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2. Independence and Bernoulli Trials
(Euler, Ramanujan and Bernoulli Numbers)

Independence: Events A and B are independent if

• It is easy to show that A, B independent implies        
are  all independent pairs. For example, 

and                  so that 

or

i.e.,      and B are independent events.
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As an application, let Ap and Aq represent the events

and

Then from (1-4)

Also 

Hence it follows that Ap and Aq are independent events!

" the prime  divides the number "pA p N=

" the prime  divides the number ".qA q N=

1 1{ } , { }p qP A P A
p q

= =

1{ } {"  divides "} { } { }p q p qP A A P pq N P A P A
pq

∩ = = =

(2-2)
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• If P(A) = 0, then since the event               always, we have

and (2-1) is always satisfied. Thus the event of zero 
probability is independent of every other event!

• Independent events obviously cannot be mutually
exclusive, since                                 and A, B independent
implies                    Thus  if A and B are independent, 
the event AB cannot be the null set. 

• More generally, a family of events        are said to be 
independent, if for every finite sub collection   

we have
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• Let 

a union of n independent events. Then by De-Morgan’s
law

and using their independence

Thus for any A as in (2-4)

a useful result.

We can use these results to solve an interesting number 
theory problem.

,321 nAAAAA ∪∪∪∪= " (2-4)
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Example 2.1 Two integers M and N are chosen at random.
What is the probability that they are relatively prime to 
each other?
Solution: Since M and N are chosen at random, whether
p divides M or not does not depend on the other number N.
Thus we have

where we have used (1-4). Also from (1-10)

Observe that “M and N are relatively prime” if and only if
there exists no prime p that divides both M and N.

2

{"  divides both  and "}
1{"  divides "} {"  divides "}

P p M N

P p M P p N
p

= =

2
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p
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Hence                                                           

where Xp represents the event

Hence using (2-2) and (2-5)

where we have used the Euler’s identity1

1See Appendix for a proof of Euler’s identity by Ramanujan.

2 3 5"  and  are relatively prime"M N X X X= ∩ ∩ ∩"

"  divides both  and ".pX p M N=
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The same argument can be used to compute the probability
that an integer chosen at random is “square free”. 
Since the event

using (2-5) we have

1

1  prime
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Note: To add an interesting twist to the ‘square free’ number
problem, Ramanujan has shown through elementary but 
clever arguments that the inverses of the nth powers of all
‘square free’ numbers add to              where (see (2-E))

Thus the sum of the inverses of the squares of ‘square free’
numbers is given by
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 ,)( pAP i =
.31 →=i

Example 2.2: Three switches connected in parallel operate 
independently. Each switch remains closed with probability 
p. (a) Find the probability of receiving an input signal at the 
output. (b) Find the probability that switch S1 is open given 
that an input signal is received at the output.

Solution: a.  Let Ai = “Switch Si is closed”. Then   
Since switches operate independently, we have 

Fig.2.1

1s

2s

3s
Input Output

).()()()(  );()()( 321321 APAPAPAAAPAPAPAAP jiji ==
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Let R = “input signal is received at the output”. For  the 
event R to occur either switch 1 or switch 2 or switch 3 
must remain closed, i.e., 

(2-7)   .321 AAAR ∪∪=

.33)1(1)()( 323
321 ppppAAAPRP +−=−−=∪∪=

).()|()()|()( 1111 APARPAPARPRP +=
,1)|( 1 =ARP 2

321 2)()|( ppAAPARP −=∪=

Using (2-3) - (2-6),

We can also derive (2-8) in a different manner. Since any 
event and its compliment form a trivial partition, we can 
always write 

But                       and

(2-8)

(2-9)

and using these in (2-9) we obtain
,33)1)(2()( 322 pppppppRP +−=−−+= (2-10)

which agrees with (2-8).
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Note that the events A1, A2, A3  do not form a partition, since 
they are not mutually exclusive. Obviously any two or all 
three switches can be closed (or open) simultaneously. 
Moreover, 

b. We need                   From Bayes’ theorem

Because of the symmetry of the switches, we also have 
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Repeated Trials

