3. Random Variables

Let (2, F, P) be a probability model for an experiment,
and X a function that maps every & €3, to a unique
point x € R, the set of real numbers. Since the outcome &
1S not certain, so 1s the value X (&) = x. Thus 1f B 1s some
subset of R, we may want to determine the probability of
“X(&)eB”. To determine this probability, we can look at
the set 4= X '(B) e Q that contains all £ € Q that maps

into B under the function X. £
X(©€)

X [—B— R .
Fig. 3.1 PILLAI




Obviously, if the set 4= x ' (B) also belongs to the
associated field F, then 1t 1s an event and the probability of
A 1s well defined; 1n that case we can say

Probability of the event " X (§) e B"= P(X '(B)). (3-1)

However, X ~'(B) may not always belong to F’ for all B, thus
creating difficulties. The notion of random variable (r.v)
makes sure that the inverse mapping always results 1n an
event so that we are able to determine the probability for

any B e R.

Random Variable (r.v): A finite single valued function Xx(-)
that maps the set of all experimental outcomes Q 1nto the
set of real numbers R 1s said to be ar.v, if the set {¢ | x (&)< x }

1s an event (e F) for every x in R.
2

PILLAI



Alternatively X is said to be ar.v, if X '(B)e F where B
represents semi-definite intervals of the form {-« < x <a}
and all other sets that can be constructed from these sets by
performing the set operations of union, intersection and
negation any number of times. The Borel collection B of
such subsets of R 1s the smallest o-field of subsets of R that
includes all semi-infinite intervals of the above form. Thus
if X 1s ar.v, then

fe|1x@E)<xp={X <x} (3-2)

1s an event for every x. What about {a < X <b } { X =a}?
Are they also events ? In fact with 5 > ¢ since {X <a}
and {X <b }are events, { X <a |°={X >a} 1s an event and

hence {X>a}n{X<bh}={a<X<b} isalsoan event.
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1 .
Thus,{ a-—<X<a } 1s an event for every n.

n

Consequently

ﬁ{a—1—<X3a}:{X:a} (3-3)

is also an event. All events have well defined probability.
Thus the probability of the event {¢ | x (¢) < x } must

depend on x. Denote
P{e¢ | X(E)<x }=F,(x)=0. (3-4)

The role of the subscript X in (3-4) is only to identify the
actual r.v. F,(x) 1is said to the Probability Distribution
Function (PDF) associated with the r.v X.

4
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Distribution Function: Note that a distribution function
2(x) 1s nondecreasing, right-continuous and satisfies

g(t+o)=1, g(-0)=0, (3-5)
1.e., 1f g(x) 1s a distribution function, then
(i) g(+o)=1, g(-)=0,
(1) 1f x, < x,, then g(x,) < g(x,), (3-6)
and
(i) g(x") = g(x), for all x.

We need to show that F,(x) defined in (3-4) satisfies all
properties 1n (3-6). In fact, for any r.v X,
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(i)  Fy(+o)=P{E|X(E)<+0 |= P(Q) =1 (3-7)
and  Fy(-»)=P{E[X(E)<—» j=P($)=0. (3-8)

(11) If *; < X, then the subset (—x,x,) < (-x,x,).
Consequently the event {& [ X (&) < x, jc {& [ X (§) < x,f,
since X (¢) < x, mmplies X (£) < x,.As aresult

Fo(x)=P(X(E)<x)<P(X(E)<x,)=Fe(x,), (39

implying that the probability distribution function 1s
nonnegative and monotone nondecreasing.

(i11) Let x<x, <x,, <--<x,<x, and consider the event

n—1

A ={E|x<XE)<x,} (3-10)
since

{x<XE)<x JulXE)<xf={X ()< x ], GB-11)
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using mutually exclusive property of events we get

P(4,)=P(x < X ()< x,)=Fy(x,) = Fy(x). (3-12)

But -4, cA4 <A, _ -, and hence
lim 4, =() 4, =¢ and hence lim P(4,)=0. (3-13)

- k=1 -

Thus
llcim P(A,) = llcim F.(x,)-F,(x)=0.

