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Chapter 16

16.1 Use (16-132) with » = 1. This gives

n

%p& nSl
Pn =
pnp(b I<n<m
= 0" po, 0<n<m
Thus ( +1)
- ~ L—p"
an—poszpo =1
n=0 n=0 1_p
1—p
1_pm+1
and hence
I—p

0<n<m, p#l
and limp — 1, we get

n=—", =1
P m+1 p

16.2 (a) Let ny(t) = X +Y, where X and Y represent the two queues.

Then
pn = P{m(t)=n}=P{X+Y =n}

:Zn:P{X:k}P{Y:n—k}

()
=2 (L=p)p" (L =p)p"*
= (n+ 1)(1 — p)?p", n=0,1,2,---

where p = \/p.
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(b) When the two queues are merged, the new input rate \' =
A+ A =2\ Thus from (16-102)

)\’ n 29)"
( 7{#) poz(gl) po, n <2

Pn =

2 /
% (Q)\—M)npo =2p"py, mn =2

Hence

ook =po(l+2p+2) pF)
k—0 k=2

— ])0(1 +2p + 12%)
= 125 ((1+20) (1= p) +2¢7)

Thus
2(1=p)p"/(1+p), n<1
Pn = (111>
1-p)/A+p), n=0

(c) For an M/M/1 queue the average number of items waiting is
given by (use (16-106) with r = 1)

o0

n=2
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where p,, is an in (16-88). Thus

:(l—p)pzio:(n—l)p”‘2
" (iv)
=(1=p)p* 2 ko
1 2 1 P’
= T o)

Since ny(t) = X +Y we have
Ly = E{m(0)} = B{X} + B{Y}

20 (v)

—9I =
1 1—p

For L, we can use (16-106)-(16-107) with » = 2. Using (iii), this

gives
p

1 —p)?
=P p_ 2p .
1+p (1—p2 1-p2 (vi)

22
= p L <L1
1—p \1+4+p

From (vi), a single queue configuration is more efficient then two
separate queues.

L2 :pr(

3

16.3 The only non-zero probabilities of this process are
Ao = —Ag = —mA,  Ag1 = p

Aiipr = (M=) A, Nijoy =ip
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Nig = [(m—i)XN+ip), i=1,2,---;m—1
)‘m,m = _)‘m,m—l = —mu.
Substituting these into (16-63) text, we get
mApo = ftp1 (i)
[(m—i)A+ippi = (m—i+1)piy+(i+1) ppisr, =12+, m—1
and

M P = A Pt (i)
Solving (i)-(iii) we get

Al , =0,1,2,---,
P <z> <)\+u> <A+u> ! m

16.4 (a) In this case

A A (A)n
—— o —=|—] Po, n<m
M1 1

H1 M1 M2 o

PY Pos n<m
= _1 _ 1
Pl ey  pe, n>m,

where »
> Pn =P [Z pr+ 07 e Zp’ﬁ]
n=0 k=0 n—0

1 — pm m—1
:pol pl _'_p2pl ]:1
L=pi 1=ps
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gives

1 _m m—1 -1
by — < T )
L —p 1 —p2

00
n=0

fm—1 00
=po | npt+ Y mpl ph m“]

Ln=0 n=m
m—1 p m=2 oo
n— 1 n—
=po Py npt (5) > np 1]
n=0 n=m

M m—2
p1
— —|— j—
P <nzo pl) - (p ) dpz Z pQ]

. (1—pa"> o (&)’"‘2 d (ﬂ)
0_ dpr \ 1—p P2 dp \1—p

o[+ (m=1)p" —mp?™'] o 4 [m— (m — 1)/)2]] _

| (= p)? ' (1= pp

16.5 In this case

Ag<r Jps g <T

2%

A=Y A g o, 2.

Using (16-73)-(16-74), this gives
upr .

e Ay /M) (pA /)", n>r.
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16.6
m—1
Plw>t} => p,Plw>tn)

— mz; P (1= Fu(tln)) =Y p, (%)n (1= Fy(tn))

n—r+1 gn—r
) t

Fultln) = e (Wzn —y - (see 16.116)
and
n—r k
Fy(tln) =1~ (wlj) e ™ (see 4.)
=0 N

so that

P{w >t} =p.e M Z (V_F“t_
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Note that m — oo = M/M/r/m = M /M /r and

Plw>t) = —1%p e Tt Zﬁ(’ﬂzﬁ)
=0

= B et 50

and it agrees with (16.119)
16.7 (a) Use the hints
(b)