Consider two independent experiments with associated 
probability models (Ω1, F1, P1) and (Ω2, F2, P2). Let 
ξ∈Ω1, η∈Ω2 represent elementary events. A joint 
performance of the two experiments produces an 
elementary events ω = (ξ, η). How to characterize an 
appropriate probability to this “combined event” ?  
Towards this, consider the Cartesian product space            
Ω = Ω1× Ω2  generated from Ω1 and Ω2 such that if          
ξ ∈ Ω1 and η ∈ Ω2 , then every ω in Ω is an ordered  pair 
of the form ω = (ξ, η). To arrive at a probability model 
we need to define the combined trio (Ω, F, P).
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Suppose A∈F1 and B ∈ F2. Then  A × B is the set of all pairs 
(ξ, η),  where ξ ∈ A and η ∈ B. Any such subset of Ω
appears to be a legitimate event for the combined 
experiment. Let F denote the field composed of all  such 
subsets A × B together with their unions and compliments. 
In this combined experiment, the probabilities of the events 
A × Ω2 and Ω1 × B are such that 

Moreover, the events A × Ω2 and Ω1 × B are independent for 
any A ∈ F1 and B ∈ F2 . Since

we conclude using (2-12) that 

).()(   ),()( 2112 BPBPAPAP =×Ω=Ω× (2-12)

(2-13),)()( 12 BABA ×=×Ω∩Ω×
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)()()()()( 2112 BPAPBPAPBAP =×Ω⋅Ω×=×

for all A ∈ F1 and B ∈ F2 . The assignment in (2-14) extends 
to a unique probability measure                     on the sets in F 
and defines the combined trio (Ω, F, P).

Generalization: Given n experiments                          and 
their associated                                  let           

represent their Cartesian product whose elementary events 
are the ordered n-tuples                     where                 Events 
in this combined space are of the form 

where             and their unions an intersections.

)( 21 PPP ×≡

,,,, 21 nΩΩΩ "
,1  ,  and  niPF ii →=

,,,, 21 nξξξ " .ii Ω∈ξ

nAAA ××× "21

nΩ××Ω×Ω=Ω "21 (2-15)

(2-16)
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If all these n experiments are independent, and           is the 
probability of the event      in       then as before

Example 2.3: An event A has probability p of occurring in a 
single trial. Find the probability that A occurs exactly k times,  
k ≤ n in n trials. 

Solution: Let (Ω, F, P) be the probability model for a single 
trial. The outcome of n experiments is an n-tuple

where every               and                                   as in (2-15).  
The event A occurs  at trial # i , if              Suppose A occurs 
exactly k times in ω.  

)( ii AP

iA iF

1 2 1 1 2 2( ) ( ) ( ) ( ).n n nP A A A P A P A P A× × × =" " (2-17)

{ } ,,,, 021 Ω∈= nξξξω " (2-18)

Ω∈iξ Ω××Ω×Ω=Ω "0
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Then k of the      belong to A, say                        and the 
remaining            are contained in its compliment in   
Using (2-17), the probability of occurrence of such an ω is 
given by

However the k occurrences of A can occur in any particular 
location inside ω. Let                        represent all such 
events in which A occurs exactly k times. Then    

But, all these    s are mutually exclusive, and equiprobable.   
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Thus

where we have used (2-19). Recall that, starting with n
possible choices, the first object can be chosen n different 
ways,  and for every such choice the second one in           
ways, … and the kth one              ways, and this gives the 
total choices for k objects out of n to be                                  
But, this includes the      choices among the k objects that 
are indistinguishable for identical objects. As a result 
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)( A= )( A=

represents the number of combinations, or choices of n
identical objects taken k at a time. Using (2-22) in (2-21), 
we get

a formula, due to Bernoulli. 

Independent repeated experiments of this nature, where the 
outcome is either a “success”            or  a  “failure”       
are characterized as Bernoulli trials, and the probability of 
k successes in n trials is given by (2-23), where p
represents the probability of “success” in any one trial.
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Example 2.4: Toss a coin n times. Obtain the probability of 
getting k heads in n trials ?
Solution: We may identify “head” with “success” (A) and 
let                  In that case (2-23) gives the desired 
probability.