But lim x, = x7, the right limit of x, and hence

F,(x")=F,(x), (3-14)

1.e., Fy(x) 18 right-continuous, justifying all properties of a

distribution function.
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Additional Properties of a PDF
(iv) If F,(x,)=0 for some x,, then F,(x)=0, x<x, (3-15)

This follows, since F,(x,)=P(X(E)<x,)=0 implies {X )< x, |
is the null set, and for any x<x,, {X()<x}will be a subset
of the null set.

(V) P{X(E)>x }=1-F,(x). (3-16)
We have { X&) <x Ju{X(€)>x }=Q, and since the two events
are mutually exclusive, (16) follows.

(V1) Pix, < X(E) < x, f= Fy(x,) = Fy(x), x,>x,. (3-17)

The events {x &)< x, } and {x, < X(¢)<x,} are mutually

exclusive and their union represents the event { X (&) <x, }.
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(Vi) P(X(E)=x)=Fy(x) = Fy(x). (3-18)
Let x,=x-¢, ¢>0, and x, =x. From (3-17)
liBgP{x—s <X(E)<x }:FX(x)—lin%FX(x—s), (3-19)

or
P{XE)=x }=Fy(x)— Fy(x). (3-20)

According to (3-14), Fy(x;), the limit of F, (x) as x = x,
from the right always exists and equals F, (x,). However the
left limit value F, (x,) need not equal F, (x,). Thus F, (x)
need not be continuous from the left. At a discontinuity
point of the distribution, the left and right limits are
different, and from (3-20)

P{XE)=x, J=Fy(x,) - Fy(x,)>0.  (321)
PILLAI



Thus the only discontinuities of a distribution function 7, (x)
are of the jump type, and occur at points x, where (3-21) 1s
satisfied. These points can always be enumerated as a
sequence, and moreover they are at most countable 1n
number.

Example 3.1: X1s ar.vsuch that x(¢)=¢, £ e Q. Find F,(x).
Solution: For x<¢, { X(¢)<x }={¢ },so that F (x)=0, and

for x>¢, {XE)<x}=0Q, sothat F,(x)=1. (Fig.3.2)

1 __________

Fig. 3.2

Example 3.2: Toss a coin. O = {#,T}. Suppose the r.v X 1s

such that X (7)=0, X(H)=1.Find F,(x). 10
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Solution: For x<0,{X&)<x}={¢ }, sothat F, (x)=0.
0<x<l, {XE)<x}={T}, sothat F,(x)=P{T }=1-p,
x21, {XE)<x}={H,T}=Q, sothat F,(x)=1. (Fig.3.3)

> X

Fig3.3
X 1s said to be a continuous-type r.v if its distribution

function F, (x) 1s continuous. In that case F, (x") = F, (x) for
all x, and from (3-21) we get P{X =x}=0.

If F,(x) 1s constant except for a finite number of jump
discontinuities(piece-wise constant; step-type), then X is
said to be a discrete-type r.v. If x, 1s such a discontinuity
point, then from (3-21)

pi=PX = x,f= Fy(x,) = Fy (x]). (3-22)



From Fi1g.3.2, at a point of discontinuity we get
P{X=c}=F,(c)-F,(c)=1-0=1.
and from Fi1g.3.3,
P{X =0}=F,(0)-F,(0)=¢g-0=gq.

Example:3.3 A fair coin is tossed twice, and let the r.v X
represent the number of heads. Find F, (x).
Solution: In this case Q = { HH ,HT ,TH , 7T }, and

X(HH)=2,X(HT)=1,X(TH)=1,X(TT )= 0.
x<0, {XE)<x}=0¢ = F,(x)=0,

0<x<L,{XE)<x}={IT }= F,(x)=P{TT }= P(T)P(T) = 411—,

1< x<2,{XE)<x}={TT ,HT ,TH }= F,(x)= P{TT ,HT ,TH }= %,

x22, {(X(E)<x}=Q= F,(x)=1.(Fig. 3.4) 12
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FromFig.3.4, pl{x =1}=F,(1)-F,(1")=3/4-1/4=1/2.

|
3/4

1/4

Fig. 3.4

Probability density function (p.d.f)

The derivative of the distribution function F (x) 1s called
the probability density function f, (x) of the r.v X. Thus

A dF (x)

Sy (x) = (3-23)
Since
M:Iim FX(x+Ax)—FX(x)>O (3-24)
dx Ax—0 Ax B
from the monotone-nondecreasing nature of F, (x), 4

