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6. Mean, Variance, Moments and 
Characteristic Functions 

For a r.v X, its p.d.f          represents complete information 
about it, and for any Borel set B on the x-axis

Note that          represents very detailed information, and 
quite often it is desirable to characterize the r.v in terms of 
its average behavior. In this context, we will introduce two 
parameters - mean and variance - that are universally used 
to represent the overall properties of the r.v and its p.d.f.
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Mean or the Expected Value of a r.v X is defined as

If X is a discrete-type r.v, then using (3-25) we get

Mean represents the average (mean) value of the r.v in a 
very large number of trials. For example if    ∼ then 
using (3-31) ,

is the midpoint of the interval (a,b). 
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On the other hand if X is exponential with parameter     as in 
(3-32), then

implying that the parameter     in (3-32) represents the mean 
value of the exponential r.v.

Similarly if X is Poisson with parameter     as in (3-45), 
using (6-3), we get

Thus the parameter    in (3-45) also represents the mean of 
the Poisson r.v.
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In a similar manner, if X is binomial as in (3-44), then its 
mean is given by

Thus  np represents the mean of the binomial r.v in (3-44).

For the normal r.v in (3-29),
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Thus the first parameter in    ∼ is infact the mean of 
the Gaussian r.v X. Given    ∼ suppose               defines a 
new r.v with p.d.f            Then from the previous discussion,
the new r.v Y has a mean      given by (see (6-2)) 

From (6-9), it appears that to determine           we need to 
determine           However this is not the case if only        is 
the quantity of interest. Recall that for any y,

where      represent the multiple solutions of the equation
But(6-10) can be rewritten as
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where the                    terms form nonoverlapping intervals. 
Hence

and hence as ∆y covers the entire y-axis, the corresponding 
∆x’s are nonoverlapping, and they cover the entire x-axis. 
Hence, in the limit as              integrating both sides of (6-
12), we get the useful formula

In the discrete case, (6-13) reduces to

From (6-13)-(6-14),           is not required to evaluate                
for                 We can use (6-14) to determine the mean of

where X is a Poisson r.v.  Using (3-45)
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In general,           is known as the kth moment of r.v X. 
Thus if    ∼ its second moment is given by (6-15).,)(    λPX
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Mean alone will not be able to truly represent the p.d.f of 
any r.v. To illustrate this, consider the following scenario:  
Consider two Gaussian r.vs      ∼ and      ∼
Both of them have the same mean             However, as  
Fig. 6.1 shows, their p.d.fs are quite different. One is more 
concentrated around the mean, whereas the other one     
has a wider spread. Clearly, we need atleast an additional 
parameter to measure this spread around the mean!

(0,1)    1 NX (0,10).    2 NX
.0=µ

Fig.6.1
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For a r.v X with mean                 represents the deviation of 
the r.v from its mean. Since this deviation can be either 
positive or negative, consider the quantity              and its
average value                   represents the average mean 
square deviation of X around its mean. Define

With                        and using (6-13) we get

is known as the variance of the r.v X, and its square 
root                           is known as the standard deviation of 
X. Note that the standard deviation represents the root mean 
square spread of the r.v X around its mean        
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Expanding (6-17) and using the linearity of the integrals, we 
get

Alternatively, we can use (6-18) to compute 

Thus , for example, returning back to the Poisson r.v in (3-
45), using (6-6) and (6-15), we get

Thus for a Poisson r.v, mean and variance are both equal       
to its parameter        
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To determine the variance of the normal r.v                  we 
can use (6-16). Thus from (3-29)

To simplify (6-20), we can make use of the identity

for a normal p.d.f. This gives

Differentiating both sides of (6-21) with respect to      we 
get

or 
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which represents the              in (6-20). Thus for a normal r.v 
as in (3-29)

and the second parameter in                  infact represents the 
variance of the Gaussian r.v. As Fig. 6.1 shows the larger 
the       the larger the spread of the p.d.f around its mean. 
Thus as the variance of a r.v tends to zero, it will begin to 
concentrate more and more around the mean ultimately 
behaving like a constant.