Example 2.5: Consider rolling a fair die eight times. Find 
the probability that either 3 or 4 shows up five times ?

Solution: In this case we can identify

Thus

and the desired probability is given by (2-23) with              
and               Notice that this is similar to a “biased coin”
problem.

).(HPp =
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Bernoulli trial: consists of repeated independent and 
identical experiments each of which has only two outcomes A
or     with                  and                  The probability of exactly 
k occurrences of A in n such trials is given by (2-23).

Let

Since the number of occurrences of A in n trials must be an 
integer                            either                       must 
occur in such an experiment. Thus

But            are mutually exclusive. Thus

A .)( qAP =,)( pAP =

,,,2,1,0 nk "=

.   trials"  in  soccurrence  exactly   " nkX k = (2-24)

nXXXX or      or    or    or    210 "

.1)( 10 =∪∪∪ nXXXP " (2-25)
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From the relation

(2-26) equals                        and it agrees with (2-25). 

For a given n and p what is the most likely value of k ? 
From Fig.2.2, the most probable value of k is that number 
which maximizes            in (2-23). To obtain this value, 
consider the ratio
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Thus                            if                              or            
Thus            as a function of k increases until

if it is an integer, or the largest integer       less than     
and (2-29) represents the most likely number of successes 
(or heads) in n trials. 

Example 2.6: In a Bernoulli experiment with n trials, find 
the probability that the number of occurrences of A is 
between      and 
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Solution: With                              as defined in (2-24), 
clearly they are mutually exclusive events. Thus

Example 2.7: Suppose 5,000 components are ordered. The 
probability that a part is defective equals 0.1. What is the 
probability that the total number of defective parts does not 
exceed 400 ? 

Solution: Let

,,,2,1,0 , niX i "=

.)()(   

 ) "  and    between  is   of sOccurrence ("
2

1

2

1

211 1

21

∑∑
=

−

=
+ 








==∪∪∪=

k

kk

knk
k

kk
kkkk qp

k
n

XPXXXP

kkAP

" (2-30)

".components 5,000 among defective are parts  " kYk =

PILLAI



24

Using (2-30), the desired probability is given by

Equation (2-31) has too many terms to compute. Clearly, 
we need a technique to compute the above term in a more 
efficient manner.

From (2-29),        the most likely number of successes in n 
trials, satisfy

or 
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so that

From (2-34), as              the ratio of the most probable 
number of successes (A) to the total number of trials in a 
Bernoulli experiment tends to p, the probability of 
occurrence of A in a single trial. Notice that (2-34) connects 
the results of an actual experiment  (      )  to the axiomatic 
definition of p. In this context, it is possible to obtain a more 
general result as follows:

Bernoulli’s theorem: Let A denote an event whose 
probability of occurrence in a single trial is p. If k denotes 
the number of occurrences of A in n independent trials, then 
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Equation (2-35) states that the frequency definition of 
probability of an event      and its axiomatic definition ( p) 
can be made compatible to any degree of accuracy.

Proof: To prove Bernoulli’s theorem, we need two identities. 
Note that with          as in (2-23), direct computation gives  

Proceeding in a similar manner, it can be shown that
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Returning to (2-35), note that

which in turn is equivalent to

Using (2-36)-(2-37), the left side of (2-39) can be expanded 
to give

Alternatively, the left side of (2-39) can be expressed as  
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Using (2-40) in (2-41), we get the desired result

Note that for a given                    can be made arbitrarily
small by letting n become large. Thus for very large n, we 
can make the fractional occurrence (relative frequency)         
of the event A as close to the actual probability p of the 
event A in a single trial. Thus the theorem states that the 
probability of event A from the axiomatic framework can be 
computed from the relative frequency definition quite 
accurately, provided the number of experiments are large 
enough. Since        is the most likely value of k in n trials, 
from the above discussion, as             the plots of          tends 
to concentrate more and more around        in (2-32).
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Next we present an example that illustrates the usefulness of
“simple textbook examples” to practical problems of interest:

Example 2.8 : Day-trading strategy : A box contains n
randomly numbered balls (not 1 through n but arbitrary
numbers including numbers greater than n). Suppose 
a fraction of those balls                                  are initially 
drawn one by one with replacement while noting the numbers
on those balls. The drawing is allowed to continue until
a ball is drawn with a number larger than the first m numbers.
Determine the fraction p to be initially drawn, so as to 
maximize the probability of drawing the largest among the
n numbers using this strategy.

