6. Mean, Variance, Moments and
Characteristic Functions

Forar.v X, its p.d.f f,(x) represents complete information
about it, and for any Borel set B on the x-axis

P(X(E&)e B)=] fy(x)dx. (6-1)

Note that fy(x) represents very detailed information, and
quite often 1t 1s desirable to characterize the r.v in terms of
its average behavior. In this context, we will introduce two
parameters - mean and variance - that are universally used
to represent the overall properties of the r.v and its p.d.{.
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Mean or the Expected Value of a r.v X is defined as

Ny =X =EX) =[x f(x)dx. (6-2)
If X 1s a discrete-type r.v, then using (3-25) we get
Ny = X=E(X)= ijpiS (x —x;)dx = inpi_[B (x —x;)dx

1

=Y xp, =Y x, P(X =x,). (6-3)
Mean replresents the average (mean) value of the r.vin a

very large number of trials. For example if X~ U(a,b), then
using (3-31),

F -

2 |° 2 2
X I x7| _ b a” _a+b (6-4)
b—a b—a 2| 2(b-a) 2

1s the midpoint of the interval (a,b).
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On the other hand 1f X 1s exponential with parameter A as in
(3-32), then

E(X):J‘Ow%ex”‘dx=7u_‘.:yeydyzk, (6-5)

implying that the parameter A 1n (3-32) represents the mean
value of the exponential r.v.

Similarly if X 1s Poisson with parameter A as in (3-45),
using (6-3), we get

o0 o N 7\1k N o0 7\1k
E(X) = kZ::OkP(X = k) = Z‘oke e Zk—.

N A* - A S
=e Z(k—l)!:ke lz.—zke e” = A. (6-6)

k=1

Thus the parameter A 1n (3-45) also represents the mean of

the Poisson r.v.
3
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In a similar manner, if X 1s binomial as 1n (3-44), then its
mean 1s given by

Y - n S n!
E(X)= kP(X =k) = k k n—k _ k k n—k
) % (=0 % [k)pq ; TENT

n-—1

_ n! g = (n=D! i _ o
C“ =) (k-1)! P9 —npizo (n—i—l)!i!pq np(p+q) np.
(6-7)

n

Thus np represents the mean of the binomial r.v in (3-44).

For the normal r.v 1n (3-29),

E(X):;w e D REL R N

o \/—f (y+u)e

1 * +0 e_y2/262dy _ M. (6_8)

- = —y2/262d + -
2no * L= > — )j " \ 271G’ J“”

0 o ~— J/
1

2 /9652
y Gdy
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Thus the first parameter in X ~N(p,6%) 1is infact the mean of
the Gaussian r.v X. Given X ~ f, (x), suppose Y = g(X) defines a
new r.v with p.d.f f,(»). Then from the previous discussion,
the new r.v Y has a mean p, given by (see (6-2))

hy = E(Y) = J:y Ty (y)dy. (6-9)

From (6-9), it appears that to determine E(Y), we need to
determine f,(y). However this 1s not the case if only g(y) 1s
the quantity of interest. Recall that for any y, Ay >0

P(y<YSy+Ay)=ZP(xi <X <x +Ax,), (6-10)

where x; represent the multiple solutions of the equation
y=g(x;). But(6-10) can be rewritten as

fr (DAY =D fr(x)Ax,, (6-11)
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where the (x, x, + Ax,) terms form nonoverlapping intervals.
Hence

y fy(¥)Ay = Z y [y (x)Ax; = Z g(x;) fy(x)Ax,, (6-12)

and hence as Ay covers the entire y-axis, the corresponding
Ax’s are nonoverlapping, and they cover the entire x-axis.
Hence, in the limit as Ay — 0, integrating both sides of (6-
12), we get the useful formula

EX)=E(@X)=[ "y f,(0dy =] g(x) fy(x)dx.  (6-13)
In the discrete case, (6-13) reduces to
E0N) =Y g()P(X = x)) (6-14)

From (6-13)-(6-14), f,(») 1s not required to evaluate £(Y)
for v = g(x). We can use (6-14) to determine the mean of

Y = X°, where X is a Poisson r.v. Using (3-45) 6
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N 0 7\,k N 00 7\41'+l
= e k = e I+ 1
; (k—1)! Z; ( ) i
= ke "

Y Y - (& i x
Zol°_+ .—j—Ke (2174—8)

/A |

i=1
0 i 00 m+1
Z - A +e" |=re™ Z « + e
] (l _ 1)' m=0

m!