Z A+ 1) pp 2" +z an P AN pka =0
n=1 n=1 n=1 k=1

—(p+1)(P(2) —po) + g (P(2) —po—p12) + A i k2™ D pmz

k=1 m=0
which gives

PR =z =pz(1-C(2)] =po(1 - 2)

or (1-2)
o Poll — =2
P(z) = l—z—pz(1-0C(2))
—Do —Do
(1) —1—p+p.C'(2)+pC(2) -1+ pC'(1)
= po=1-po, po=pC'(1)
Let - C()
—C(z
Then 1
_ —PL
Pz) = 1—pzD(z2)
(c) This gives
(1 _pc)

P(z) = (pD(2) + p=D'(2))

(1-p2D(2))

m:O
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Dz = U= z) (—C'('a)_—z()l2 — C(2) (=1)
_1-C(x) -1~ 2)C'(2)
(1—2)°

By L-Hopital’s Rule

—C'(2) = (=1)C'(2) = (1 = 2)C"(2)
—2(1—2)

D'(1) = lim;,

=lim,_; = 1/20//(2) _ C2<Z)
—1/2 5 k(k— 1) ¢y = 20 ZEX)
L p(BX) + B(x?)

2(1- pE(X))

C(z)z™ E(X)=m

L—p
P
() =1 s
1_ m m—1
D(Z) — i = Zk




(e) 0
C'(Z):l—PZ
1 — po qz
P(Z):l—pzD(z)’ C(Z):l—pz
Dy 1=C) _1-irg _1-P:—(1-P). 1—2 1
(2) = -2z 11—z  (1-201-Pz) (1-2)(1-Pz) 1-Pz
P(z) = (1—po)(1—pz) _ (1= po)(1—pz)
1—pz—pz 1—(p+p)z
vy (L=p2)g—qz(=p) q 1
N T S
D(z)zlsz)
D(1) = C'(1)

L=P(1)= 5 =25 (0 C'0) + p- D)

Dy = “1mACE - (1=CEY (-1 _1-C() = 1--0'()
(1—2)? (1 —2)?
lim, ,; D'(z) =lim, —C'(2) — (_1%% (j)Z; (1—2)C"(2)
_(1-9C") )
—2(1 —2) 2
D(1) = C"’Q(l)
1 p(E(X?) - E(X))\ _ pE(X) + pE(X?)
_“—MJGMXH 2 )" 2(1— po
16.8 (a) Use the hints.
(b)
_i (A + 1) p 2" + Zﬂn ipn+m 2P Az f:pn_l P

n=1
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or

—(1+p) (P(2) — po) + = <P(Z) — kipk zk> +pzP(z) =0

Zm
which gives

PG e = (p+ )2 +1] = 3z = po (14 ) 2"

k=0
or
2k — 1+p)2m
. ];)Pk po (L+p) B N(z) 0
pztt—(p+1)zm+1 M(z)
(c) Consider the denominator polynomial M (z) in (i) given by
M(z2) = p2"" = (14 p) 2" + 1= f(2) +g(2)
where

f(z) == +p)z",
g(z) =1+ pz"tL

Notice that |f(2)] > |g(2)| in a circle defined by |z| = 1+ ¢, ¢ > 0.
Hence by Rouche’s Theorem f(z) and f(z)+g(z) have the same number
of zeros inside the unit circle (|z] = 14 ¢). But f(z) has m zeros inside
the unit circle. Hence f(z) + g(z) = M(z) also has m zeros inside the
unit circle. Hence

M(2) = My(2) (= — ) (i)

where |zp] > 1 and M;(z) is a polynomial of degree m whose zeros are
all inside or on the unit circle. But the moment generating function
P(z) is analytic inside and on the unit circle. Hence all the m zeros
of M(z) that are inside or on the unit circle must cancel out with the
zeros of the numerator polynomial of P(z). Hence

N(z) = Mi(2) a. (iii)
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Using (ii) and (iii) in (i) we get

P(z) = ]\]\;((Z)) - z—azo'

But P(1) =1 givesa=1— 2z

or o jz:i
_ (1_2_10) g(z/zo)n
:>p”_<1_z_10) (Zio)n—(l—r)r”, n>0

where r = 1/z.

(d) Average system size

> r
L:nzzonpnzl_r.

16.9 (a) Use the hints in the previous problem.

(b)

—Z (A+u)pnzn+uz Prm 2"+ A an_lz”

~a+0) (P - Ent) + 5 (P05 )

m—2
+pz (P(Z) — > D Z’“) = 0.
k=0
After some simplifications we get

m—1

P(2) [p2" ™ = (p+ 1) 2" +1] = (1 — 2™) Z o 2

or
m—1 m—1
(1—2m) ) pp2F (20— 1) ) 2*
k=0 k=0

a pzmtl —(p4+1)zm+1 - m (2o — 2)

P(z)
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where we have made use of Rouche’s theerem and P(z) = 1 as in
problem 16-8.