Moments: As remarked earlier, in general

are known as the moments of the r.v X, and 
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n XE µµ −= (6-25)

are known as the central moments of X. Clearly, the             
mean              and the variance                It is easy to relate        
and       Infact

In general, the quantities

are known as the generalized moments of X about a, and 

are known as the absolute moments of X.
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For example, if    ∼ then it can be shown that

Direct use of (6-2), (6-13) or (6-14) is often a tedious 
procedure to compute the mean and variance, and in this 
context, the notion of the characteristic function can be 
quite helpful.

Characteristic Function

The characteristic function of a r.v X is defined as 
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Thus                   and                   for all            

For discrete r.vs the characteristic function reduces to

Thus for example, if      ∼ as in (3-45), then its 
characteristic function is given by

Similarly, if X is a binomial r.v as in (3-44), its 
characteristic function is given by     
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To illustrate the usefulness of the characteristic function of a
r.v in computing its moments, first it is necessary to derive 
the relationship between them. Towards this, from (6-31)

Taking the first derivative of (6-35) with respect to ω, and 
letting it to be equal to zero, we get

Similarly, the second derivative of (6-35) gives
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and repeating this procedure k times, we obtain the kth 
moment of X to be 

We can use (6-36)-(6-38) to compute the mean, variance 
and other higher order moments of any r.v X. For example,      
if     ∼ then from (6-33)

so that from (6-36)

which agrees with (6-6). Differentiating (6-39) one more 
time, we get
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so that from (6-37)

which again agrees with (6-15). Notice that compared to the 
tedious calculations in (6-6) and (6-15), the efforts involved 
in (6-39) and (6-41) are very minimal.

We can use the characteristic function of the binomial r.v 
B(n, p) in (6-34) to obtain its variance. Direct differentiation 
of (6-34) gives

so that from (6-36),                  as in (6-7).
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One more differentiation of (6-43) yields

and using (6-37), we obtain the second moment of the 
binomial r.v to be

Together with (6-7), (6-18) and (6-45), we obtain the 
variance of the binomial r.v to be

To obtain the characteristic function of the Gaussian r.v, we 
can make use of (6-31). Thus if     ∼ then
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Notice that the characteristic function of a Gaussian r.v itself
has the “Gaussian” bell shape. Thus if     ∼ then
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Fig. 6.2

From Fig. 6.2, the reverse roles of      in          and        are 
noteworthy

In some cases, mean and variance may not exist. For 
example, consider the Cauchy r.v defined in (3-39). With 

clearly diverges to infinity. Similarly
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To compute (6-51), let us examine its one sided factor

With

indicating that the double sided integral in (6-51) does not 
converge and is undefined. From (6-50)-(6-52), the mean 
and variance of a Cauchy r.v are undefined.

We conclude this section with a bound that estimates the 
dispersion of the r.v beyond a certain interval centered 
around its mean.  Since       measures the dispersion of
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the r.v X around its mean µ , we expect this bound to 
depend on      as well.

Chebychev Inequality

Consider an interval of width 2ε symmetrically centered 
around its mean µ as in Fig. 6.3. What is the probability that 
X falls outside this interval?  We need

2σ

( ) ?  || εµ ≥−XP (6-53)
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X

Fig. 6.3

X
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To compute this probability, we can start with the definition 
of  

From (6-54), we obtain the desired probability to be 

and (6-55) is known as the chebychev inequality. 
Interestingly, to compute the above probability bound the 
knowledge of           is not necessary. We only need        the
variance of the r.v. In particular with             in (6-55) we 
obtain
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Thus with           we get the probability of X being outside 
the 3σ interval around its mean to be 0.111 for any r.v. 
Obviously this cannot be a tight bound as it includes all r.vs. 
For example, in the case of a Gaussian r.v, from Table 4.1 

which is much tighter than that given by (6-56). Chebychev 
inequality always underestimates the exact probability.
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Moment Identities :
Suppose  X is a discrete random variable that takes

only nonnegative integer values. i.e.,

Then 

similarly
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which gives

Equations (6-58) – (6-59) are at times quite useful in 
simplifying calculations. For example, referring to the 
Birthday Pairing Problem [Example 2-20., Text], let X
represent the minimum number of people in a group for
a birthday pair to occur. The probability that “the first 
n people selected from that group have different 
birthdays” is given by [P(B) in page 39, Text]