= e * (Kek + ek)z A+ (6-15)

In general, E(x*) is known as the kth moment of r.v X.
Thus 1f X~ P()), 1ts second moment 1s given by (6-15).
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Mean alone will not be able to truly represent the p.d.f of
any r.v. To 1llustrate this, consider the following scenario:
Consider two Gaussian r.vs X,~N(0,1) and X,~ N(0,10).
Both of them have the same mean n=0. However, as
Fig. 6.1 shows, their p.d.fs are quite different. One 1s more
concentrated around the mean, whereas the other one (X,)
has a wider spread. Clearly, we need atleast an additional
parameter to measure this spread around the mean!

t le (x,) 1 sz(xz)

AN

(a) o’ =1 (b) ° =10
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For ar.v X with mean p, X - p represents the deviation of
the r.v from its mean. Since this deviation can be either
positive or negative, consider the quantity (x - 1)?, and its
average value E[(x -u)’] represents the average mean
square deviation of X around 1ts mean. Define

A

62 =E[(X-n)’]1>0. (6-16)

With g(X)=(x-p)* and using (6-13) we get
o = (x=p) fy(x)dx > 0. (6-17)

o is known as the variance of the r.v X, and its square
root o, =+E(X —p)* is known as the standard deviation of
X. Note that the standard deviation represents the root mean

square spread of the r.v X around 1ts mean p.
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Expanding (6-17) and using the linearity of the integrals, we
get

Var (X)=0% = [ (x* = 2xp + p? ) fy (x)dx
= [ fe@)dx =2 Cx fi (v +
=E(X?)-p=E(x?)-[E(xX)] =Xx>-X". (6-18)
Alternatively, we can use (6-18) to compute o .
Thus , for example, returning back to the Poisson r.v in (3-
45), using (6-6) and (6-15), we get
o2 =X-X =(2+1)-2>=1. (6-19)

Thus for a Poisson r.v, mean and variance are both equal

to 1ts parameter ). 10
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To determine the variance of the normal r.v N(un,c %), we
can use (6-16). Thus from (3-29)

_ _ 2/2 2
e (FTWTI29 T g

, 1
b) Py (6-20)
To simplify (6-20), we can make use of the identity

Var (X) = E[(X —p)*1=[ "(x -

2 2
e Cmm2e e — ]

j_+:fX(x)dx = J.j:\/ZTICT

for a normal p.d.f. This gives
jj: e W2 g = 2no . (6-21)

Differentiating both sides of (6-21) with respect to o, we
get

— 2 2 2
j (-x 3“) e—(x—u) /20 dx — \/ﬁ
— 0 G

Oor e—(x—M)Z/ZGde — G 2, (6-22)
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which represents the var (X)) 1n (6-20). Thus for a normal r.v
as in (3-29)

Var(X)=0c" (6-23)

and the second parameter in N (p,c *) 1nfact represents the
variance of the Gaussian r.v. As Fig. 6.1 shows the larger
the o, the larger the spread of the p.d.f around its mean.
Thus as the variance of a r.v tends to zero, 1t will begin to
concentrate more and more around the mean ultimately
behaving like a constant.