Solution: Let   “                    drawn ball has the largest
number among all n balls, and the largest among the 

   say  ; 1m np p− = < −

st
k kX )1( +=
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first k balls is in the group of first m balls, k > m.”      (2.43)
Note that       is of the form                            
where 
A = “largest among the first k balls is in the group of first

m balls drawn”
and
B = “(k+1)st ball has the largest number among all n balls”.
Notice that A and B are independent events, and hence   

Where m = np represents the fraction of balls to be initially
drawn. This gives 
P (“selected ball has the largest number among all balls”)

kX ,A B∩
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Maximization of the desired probability in (2-45) with 
respect to p gives

or

From (2-45), the maximum value for the desired probability 
of drawing the largest number equals 0.3679 also.
Interestingly the above strategy can be used to “play the 
stock market”. 

Suppose one gets into the market and decides to stay
up to 100 days. The stock values fluctuate day by day, and 
the important question is when to get out?

According to the above strategy, one should get out

0)ln1()ln( =+−=− ppp
dp
d

1 0.3679.p e−= � (2-46)
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at the first opportunity after 37 days, when the stock value 
exceeds the maximum among the first 37 days. In that case
the probability of hitting the top value over 100 days for the 
stock is also about 37%. Of course, the above argument 
assumes that the stock values over the period of interest are 
randomly fluctuating without exhibiting any other trend.
Interestingly, such is the case if we consider shorter time
frames such as inter-day trading.
In summary if one must day-trade, then a possible strategy
might be to get in at 9.30 AM, and get out any time after 
12 noon (9.30 AM + 0.3679     6.5 hrs = 11.54 AM to be 
precise) at the first peak that exceeds the peak value between 
9.30 AM and 12 noon. In that case chances are about 37% 
that one hits the absolute top value for that day! (disclaimer :
Trade at your own risk)
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We conclude this lecture with a variation of the Game of
craps discussed in Example 3-16, Text.

Example 2.9: Game of craps using biased dice:
From Example 3.16, Text, the probability of 

winning the game of craps is 0.492929      for the player.
Thus the game is slightly advantageous to the house. This 
conclusion of course assumes that the two dice in question
are perfect cubes. Suppose that is not the case. 

Let us assume that the two dice are slightly loaded in such 
a manner so that the faces 1, 2 and 3 appear with probability

and faces 4, 5 and 6 appear with probability           
for each dice. If T represents the combined 

total for the two dice (following Text notation), we get

"

1
6 0,   ε ε+ >
1
6 ε−
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p P T P

p P T P

p P T P

p P T P

ε

ε ε

ε ε

= = = = −

= = = = − + −

= = = = − + −

= = = 2

2 2
8

2 2
9

2
10

11

1
36

1 1
36 6

1 1
36 6

1
6

1
6

)} 6( )

{ 8} {(2,6),(3,5),(4,4),(5,3),(6,2)} 4( ) ( )

{ 9} {(3,6),(4,5),(5,4),(6,3)} 2( ) 2( )

{ 10} {(4,6),(5,5),(6,4)} 3( )

{ 11} {(5,6),(6,5)} 2(

p P T P

p P T P

p P T P

p P T P

ε

ε ε

ε ε

ε

= −

= = = = − + +

= = = = − + +

= = = = +

= = = = + 2) .ε

(Note that “(1,3)” above represents the event “the first dice
shows face 1, and the second dice shows face 3” etc.)
For                  we get the following Table:0.01,ε =

PILLAI
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0.06240.09360.11780.14190.16610.13530.10440.0706pk = P{T = k}

1110987654T = k

PILLAI

This gives the probability of win on the first throw to be
(use (3-56), Text)

and the probability of win by throwing a carry-over to be
(use (3-58)-(3-59), Text)

Thus 

Although perfect dice gives rise to an unfavorable game,

1 ( 7) ( 11) 0.2285P P T P T= = + = = (2-47)

 

210

2
4 7
7

0.2717k

k k
k

p
p p

P
=
≠

+
= =∑ (2-48)

1 2{winning the game} 0.5002P P P= + = (2-49)
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a slight loading of the dice turns the fortunes around in 
favor of the player! (Not an exciting conclusion as far as 
the casinos are concerned).