But the event the “the first n people selected have 
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different birthdays” is the same as the event “ X > n.”
Hence 

Using (6-58), this gives the mean value of X to be

Similarly using (6-59) we get 
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Thus 

2

2 2 2

 

  

2

0

( 1) / 2 ( 1/ 4) / 2
 

0 1/ 2

1/ 2
(1/8 ) / 2 / 2 ( 1/ 4) / 2

0 0 1/ 2

( ) (2 1) ( )

(2 1) 2 ( 1)

2 2

2 2 12 2 ( )
2 8
1 52 2 1 2 2
4 4

779.139.

n

n n N x N

n

N x N x N x N

E X n P X n

n e x e dx

e xe dx xe dx e dx

N N E X

N N N N

π
π

π π

∞

=

∞∞
− − − −

= −

∞ ∞
− − − −

−

= + >

= + = +

 
= + + 

 
 

= + + 
 

= + + + = + +

=

∑

∑ ∫

∫ ∫ ∫

82.181))(()()( 22 =−= XEXEXVar
PILLAI



30

which gives

Since the standard deviation is quite high compared to the 
mean value, the actual number of people required for a 
birthday coincidence could be anywhere from 25 to 40.

Identities similar to (6-58)-(6-59) can be derived in the 
case of continuous random variables as well. For example,
if X is a nonnegative random variable with density function
fX (x) and distribution function FX (X), then

.48.13    ≈Xσ
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where

Similarly
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A Baseball Trivia (Pete Rose and Dimaggio):

In 1978 Pete Rose set a national league record by
hitting a string of 44 games during a 162 game baseball
season. How unusual was that event?
As we shall see, that indeed was a rare event. In that context,
we will answer the following question: What is the 
probability that someone in major league baseball will 
repeat that performance and possibly set a new record in
the next 50 year period? The answer will put Pete Rose’s
accomplishment in the proper perspective.

Solution: As example 5-32 (Text) shows consecutive
successes in n trials correspond to a run of length r in n

PILLAI
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trials. From (5-133)-(5-134) text, we get the probability of
r successive hits in n games to be 

where

and p represents the probability of a hit in a game. Pete
Rose’s batting average is 0.303, and on the average since 
a batter shows up about four times/game, we get

rrn
r

rnn pp ,,1 −+−= αα (6-62)
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Substituting this value for p into the expressions 
(6-62)-(6-63) with r = 44 and n = 162, we can compute the 
desired probability  pn. However since n is quite large 
compared to r, the above formula is hopelessly time 
consuming in its implementation, and it is preferable to 
obtain a good approximation for  pn.

Towards this, notice that the corresponding moment 
generating function          for                    in Eq. (5-130) Text, 
is rational and hence it can be expanded in partial fraction as 

where only r roots (out of r +1) are accounted for, since the
root  z = 1/p is common to both the numerator and the
denominator of           Here
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and  

However (fortunately), the roots                               in 
(6-65)-(6-67) are all not of the same importance (in terms 
of their relative magnitude with respect to unity). Notice 
that since for large n,                   for                only the roots
nearest to unity contribute to (6-68) as n becomes larger.

To examine the nature of the roots of the denominator

in (6-65), note that (refer to Fig 6.1)                               
implying that 

for                        increases from –1 and reaches a positive 
maximum at z0 given by

. 1
1
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which gives

There onwards A(z) decreases to         Thus there are two
positive roots for the equation               given by          
and                       Since                        but negative, by 
continuity      has the form                              (see Fig 6.1)      
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It is possible to obtain a bound for      in (6-69). When 
P varies from 0 to 1, the maximum of                            is
attained for                       and it equals                Thus

and hence substituting this into (6-69), we get 

Hence it follows that the two positive roots of  A(z) satisfy

Clearly, the remaining roots of           are complex if r is

0z
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odd , and there is one negative root         if r is even (see
Fig 6.2). It is easy to show that the absolute value of every
such complex or negative root is greater than 1/p >1.