Moments: As remarked earlier, in general

m,= X"=E(X"), nx1 (6-24)

n

are known as the moments of the r.v X, and N
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w, = E[(X —p)'] (6-25)
are known as the central moments of X. Clearly, the
mean p =m,, and the variance o’ = p,. It 1s easy to relate m,

and p,. Infact
~ (N k()
ay (—p)

E(erem - B 1) mewr w2

un=E[(X—u)”]=E£

bl

In general, the quantities

E[(X —a)"] (6-27)
are known as the generalized moments of X about a, and
E[| X ['] (6-28)

are known as the absolute moments of X. .
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For example, if X~N (0,6 *), then it can be shown that

E(X")= ! o
- 1-3---(n—1)c", n even. (6-29)
1-3--«(n-1)c" n even
(X — s ? (6-30)
(| | ) {2kk!62k+1 /2/71:, n :(2](4_]), odd.

Direct use of (6-2), (6-13) or (6-14) 1s often a tedious
procedure to compute the mean and variance, and 1n this
context, the notion of the characteristic function can be
quite helpful.

Characteristic Function

The characteristic function of a r.v X 1s defined as 1
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©, (@) 2 E[™™)=["e" fi (x)dx. (6-31)

Thus @,(0)=1, and |®,(0)[<1 for all .
For discrete r.vs the characteristic function reduces to

O, (0)=) e P(X =k). (6-32)

Thus for example, if X~ P())as in (3-45), then its
characteristic function 1s given by

k jo | .
D (0)= Ze]ka) A 7¥ —xz (Xe ) _ oot _ el (6-33)

Stmilarly, if X 1s a bmomlal r.v as in (3-44), its
characteristic function 1s given by

®X(®):Ze]k®£ jpkan ZZ( j(pej(o)kan :(pe]m _|_q)n (6—34)
0 k o\ K 15
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To 1llustrate the usefulness of the characteristic function of a
r.v In computing its moments, first it 1s necessary to derive
the relationship between them. Towards this, from (6-31)

@X(m):E(em):E{i (ja:'r) }: 5 E(;r )
s B0 + 2 EXD 2y B

2l T

o+ (6-35)

Taking the first derivative of (6-35) with respect to w, and
letting 1t to be equal to zero, we get

0Dy ()] _ . _ 100, (o)
- mzo_]E(X) or E(X)_j o | (6-36)
Similarly, the second derivative of (6-35) gives
E(xh =L 8@ (6-37)

j5 0o’ 16
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and repeating this procedure k£ times, we obtain the Ath
moment of X to be
1 0"® (o)

E(X") =
(47) jk om "

k1. (6-38)

o =0

We can use (6-36)-(6-38) to compute the mean, variance
and other higher order moments of any r.v X. For example,
if X~ P(L), then from (6-33)

8(1))((0‘))_ - e’ n - o
P =e e Aje'®, (6-39)

so that from (6-36)

E(X)=M\, (6-40)

which agrees with (6-6). Differentiating (6-39) one more

time, we get
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2 ‘ .
0 qg)Xg(D) _ e—k (eke”" (Kj@jm )2 _|_€7v€] szeﬂ” ), (6-41)
6))

so that from (6-37)
E(X*) =M+, (6-42)

which again agrees with (6-15). Notice that compared to the
tedious calculations in (6-6) and (6-15), the efforts involved
in (6-39) and (6-41) are very minimal.

We can use the characteristic function of the binomial r.v
B(n, p) 1n (6-34) to obtain 1ts variance. Direct differentiation
of (6-34) gives
0D 4 ()
o
so that from (6-36), E(X)=np as in (6-7). I8
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One more differentiation of (6-43) yields

82(1) . 0 o) n— Jj2m Jjo n-—
8;§®)=fnp(ef (pe’ +q)"" +(n—1)pe” (pe’ +q)">)  (6-44)

and using (6-37), we obtain the second moment of the
binomual r.v to be

E(X*)=np(l+(n-1)p)=n’p® +npq. (6-45)

Together with (6-7), (6-18) and (6-45), we obtain the
variance of the binomial r.v to be

oy =EX)~[E(X)] =n’p* +npg —n’p* =npq.  (6.46)
To obtain the characteristic function of the Gaussian r.v, we
can make use of (6-31). Thus if X ~N(p,c?), then

19
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(DX((D) — J‘j_:ej())x %e(xu)z/lszdx (Let X — H — y)
o