(c)

m—1
o0 1 Z Zk
n — T k=0
P == n =
<Z> nz::op & m 1—rz
gives
(1+7*_'_...—|—Tk)p0’ kgm_l
Pn = T,nfm+1(1+7a_|_..._|_rmfl)p0, k>m
where 1 1
—r
Po = ) r=_
m <0
Finally
n=0
But 1 1
. kb1 (1—rz) — 2k (=r)
/ — T\ k=1 k=0
P =
(2) ( m ) (1—r2)?
so that
’ 1 - _ 1 — 1 _
L —P(1)= rm —|—2er (1—r7)
m  (1—r) m(1l—r)
1 1
C1l—r m

16.10 Proceeding as in (16-212),

balu) = /0 T e A ()
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This gives

Thus the equation B(z) = z for my reduce to

(=) -

or
p 1/m
(L+p) —=
which is the same as
p2 M = (14p) - 2 (i)

Let x = z~1/™. Sustituting this into (ii) we get
pr=(1+p)—z™"
or

pr"tt —(14+p)2™+1=0 (iii)

16.11 From Example 16.7, Eq.(16-214), the characteristic equation for
Q(z) is given by (p = A/m p)

1214+ p(1—2)]"=0



which is equivalent to
1+p(l—z)=z"Ym

Let 2 = z'/™ in this case, so that (i) reduces to
[(L+p) —pa™z=1

or the characteristic equation satisfies

px™ ™ —(1+p)z+1=0.

16.12 Here the service time distribution is given by

substituting (i) into (15.219), we get
Alz) =2, (A(1-2))

) e—)\Ti (1-2)

[
M-
o

ﬁ
Il
—

AT 6)\Tiz

I
-
&
)

ﬁ
Il
—

[
M=
a

N
Il
i

Hence

AT Z /\T)Jza iajzj‘
=0

241
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To get an explicit formula for the steady state probabilities {q, }, we
can make use of the analysis in (16.194)-(16.204) for an M/G/1 queue.
From (16.203)-(16.204), let

n
co =1—ay, cnzl—Zak, n>1

and let {c,(cm)} represent the m—fold convolution of the sequence {c; }
with itself. Then the steady-state probabilities are given by (16.203) as

-0 Y Y a ™
m=0 k=0

(b) State-Dependent Service Distribution
Let B;(t) represent the service-time distribution for those customers
entering the system, where the most recent departure left ¢ customers
in the queue. In that case, (15.218) modifies to

where

Ay =7k customers arrive during a service time”

and

B; = "1 customers in the system at the most recent departure.”

This gives
Qi :/ooe O i
k!
/OOO ef)\t g e Mt dt = %v 1=0 (i)
- /000 ot ATt gy % r=1
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This gives
! 0
Y 1=
Ai(z) =Y a2 = 1 (ii)
k=0 , 12>1
1+ pQ(l — Z)

where p; = A/ 1, po = A/p2. Proceeding as in Example 15.24, the
steady state probabilities satisfy [(15.210) gets modified]

j+1
g5 = qo Ajo + Z Qi Qj—it1, (iii)
i=1

and (see(15.212))
Qz) = i)%’ 2

oo . (0.9}
=G0 j0? + D i i
7=0 =0 (iv)

=qoAo(2) + > a z > ami 2™ z7t
=1 m=0

= qo Ao(2) + (Q(2) — qo) As(2)/2

where (see (ii))

1
) =m0 .
and
1 .
Ai(z) = T4 i) (vi)
From (iv)

(vii)
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Since
Qo |Ag(1) + Ag(1) — A1 (1)
— A
_ G (1+p1—pa)
1-— P2
we obtain
1-— P2
L viii
©TIY p1 = P2 (vii)
Substituting (viii) into (vii) we can rewrite Q(z) as
(1—2)A(2) 1 1—2zA(2)/A1(2)
= (] — .
Q) (1=p2) Ai(z) — 2 I+ p1—p2 1—-=2
_ ( 1—p2> L =
1—poz) 14 p1—po 1—1fplz
= Q1(2) Q2(2)
(ix)
where

and

1 P2 o P1 )l ;
2)=——— [1- 2 2"
Qal2) 1+/)1—Pz< 1+m >§<1+P1

Finally substituting. @1(z) and @Q2(z) into (ix) we obtain

n 01 n—i ' n—1 p?—i—l
0n = Qo Z<1+p1> =St | =12,

i=0 i=0 (1+p)n

with go as in (viii).
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16.13 From (16-209), the Laplace transform of the waiting time distri-
bution is given by