α−

To show this when r is even, suppose         represents the 
negative root. Then
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so that the function 

starts positive, for x > 0 and increases till it reaches once 
again  maximum at                     and then decreases to

through the root                           Since  B(1/p) = 2, we 
get     > 1/p > 1, which proves our claim.
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Finally if                 is a complex root of A(z), then

so that 

or

Thus from (6-72),      belongs to either the interval (0,  z1) 
or the interval             in Fig 6.1. Moreover , by equating 
the imaginary parts in (6-74) we get
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But 

equality being excluded if            Hence from (6-75)-(6-76)
and (6-70)

or

But              As a result      lies in the interval          only.
Thus 

ρ.01 zz < ),( 1 ∞p

,1 )1( sin
sin

+≤
+ rr
θ

θ

.0≠θ

r
r

r
rrr

r
rz

qpr
qpr 






 +

>=
+

>⇒>+
1

)1(
1      1)1( 0ρρ

.110 r
z +≥>ρ

.11
>>

p
ρ

PILLAI

(6-76)

(6-77)



43

To summarize the two real roots of the polynomial 
A(z) are given by

and all other roots are (negative or complex) of the form

Hence except for the first root z1 (which is very close to
unity), for all other roots

As a result, the most dominant term in (6-68) is the first 
term, and the contributions from all other terms to  qn in
(6-68) can be bounded by

,11     ;0     ,1 21 >=>+=
p

zz εε

.11      where >>=
p

ez j
k ρρ θ

. allfor rapidly    0       )1( kz n
k →+−

PILLAI

(6-78)

(6-79)



44

Thus from (6-68), to an excellent approximation

This gives the desired probability to be                      
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Notice that since the dominant root z1 is very close to
unity, an excellent closed form approximation for z1 can
be obtained by considering the first order Taylor series 
expansion for A(z). In the immediate neighborhood of  z =1
we get

so that                                    gives
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Returning back to Pete Rose’s case,  p = 0.763989, r = 44 
gives the smallest positive root of the denominator 
polynomial

to be

(The approximation (6-83) gives                                        ).
Thus with n = 162 in (6-82) we get

to be the probability for scoring 44 or more consecutive

45441)( zqpzzA −−=
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hits in 162 games for a player of Pete Rose’s caliber    a
very small probability indeed! In that sense it is a very 
rare event. 

Assuming that during any baseball season there are 
on the average about                     (?) such players over 
all major league baseball teams, we obtain [use Lecture #2, 
Eqs.(2-3)-(2-6) for the independence of 50 players]

to be the probability that one of those players will hit the 
desired event. If we consider a period of 50 years, then the 
probability of some player hitting 44 or more consecutive
games during one of these game seasons turns out to be

−
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(We have once again used the independence of the 50
seasons.)

Thus Pete Rose’s 44 hit performance has a 60-40
chance of survival for about 50 years.From (6-85), rare 
events do indeed occur. In other  words, some unlikely 
event is likely to happen. 
However, as (6-84) shows a particular unlikely event    
such as Pete Rose hitting 44 games in a sequence     is 
indeed rare.

Table 6.1 lists  p162 for various values of r. From there, 
every reasonable batter should be able to hit at least 10 
to 12 consecutive games during every season!

−
−
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0.9525710
0.4893315

0.1493720

0.0392825
0.00020744

pn ;  n = 162r

Table 6.1 Probability of r runs in n trials for p=0.76399.

As baseball fans well know, Dimaggio holds the record of 
consecutive game hitting streak at 56 games (1941). With 
a lifetime batting average of 0.325 for Dimaggio, the above 
calculations yield [use (6-64), (6-82)-(6-83)] the probability 
for that event to be
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Even over a 100 year period, with an average of 50 
excellent hitters / season, the probability is only

(where                                                    ) that someone 
will repeat or outdo Dimaggio’s performance.Remember, 
60 years have already passed by, and no one has done it yet!

.0000504532.0=np
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