z>0, (8-28)

0, otherwise.
Example 8.5: X and Y are jointly normal random variables

with zero mean so that
1 3 lz(xzz_2rxy+y22J
far (%, 3) = e 20-af e el (8-29)
o 216 G ,V1 -7’

Show that the ratio Z = X/ Y has a Cauchy density function
centered at ro,/o,.
Solution: Inserting (8-29) into (8-27) and using the fact

that fXY (_xa_y) — fXY ()C, y): WC¢C Obtain
2

f1(2) = e Fidy = ,
’ 216 6,1 — 71’ ‘[0 G G,V -1’ 17
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where

z° 271z 1

c c 0, G,
Thus

G o,N1I—-r/m

f2(2)= (8-30)

ci(z-rc,/c,) +o’(1-r")’

which represents a Cauchy r.v centered at ro,/c,. Integrating
(8-30) from -« to z, we obtain the corresponding
distribution function to be

1 1 C.Z— 1o
F (z)=—+ —arctan —2 L 8-31

Example 8.6: z=x?+v2 Obtain f,(z).
Solution: We have

F,(2)=PX*+Y*<z)=] |

X24y?%<z

foy (x, y)dxdy . (8-32)
8
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But, X?+Y? <z represents the area of a circle with radius ./,
and hence from Fig. 8.11,

F,(2) = jy . L_ J—fxy(x y)dxdy . (8-33)

This gives after repeated differentiation

f2(2) = fyffz\/zl_j (fxy(\/z ~ V) [ (—z - yz,y))dy. (8-34)

As an 1llustration, consider the next example.

A

Fig. 8.11 19
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Example 8.7 : X and Y are independent normal r.vs with zero
Mean and common variance o2 Determine f,(z) for z = x2+Y?2
Solution: Direct substitution of (8-29) with 7=0, ¢,=0,=0c
Into (8-34) gives

Jz 2 BN
fZ (z) = J. s . 1 (2_ 1 e~ (FTy ry) /20 j dy = e J‘ 1 dy

2

z /Z_ 2 216 ° fe] 0 z -y’
2207 i 7 cos 1 12g?
— e Uz , (8'35)
'[ \/;COSG 267 (2)

where we have used the substitution y =+/zsin®. From (8-35)
we have the following result: If X and Y are independent zero
mean Gaussian r.vs with common variance o°, then

X?*+Y? 1s an exponential r.vs with parameter 2c°.

Example 8.8 : Let z=vXx>+Y2. Find /(2.

Solution: From Fig. 8.11, the present case corresponds tg a
circle with radius 22 Thus PILLAI



\/2272
J-

Fo(z)=[ |7 e far (2, y)axdy

And by repeated differentiation, we obtain

f( =" e (fxy(\/zz—yz,yﬂ fn(—\/zz—yz,y))dy- (8-36)

z' - y*

Now suppose X and Y are independent Gaussian as in
Example 8.7. In that case, (8-36) simpliﬁes to

z z |
fZ(Z):zjomzngz .[ \/7

_ 2z e_zz/zszj'ﬂ/Z zcos 0 40 :ie_ /2G 2 U(Z), (8_37)
o)

2 2
7o) 0 zcos©

e(zz—y2+y2)/262d 2/26°

which represents a Rayleigh distribution. Thus, 1if w = x +iv,
where X and Y are real, independent normal r.vs with zero
mean and equal variance, then the r.v |w|=+vx*>+y> has a
Rayleigh density. I 1s said to be a complex Gaussian r.v
with zero mean, whose real and 1maginary parts are
independent r.vs. From (8-37), we have seen thatits
magnitude has Rayleigh distribution. PILLAI




What about its phase
(X _
0 = tan (Yj? (8 38)

Clearly, the principal value of 6 lies in the interval (= /2,7 /2).
If welet U=tan0 =X /Y, then from example 8.5, U has a
Cauchy distribution with (see (8-30) with ¢,=0,, =0 )