PILLAI



it follows that f,(x)>0 for all x. f,(x) will be a
continuous function, if X is a continuous type r.v.
However, if X 1s a discrete type r.v as in (3-22), then its

p.d.f has the general form (Fig. 3.5) T T fX(xf ?
tirt
fr(x) =2 pd(x-x,), (3-25) B
i Fig. 3.5

where x, represent the jump-discontinuity points in £_(x).
As Fig. 3.5 shows £, (x) represents a collection of positive
discrete masses, and 1t 1s known as the probability mass
function (p.m.1") 1n the discrete case. From (3-23), we
also obtain by integration

Fo(x)=[ f.(u)du. (3-26)
Since F, (+0 ) =1, (3-26) yields
[ royax =1, (3-27)
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which justifies its name as the density function. Further,
from (3-26), we also get (Fig. 3.6b)

P{x; < X(§)< x, }= Fy(x,)= Fy(x) = [ fr(x)dr. (3-28)

Thus the area under f, (x) in the interval (x,,x,) represents
the probability 1n (3-28).

| 0
|
_—
/ . _/\/’\/rr\ -
X Xy A X X5
(a) (b)
Fig. 3.6

Often, r.vs are referred by their specific density functions -
both in the continuous and discrete cases - and in what

follows we shall list a number of them 1n each category.
15
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Continuous-type random variables

1. Normal (Gaussian): X 1s said to be normal or Gaussian
r.v, if

fy (%) = e pmtmwiizet, (3-29)

2
27O

This 1s a bell shaped curve, symmetric around the
parameter p, and its distribution function 1s given by

_ [ 1 ~(y-p)* /267 g A _ X —H i
Fo) = [ 7= " —G( - ) (3-30)
where ¢(x) = [* —— "4y is often tabulated. Since f,(x)
—® /2T

depends on two parameters p and o?, the notation X ~N(u,c?)

will be used to represent (3-29). JK

L on
Fig. 3.7
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2. Uniform: X~ U(a,b), a<b, 1f (Fig. 3.8)

) - {b# a<x<b, (3.31)
X - — d

0, otherwise.
3. Exponential: X~ () if (Fig. 3.9)

1 —x/A
fo(x) = {Ie » ¥ 20,

0, otherwise.

(3-32)

1 t /(@) t /e
b-—a | \
> X —— )
a b
Fig. 3.8 Fig. 3.9
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4. Gamma: X~ G(o,p) if (a>0, p>0) (Fig. 3.10)

- o1 Sy (x)
X —x/B > 0
fx(x)=41“(oc)[3“e e (3-33) V\_‘
| 0, otherwise.

Fig. 3.10

—» X

If oo =n aninteger T'(n)= (n-1).

fr ()
5. Beta: X~ B(a,b) if (a>0, 56>0) (Fig. 3.11) V\

> X

0 1
1 a1 - Fig. 3.11
(I-x)"", 0<x<I,
fe(x)=1B(a,b)" -
0, otherwise. (3-34)
where the Beta function B (a,») 1s defined as
B(a.b)= [ u""(1—u)""du. (3-35)

18
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6. Chi-Square: X ~y’(n), if (Fig. 3.12)

; Sx(X)
1 xn/2—le—x/2 x>0
fy(x)=92"2T(n/2 T
X (n/2) (3-36)

0, otherwise. |_ "X
Fig. 3.12

Note that y°(n) is the same as Gamma (n/2,2).

»

7. Rayleigh: x ~R?), if (Fig. 3.13) .

- LZQ_XZ/zcz, x>0, /L
fX(x) - {(‘5 (3_37)

0, otherwise. Fig. 3.13

—> X

8. Nakagami — m distribution:

2 mY" 2m—1_—mx*/Q
>0
Jr(x) =5 F(m)(ﬂj vl e (3-38)

0 otherwise 19
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fr ()
9. Cauchy: X ~C(o,p), 1f (Fig. 3.14) J/\

_ o /T B ) | M
fX(x)_oc2+(x—u)2’ © < x <o (3-39) Fig. 3.14

10. Laplace: (Fig. 3.15)

> X

[
fX(x)zﬁe"/x, — 0 < X < 400, (3-40)