Even if we let the two dice to have different loading 
factors      and      (for the situation described above), similar
conclusions do follow. For example,                             
gives (show this)

Once again the game is in favor of the player!

Although the advantage is very modest in each play, from
Bernoulli’s theorem the cumulative effect can be quite 
significant when a large number of game are played. 
All the more reason for the casinos to keep the dice in
perfect shape.

1ε 2ε
1 20.01 and 0.005ε ε= =

{winning the game} 0.5015.P = (2-50)
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In summary, small chance variations in each game 
of  craps can lead to significant counter-intuitive changes 
when a large number of games are played. What appears
to be a favorable game for the house may indeed become
an unfavorable game, and when played repeatedly can lead
to unpleasant outcomes.

PILLAI
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Appendix: Euler’s Identity

S. Ramanujan in one of his early papers (J. of Indian
Math Soc; V, 1913) starts with the clever observation that
if                                   are numbers less than unity where 
the subscripts                         are the series of prime 
numbers, then1

Notice that the terms in (2-A) are arranged in such a way 
that the product obtained by multiplying the subscripts are 
the series of all natural numbers                               Clearly, 
(2-A) follows by observing that the natural numbers
1The relation (2-A) is ancient.

2 3 5 7 11, , , , ,a a a a a "
2,3,5,7,11,"

2,3,4,5,6,7,8,9, ."

2 3 2 2 5
2 3 5 7

2 3 7 2 2 2 3 3

1 1 1 1 1
1 1 1 1

.

a a a a a
a a a a

a a a a a a a a

⋅ ⋅ ⋅ = + + + ⋅ +
− − − −

+ ⋅ + + ⋅ ⋅ + ⋅ +

"

" (2-A)

PILLAI
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are formed by multiplying primes and their powers.
Ramanujan uses (2-A) to derive a variety of 

interesting identities including the Euler’s identity that 
follows by letting                                              in 
(2-A). This gives the Euler identity

The sum on the right side in (2-B) can be related to the 
Bernoulli numbers (for s even).

Bernoulli numbers are positive rational numbers 
defined through the power series expansion of the even 
function                    Thus if we write

then 

2 3 51/ 2 , 1/ 3 , 1/5 ,s s sa a a= = = "

1

 prime 1

1(1 ) 1/ .s
s

p n
p n

∞
−

=
− =∏ ∑ (2-B)

2 cot( / 2).x x

PILLAI1 2 3 4 5
1 1 1 1 1
6 30 42 30 66, , , , , .B B B B B= = = = = "

2 4 6

1 2 3cot( / 2) 1
2 2! 4! 6!
x x x xx B B B= − − − −"∆ (2-C)
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By direct manipulation of (2-C) we also obtain 

so that the Bernoulli numbers may be defined through 
(2-D) as well. Further

which gives

Thus1

1The series can be summed using the Fourier series expansion of a periodic ramp 
signal as well.

62 4
31 21

1 2 2! 4! 6!x
B xx x B x B x

e
= − + − + −

−
"

2 1 2 1 2 4
20 0

2 2 2 2 2

1
4 ( )

2(2 )! 1 1 1 1
(2 ) 1 2 3 4

n n x x
xn

n n n n n

x
e

B n dx x e e dx

n

π π
π

π

∞ ∞− − − −

−
= = + +

 = + + + + 
 

∫ ∫ "

"

2 4
2 4

1 1
1/ ; 1/ etc.

6 90k k
k kπ π∞ ∞

= =
= =∑ ∑

2

1
1/

k
k

∞

=

∑
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(2-D)

2
2

2
1

(2 )1/
2(2 )!

n
n n

n
k

BS k
n

π∞

=
= =∑∆ (2-E)