Jo(u) = 12/7'5 , —00< U< o, (8-39)
u- +1
As a result
1 1 /7 l/m, —m/2<0<m/2,
O = e 1 ) = (U sec0) an’0 +1 :{ 0,  otherwise. (8-40)

To summarize, the magnitude and phase of a zero mean
complex Gaussian r.v has Rayleigh and uniform distributions
respectively. Interestingly, as we will show later, these two

derived r.vs are also independent of each other! 2
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Let us reconsider example 8.8 where X and Y have nonzero
means p, and p, respectively. Then z=+Xx>+7? is said to
be a Rician r.v. Such a scene arises in fading multipath
situation where there 1s a dominant constant component
(mean) 1n addition to a zero mean Gaussian r.v. The constant
component may be the line of sight signal and the zero mean
Gaussian r.v part could be due to random multipath
components adding up incoherently (see diagram below).
The envelope of such a signal 1s said to have a Rician p.d.f.

Example 8.9: Redo example 8.8, where X and Y have
nonzero means p, and p, respectively. Multipath/Gaussian
Solution: Since Line of sight noise

signal (constant) \ / /
1 ~[(x—pyx)?+(y—pny)?1/20°
e [(x—hx y-uy)“1/2c \\

2nc ’ a

substituting this into (8-36) and letting PfiL Al

fXY(x’y):

Rician
Output



Xx=2zcosO, y=2zsinb, pu= \/p)z( + 1., Wy =pcosd, u, = using,
we get the Rician probability density function to be

—(22+u2)/2c52

£(2) = ze — J‘:Sz (ezpcos((i)—d))/cz + e—zucos(9+¢)/62)d9
_ Ze(zz;:zi/zﬁz (Jf;?zeZHCOS(G_¢)/GZ J0 + J':/;”z o7 cos(0-0)/c dO)
_ ze;:c: 1/2“ ]O(CZTL; j (8-41)
where
I,m)= L gneososrgg - L j " e g (8-42)
21 Y0 T o

is the modified Bessel function of the first kind and zeroth
order.

Example 8.10: Z =max(X,Y), W =min(X,Y). Determine f,(z).

Solution: The functions max and min are nonlinear 24
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operators and represent special cases of the more general
order statistics. In general, given any n-tuple x,, x,,---, X,,
we can arrange them 1n an increasing order of magnitude
such that

Xy S$Xp$oo$X

(8-43)

(n)>

where X, =min(X,, X,,---, X,),and x,, 1s the second smallest
value among x,, x,,.--, x,, and finally x,, =max(X, Xx,,---, X,).
It x,,x,,,x, represent r.vs, the function x ,, that takes on
the value x, in each possible sequence (x, x,, -, x,) is
known as the k-th order statistic. (X, X, -+, X, ) represent
the set of order statistics among » random variables. In this

context
R=X, -Xg, (8-44)

represents the range, and when n = 2, we have the max and

. . . 25
min statistics. PILLAI



Returning back to that problem, since

Z:max(X,Y):{;(’ iii (8-45)

we have (see also (8-29))
F,(z)=P(max( X,Y)<z)=P[(X <z, X>Y)u (¥ <z, X <Y)]
=P(X<z,X>Y)+PY <z,X<7Y),
since (X >Y) and (X <Y) are mutually exclusive sets that
form a partition. Figs 8.12 (a)-(b) show the regions
satisfying the corresponding inequalities in each term

above. »
ﬂ‘ X=Z X = y

X <z (ZaZ)

X
X >Y

(@) P(X <z, X >Y) (b) P(Y <z,X <Y) -
Fig. 8.12 PILLAI



Fig. 8.12 (c) represents the total region, and from there
F,(z)=P(X <z,Y<z)=F,(z,2). (8-46)
If X and Y are independent, then

F,(z)=Fy(x)Fy ()

and hence
f,(z2)=F,(2) f,(2)+ fx(2)F, (2). (8-47)
Similarly
LI S
= min( X, )_{X, Y <y (8-48)
Thus

E,(w)=P(min(X,Y)<w)=P|Y <w,X>Y)u(X <w, X <Y)].
27
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Once again, the shaded areas in Fig. 8.13 (a)-(b) show the
regions satisfying the above inequalities and Fig 8.13 (¢)
shows the overall region.