__ 1=
U,(s) = L (141;3(5))

L—pp (=20)
Let

F) = [ 1= Be)dr

=L [t—/OtB(T)dT:| :

represent the residual service time distribution. Then its Laplace
transform is given by

(i)

Br(s) = L{F(0)} = (1 _ q’s_<$>>

S S

~ (L{)(SU (iii)

s
Substituting (iii) into (i) we get

Va(s) = ol = (=) Do Re)s (o) <L (v

Taking inverse transform of (iv) we get

[e.e]

Fu(t) = (1=p) 30" F™(t),

where F(™(t) is the n'" convolution of F}.(t) with itself.

16.14 Let p in (16.198) that represents the average number of customers
that arrive during any service period be greater than one. Notice that
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where
Alz) =Y ap 2"
k=0

From Theorem 15.9 on Extinction probability (pages 759-760) it
follows that if p = A'(1) > 1, the eqution

Alz) =z (1)

has a unique positive root my < 1. On the other hand, the transient
state probabilities {o;} satisfy the equation (15.236). By direct substi-
tution with z; = 7§ we get

Zpij Ty = Z Aj—it+1 7Té (ll)
j=1 j=1
where we have made use of p;; = a;_;41,% > 1 in (15.33) for an
M/G/1 queue. Using k = j —i+ 1 in (ii), it reduces to

oo
k+i—1 __ _i—1 2 : k
k=2—i k=0

=mim =7, = (iii)

since 7y satisfies (i). Thus if p > 1, the M/G/1 system is transient
with probabilities o; = (.

16.15 (a) The transition probability matrix here is the truncated version
of (15.34) given by
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m—2
ag ay G - o+ o Qm—o 1—Zak
k=0
m—2
ag a1 Gy - o+ Qm_2 1—Zak
k=0
m—3
P=[0 a a - - - + amns 1= (i)
k=0
0 0 0 00 Qo ap 1—(a0—|—a1)
0 0 0 L 0 Qo 1-&0

and it corresponds to the upper left hand block matrix in (15.34)
followed by an m* column that makes each row sum equal to unity.

(b) By direct sybstitution of (i) into (15-167), the steady state prob-
abilities {q; o satisfy

J+1
Q;IQSGJ‘—FZQ;%—Hh J=0,1,2--,m—2 <ii)
=1

and the normalization condition gives
m—2

G =1->_ 4. (ii)
=0

Notice that (ii) in the same as the first m — 1 equations in (15-210)
for an M/G/1 queue. Hence the desired solution {q; ;»”:_01 must satisfy
the first m — 1 equations in (15-210) as well. Since the unique solution
set to (15.210) is given by {g;}32, in (16.203), it follows that the desired

probabilities satisfy

q; = cqj, i=0,1,2,---,m—1 (iv)

where {q;}75" are as in (16.203) for an M/G/1 queue. From (iii)

we also get the normalization constant ¢ to be
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1

m—

CcC =

—
—~
<
~—

qi
i=0

16.16 (a) The event {X (¢) = k} can occur in several mutually exclusive
ways, viz., in the interval (0,t), n customers arrive and k of them
continue their service beyond t. Let A, = “n arrivals in (0,¢)”, and
By, =“exactly k services among the n arrivals continue beyond ¢”,
then by the theorem of total probability

P{X(t) =k} = i P{A, N By} = i P{Bj|As} P(A,).

n=k n=k

But P(A,) = e (\t)"/n!, and to evaluate P{By,|A,}, we argue as
follows: From (9.28), under the condition that there are n arrivals in
(0,t), the joint distribution of the arrival instants agrees with the joint
distribution of n independent random variables arranged in increasing
order and distributed uniformly in (0,¢). Hence the probability that a
service time S does not terminate by ¢, given that its starting time x
has a uniform distribution in (0,¢) is given by

Py = /t P(S >t —z|x =x)fx(x)dzx
0

:/Otu_B(t—x)]lda;:l/otu—B(T))dT:@

t t

Thus By, given A,, has a Binomial distribution, so that

n
P{Bk,n|An} - (kj)pf(l _pt)nikJ k= 07 17 27 e,
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()] o [y =B@ldr
k!

_Da®F o

o . k=012,

(i)

lim at) = /Ooo[l — B(7)|dr

_ B(s) (ii)

where we have made use of (5-52)-(5-53). Using (ii) in (i), we obtain
: Y
Jim Plz(t) =k} =" (iii)

where p = A\ E{s}.