11. Student’s #-distribution with n degrees of freedom (Fig 3.16)

r(m+n2)(, 2" . ~
fTu)—Wr(n/z)(n j —m<t<4m. (34D

n
‘JQ <
- > X /\=t

Fig. 3.15 Fig. 3.16 20
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12. Fisher’s F-distribution

rl—w{(l/n_'_n)/z} mm/Znn/Z Zm/2—1 Z>O
f(2)=1 T@m/D)T®/2) (n+mz)™™2" (3-42)
k 0 otherwise

21
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Discrete-type random variables

1. Bernoulli: X takes the values (0,1), and

P(X=0)=q, P(X=1)=p. (3-43)
2. Binomial: X~ B(n, p), 1f (Fig. 3.17)
P(X =k)=(ijkq”k, k=0,1,2,- ,n. (3-44)
3. Poisson: X~ P(n), 1f (Fig. 3.18)
Y 7Lk
P(X =k)=¢ T k=0,1,2,-,00. (3-45)
AP(X = k) YP(X =k)
I“H‘M !‘ '
12 n

22
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4. Hypergeometric:

m N—m}
P(X =k)= {k J([]’:,]k , max(0,m+n—N)<k<min(m,n) (3-46)

n

5. Geometric: X~g(p) 1f
P(X:k):qua k=0,1,2,---,00, qzl_p° (3'47)

6. Negative Binomial: X ~ NB(r, p), 1f

k —1
P(X =k) = (r_ljpqur, k=r,r+1,--. (3-48)
7. Discrete-Uniform:
P(X =k)=—, k=12,+.N. (3-49)

We conclude this lecture with a general distribution due_
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to Polya that includes both binomial and hypergeometric as
special cases.

Polya’s distribution: A box contains a white balls and b black
balls. A ball 1s drawn at random, and 1t 1s replaced along with
c balls of the same color. If X represents the number of white
balls drawn in n such draws, X =0, 1, 2, ---, n, find the
probability mass function of X.

Solution: Consider the specific sequence of draws where k
white balls are first drawn, followed by n — & black balls. The

probability of drawing k£ successive white balls 1s given by

a a+c a+2c a+(k—1)c

Pr=y¥b avb+c atb+2c a+b+(k-1c (3-50)

24
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followed by n — £k black balls 1s given by

b b+c b+(n—k-1I)c
a+b+kc a+b+(k+1)c a+b+(n—1)c

pP. =D,

n—k-1

+ b+jC
= H bt l_g a+b+(j+k)c (3-51)

Interestingly, p, in (3-51) also represents the probability of
drawing k white balls and (n — k) black balls 1n any other
specific order (i.e., The same set of numerator and
denominator terms in (3-51) contribute to all other sequences

as well.) But there are [ ] such distinct mutually exclusive

k
sequences and summing over all of them, we obtain the Polya
distribution (probability of getting £ white balls in n draws)

to be 1

n—

k-1 —k— .
_ | _ " + b+ jc B
P(X—k)—[k]pk —L J aflrbfzc H a+b+(j+k)e’ k=0,1,2,--,m

(3-52) PILLAI




Both binomial distribution as well as the hypergeometric
distribution are special cases of (3-52).

For example if draws are done with replacement, then ¢ =0
and (3-52) simplifies to the binomial distribution

P(X:k):[gpkqn_k, k=0,1,2,--.n (3-53)
where
p=— =" =1-p
a+b’ a+b '

Similarly if the draws are conducted without replacement,
Then ¢ =-1 1n (3-52), and 1t gives

P(X_k)_m a(a-D(a-2)-(a—k+1)  bb-1)-(b—n+k+1)
7 Wa+b) a+b-1)--(a+b—k+1) (a+b—k)---(a+b—n+1)

26
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a b
P(X = k) = n! al(la+b—k)! b'(a+b—n)! _{k}[n—k}
K=k (a-K)Wa+b)! (b-n+k)(a+b-k)! (ﬁb}

n

(3-54)
which represents the hypergeometric distribution. Finally

c = +1 gives (replacements are doubled)

P(X—k)—[”J(aJFk_l)! (@a+b+D)! (b+n—k-D!(a+b+k-1)!
T W@ (arbrk=1!  (b=1)! (a+b+n—1)

a+k—1)\(b+n—k-1
_ k n—k

[a+b+n—1} ' (3-595)

n

we shall refer to (3-55) as Polya’s +1 distribution. the general
Polya distribution 1n (3-52) has been used to study the spread

of contagious diseases (epidemic modeling). 27
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