From Fig. 8.13 (c¢),
F,(W)=1-P(W >w)=1-P(X >w,Y >w)
=F,(w)+F,(w)—F,, (w,w), (8-49)
where we have made use of (7-5) and (7-12) with x, = y, = +oo,

and x, =y, = w. 28
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Example 8.11: Let X and Y be independent exponential r.vs

with common parameter A. Define W =min(X,Y). Find £, (w)?
Solution: From (8-49)

Fy (W) = Fy (W) + Fy (w) = Fy (W)F, (w)
and hence
Jw W)= fy(W)+ f, (W) = [ (W) Ey (W) = Fy (W) fy (W)
But f,(w)=f,(w=re™, and F.(w)=F,(w)=1-¢™", so that
fr(w)=21e™ =2(1—e™)he™ =2he?™U(w).  (8-50)
Thus min ( X, Y) is also exponential with parameter 2A.

Example 8.12: Suppose X and Y are as give in the above
example. Define Z = [min( X,Y)/max( X,Y)]. Determine 1, (2).
29
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Solution: Although min(-)/max(-) represents a complicated
function, by partitioning the whole space as before, 1t 1s
possible to simplify this function. In fact
X/Y, X<V,

4= {Y /X, X>7Y.

As before, this gives
F(z2)=P(Z<z) =P(X/Y<z,X<Y)+P(Y/X<z,X>Y)
=P(X <Yz, X<Y)+P(Y <Xz, X >Y) . (8-52)

Since X and Y are both positive random variables 1n this case,
we have 0<z<1. The shaded regions 1n Figs 8.14 (a)-(b)
represent the two terms 1n the above sum.

(8-51)

4y x=yz

(a) (b) 30
Fig. 8.14 PILLAI



From Fig. 8.14

F@)=] [ fonddy+ [ [" foyddre. (8-53)

Hence

1@ = [y Lm0y + [ x fo (ex2)de = [ p{fiy (72,9)+ i (9 32) Jly

-

® OO

2
.Oy}L

2

(1+z2)*°
0,

O0<z<l,

otherwise.

(8-54)

{e—x(yz+y) 4 o M) }dy _ 792 J‘OOO pe gy — 2 jwue_”dy

(1+z)*Jo

1/2(2)

A

1
Fig. 8.15

Example 8.13 (Discrete Case): Let X and Y be independent
Poisson random variables with parameters 2, and 2,
respectively. Let Z = X +Y. Determine the p.m.f of Z.
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Solution: Since X and Y both take integer values {0,1,2,--- },
the same 1s true for Z. Forany »=0,1,2,---, X +Y =n glves
only a finite number of options for X and Y. In fact, if X =0,
then Y must be n; 1f X =1, then Y must be n-1, etc. Thus the
event {X +Y = n} 1s the union of (n + 1) mutually exclusive
events 4, given by

A ={X=k, Y=n—-k}, k=012, ,n (855

As a result
P(Z:n):P(X+Y=n):P(U(X=k, Y=n—k)j

—ZP(X k, Y=n—-k). (8-56)
If Xand Y are also 1ndependent then
P(X=k,Y=n-k)=P(X =k)P(Y =n—k)

and hence 32
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P(Z:n)zzn:P(sz, Y =n—k)

—k

k n—k “Ou+hy) |
Z w M o N e n! oL
P k' (n— k)' n! o kl(n—-k)!

_ o (ki) (M +25)" . n=0,1,2,---, 0. (8-57)
n!
Thus Z represents a Poisson random variable with
parameter A, + A, iIndicating that sum of independent Poisson
random variables 1s also a Poisson random variable whose
parameter 1s the sum of the parameters of the original
random variables.

As the last example illustrates, the above procedure for
determining the p.m.f of functions of discrete random
variables 1s somewhat tedious. As we shall see in Lecture 10,
the joint characteristic function can be used 1n this context

to solve problems of this type in an easier fashion. PlﬁLAI