Juw

2/2
— e el oY Gdy—e]“w

e e

(Let y— jo’w =u sothat y =u+ jo’®)

; 1 +oo ) .2 )
— eJ“m —2“' e (u+jo o )u—jo“®o)/2c dl/l
\ 21O -
. _ 2 o0 . 2 2 . _ 2 2
— ejuwe c o e u“/2c dl/l — e(];,w) c® /2). (6_47)

2 /5 1 +

T -
Notice that the characteristic function of a Gaussian r.v itself
has the “Gaussian” bell shape. Thus if X ~ N(0,6 *), then

fo(x) = e (6-48)

2To

and
D, (w)=e°®" (6-49)
20
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A /252 A 22
e e G0 /2

> X >

(a) (b)
Fig. 6.2

From Fig. 6.2, the reverse roles of 6 °1n f,(x) and @, (w) are
noteworthy (> vs 61—2).

In some cases, mean and variance may not exist. For
example, consider the Cauchy r.v defined 1n (3-39). With

fX( )_ (Ozt /7T)2

+ X

2 . too a2
E(X)——j cdy=—[ | 1- dx = 0, (6-50)
oo+ x° Yo a’+x°

clearly diverges to infinity. Similarly .

PILLAI



E(X)=>["—"—dx. (6-51)

2 2
T*™>0 +X

To compute (6-51), let us examine 1ts one sided factor

+ o0 x R
J, =% With x=otan0

J‘m x a’x:_..ﬁ/2 o tanb o sec’0do =J‘:/24d8m9 0

0 o? + x° 0 a’sec’ cosO
_ —j ni2d(cosb) _log cos0 "2 _ —logCOSTC—I ©,(6-52)
0 cosH ! 2

indicating that the double sided integral in (6-51) does not
converge and 1s undefined. From (6-50)-(6-52), the mean
and variance of a Cauchy r.v are undefined.

We conclude this section with a bound that estimates the
dispersion of the r.v beyond a certain interval centered

around its mean. Since o’ measures the dispersion of
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the r.v X around 1ts mean u , we expect this bound to
depend on ¢ * as well.

Chebychev Inequality

Consider an interval of width 2& symmetrically centered

around 1ts mean u as in Fig. 6.3. What 1s the probability that
X falls outside this interval? We need

P(X-ppe)? (6-53)

(e v [

w

«— g —>

> X

Fig. 6.3
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To compute this probability, we can start with the definition
of o°.

o’ = E[x —wr]= [T w feode 2 (=) £ ()
> eifpdeze?| fe(0dezetP(1X —pe). (6-54)

[x—plze

From (6-54), we obtain the desired probability to be

2

P(|Xx-ppe)<= — (6-55)

and (6-55) 1s known as the chebychev inequality.
Interestingly, to compute the above probability bound the
knowledge of f,(x) is not necessary. We only need o °, the
variance of the r.v. In particular with ¢ = ko 1n (6-55) we
obtain

P(1X - up ko)<t (6-56)

24
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Thus with &£ =3, we get the probability of X being outside
the 30 interval around 1ts mean to be 0.111 for any r.v.

Obviously this cannot be a tight bound as 1t includes all r.vs.
For example, in the case of a Gaussian r.v, from Table 4.1

(u=0,0=1)

P(| X |>30)=0.0027. (6-57)

which is much tighter than that given by (6-56). Chebychev
inequality always underestimates the exact probability.

25
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Moment Identities :

Suppose X 1s a discrete random variable that takes
only nonnegative integer values. 1.e.,

P(X=k)=p, 20, k=0,1,2,-

Then
ZP(X S k) = Z Z P(X =i) = ZP(X —z)Zl
=i P(X =i)= E(X) (6-58)
similarly
Sk P(X > k) =3 P(X =1)3 k= ii(iz_l)P(X — )= E{X(f_l)}

26
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which gives

E(X?) = iiZP(X =)= i 2k +1)P(X > k). (6-59)

Equations (6-58) — (6-59) are at times quite useful 1n
simplifying calculations. For example, referring to the
Birthday Pairing Problem [Example 2-20., Text], let X
represent the minimum number of people 1n a group for
a birthday pair to occur. The probability that “the first

n people selected from that group have different
birthdays” is given by [P(B) in page 39, Text]

n—1
pn _ H(l _k) ~ e—n(n—l)/ZN.
k=1 N

But the event the “the first n people selected have

27
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different birthdays” is the same as the event “ X > n.”
Hence

P(X > n) ~ e—n(n—l)/ZN.

Using (6-58), this gives the mean value of X to be

o0

E(X)=Y P(X>n) ~ YV & [T V9N
n=0

n=0

00 2 1/2 2
_ 18N I_l/ze FIN g /EN) {; o N_I_J‘O o /2Ndx}

~NT N /2 +% =24 .44, (6-60)

Similarly using (6-59) we get
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E(X?) = i(Zn +1)P(X > n)

_ Z(2n+1)e—n(n 1)/2N j‘ 2 (x+1)e—(x 1/4)/2Nd

-1/2

1/2
2
— 9 p(1/8N) {Ixex 12N gy o J‘ Yo /2Ndx}+2 J‘ e—(x —1/14)/2N ..

-1/2

- 2{&” N 2W+1}+2E(X)
2 T 8

=2N+i+VZLN+1=2N+V%LN+§

=779.139.
Thus

Var(X)=E(X*)—(E(X))" =181.82

29
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which gives
c, =~ 13.48.

Since the standard deviation 1s quite high compared to the
mean value, the actual number of people required for a

birthday coincidence could be anywhere from 25 to 40.

Identities similar to (6-58)-(6-59) can be derived 1n the
case of continuous random variables as well. For example,
if X 1s a nonnegative random variable with density function
f,(x) and distribution function £, (X), then

E(X) =[x (dx = 7([dv) £, (x)a

';O(I;fx(X)dx)dy = [ P(X > y)dy =] P(X>x)dx

= {1-F,(x)}dx =] R(x)dx, (6-61) 3
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where
R(x)=1-F,(x)=0, x>0.
Similarly

E{X*} =[x f(x)dx=[(]2ydy) [, (x)dx
=2[ /([ /. (x)dx) ydy
=2[ "x R(x)dx.




A Baseball Trivia (Pete Rose and Dimaggio):

In 1978 Pete Rose set a national league record by
hitting a string of 44 games during a 162 game baseball
season. How unusual was that event?

As we shall see, that indeed was a rare event. In that context,
we will answer the following question: What 1s the
probability that someone in major league baseball will
repeat that performance and possibly set a new record 1n

the next 50 year period? The answer will put Pete Rose’s
accomplishment 1n the proper perspective.

Solution: As example 5-32 (Text) shows consecutive

successes 1n z trials correspond to a run of length » in n
32
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trials. From (5-133)-(5-134) text, we get the probability of
r successive hits in #n games to be

p,=l-a, +pa,,, (6-62)

where
| n/(r+1) |

o, = 2D (gp") (6-63)

k=0

and p represents the probability of a hit in a game. Pete
Rose’s batting average is 0.303, and on the average since
a batter shows up about four times/game, we get

p = P(at least one hit / game)
=1-P(no hit / game)
=1-(1-0.303)* =0.76399 (6-64)

33
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Substituting this value for p into the expressions
(6-62)-(6-63) with » =44 and n = 162, we can compute the
desired probability p, However since n 1s quite large
compared to 7, the above formula 1s hopelessly time
consuming 1in its implementation, and 1t is preferable to
obtain a good approximation for p,

Towards this, notice that the corresponding moment
generating function ¢(z) for ¢, =1—p, in Eq. (5-130) Text,
1s rational and hence 1t can be expanded 1n partial fraction as

1-p'z' " oa,

z) = = : _
*(2) l—z+gp z"™"! kZ:;z—zk (6-65)

where only r roots (out of » +1) are accounted for, since the
root z=1/p 1s common to both the numerator and the

denominator of ¢(z). Here 34
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(1-p'z')(z-z)

— 1
=) l—z+gp'z"™
=hm(1_ ) ’,.pi” . I(Z_Zk)
22 —1+(r+1)gp'z’
or
r r _1
a = P C k=1,2,---,r
11— (r+Dgp'z, (6-66)
From (6-65) — (6-66)
| 2 (4 n - n
o)=Y =Y Q45" £ 3 g, (6-67)
kzl(_Zk) l—Z/Zk n=0 k=1 n=0
qn
where
4 == o v
1 (r+Dgp'z, 15
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and
=1l-p = ZA z; "D, (6-68)

However (fortunately), the roots z,, k=1,2,---,r 1n
(6-65)-(6-67) are all not of the same 1mportance (in terms
of their relative magnitude with respect to unity). Notice
that since for large », z," >0 for |z |>1, only the roots
nearest to unity contribute to (6-68) as n becomes larger.

To examine the nature of the roots of the denominator

r r+1

A(z)=z—-1-gp'z

in (6-65), note that (refer to Fig 6.1) A(0)=-1<0,
A(l)=—gp” > A(0), A1/ p)=0, A(x)<0 1mmplying that
for z>0, A(z) 1increases from —1 and reaches a positive

. . 36
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dA(z)
dz

Z_ZO

=1l-gp’' (r+1)z, =0,

which gives |
ZI"

T g (r+ 1)

(6-69)

There onwards A(z) decreases to —oo. Thus there are two
positive roots for the equation 4(z)=0 given by z, < z,
and z, =1/ p >1. Since 4(1)=—gp” ~0 but negative, by
continuity z, has the form z, =1+¢, € >0. (see Fig 6.1)

A(z)
/T\\\
N\

|
/ |
|
' 3 | \
| l
|
|

V

Fig 6.1 A(z) for r odd 37
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It 1s possible to obtain a bound for z, 1n (6-69). When
P varies from 0 to 1, the maximum of gp" =(1—p)p" is
attained for p =r/(r +1) and it equals " /(r +1)"'. Thus

r

r
r S i
qp (r+1)" (6-70)
and hence substituting this into (6-69), we get
ZOZF—H=1+1. (6-71)
r r

Hence 1t follows that the two positive roots of A(z) satisfy

1<zl<1+1<22:l>1. (6-72)

r p
Clearly, the remaining roots of A(z) are complex if i358
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odd , and there 1s one negative root —a 1f 7 1s even (see
Fig 6.2). It 1s easy to show that the absolute value of every
such complex or negative root is greater than 1/p >1.

\,

t A(z)

|

|

|

|
/—:\
] Zy

> Z
Zz\

Fig 6.2 A(z) for r even

To show this when r 1s even, suppose —o. represents the

negative root. Then

Ao =—(a +1-gp'a™")=0

39
PILLAI



so that the function
B(x)=x+1—gp'x™" = A(x)+2 (6-73)

starts positive, for x > 0 and increases till it reaches once
again maximum at z, =141/ and then decreases to

— oo through the root x=a >z, >1. Since B(1/p) =2, we
get oo > 1/p > 1, which proves our claim.

A

B(x)

Fig 6.3 Negative root B(a) =0 40
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Finally if z = p e” is a complex root of A(z), then
A(p ej@): p eje _l_qprpr+lej(r+1)9 :0 (6_74)
so that

r . r+l _j(r+1)0 r r+l

p=|l+gp'p e < 1+gp'p
or

r o _r+l

A(p)=p-1-gp'p" <O0.

Thus from (6-72), P belongs to either the interval (0, z;)
or the interval (,%) in Fig 6.1. Moreover , by equating
the imaginary parts in (6-74) we get

. .SIn(r+10
PP sino

1. (6-75)

41
PILLAI



But
SIn(r» +1)0
S1No

<r+l, (6-76)

equality being excluded if 6 # 0. Hence from (6-75)-(6-76)
and (6-70)

(r+gp'p">1 = p" > : :Z(’;>(r+1j
(r +Dgp’ r
or |
p>z,21+—.
r

But z <z.Asaresult P lies in the interval (4,00) only.

Thus 1
p>—>1 (6-77)
p 42
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To summarize the two real roots of the polynomial
A(z) are given by

z,=l+e, €>0; 22=l>1, (6-78)
p
and all other roots are (negative or complex) of the form
z,=pe” wherep > o (6-79)
P

Hence except for the first root z; (which 1s very close to
unity), for all other roots

z,"™Y  — 0 rapidly for all k.
As a result, the most dominant term 1n (6-68) 1s the first

term, and the contributions from all other terms to ¢, in
(6-68) can be bounded by 5
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2
—(n+1)
Z Az,
k=2

r
<14z [
k=2

SZF: 1_(p|Zk|) rpn-i-l
2 1=(r+1Dq(plz,|)

<3 (plz ) i
i (r+1)g(p|z, )

n+l n+l
:r—lp oy
r+1 gq B q

> 0. (6-80)

Thus from (6-68), to an excellent approximation

q,=Az"". (6-81)
This gives the desired probability to be
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pnzl—qnzl—( 1=(pz) rjzl(””). (6-82)
1=(r+Dq(pz)

Notice that since the dominant root z; 1s very close to
unity, an excellent closed form approximation for z; can
be obtained by considering the first order Taylor series

expansion for A(z). In the immediate neighborhood of z =1
we get

Ad+e)=A)+ AMe =—gp” + (A —=(r +)gp’)e
so that A(z,)=A(l+¢€)=0 gives

r

qapP

g = :
1-(r+1)gp’

or 45
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Lo
1-(r+1)gp’
Returning back to Pete Rose’s case, p = 0.763989, r = 44

gives the smallest positive root of the denominator
polynomial

z, ~1 (6-83)

44 45

A(z)=z—-1—-¢gp™'z
to be

z, =1.00000169360549.

(The approximation (6-83) gives z, =1.00000169360548).
Thus with n» = 162 1n (6-82) we get

.., =0.0002069970 (6-84)

to be the probability for scoring 44 or more consecutive
46



hits in 162 games for a player of Pete Rose’s caliber — a
very small probability indeed! In that sense it is a very
rare event.

Assuming that during any baseball season there are
on the average about 2x25=150 (?) such players over
all major league baseball teams, we obtain [use Lecture #2,
Eqgs.(2-3)-(2-6) for the independence of 50 players]

P=1-(1-p,,)” =0.0102975349
to be the probability that one of those players will hit the
desired event. If we consider a period of 50 years, then the

probability of some player hitting 44 or more consecutive
games during one of these game seasons turns out to be

1—(1-P)™ =0.40401874. (6-85)
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(We have once again used the independence of the 50
seasons.)

Thus Pete Rose’s 44 hit performance has a 60-40
chance of survival for about 50 years.From (6-85), rare
events do indeed occur. In other words, some unlikely
event 1s likely to happen.

However, as (6-84) shows a particular unlikely event —
such as Pete Rose hitting 44 games 1n a sequence — 1s
indeed rare.

Table 6.1 lists p,,, for various values of r. From there,
every reasonable batter should be able to hit at least 10

to 12 consecutive games during every season! i



r p, ; n=162
44 0.000207
25 0.03928
20 0.14937
15 0.48933
10 0.95257

Table 6.1 Probability of 7 runs in » trials for p=0.76399.

As baseball fans well know, Dimaggio holds the record of
consecutive game hitting streak at 56 games (1941). With

a lifetime batting average of 0.325 for Dimaggio, the above
calculations yield [use (6-64), (6-82)-(6-83)] the probability
for that event to be 49



p, =0.0000504532. (6-86)

Even over a 100 year period, with an average of 50
excellent hitters / season, the probability is only

1—(1-P)"* =0.2229669 (6-87)

(where P, =1—(1- p,)* =0.00251954) that someone
will repeat or outdo Dimaggio’s performance.Remember,
60 years have already passed by, and no one has done it yet!
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