215

Chapter 15

15.1 The chain represented by

0 1/2 1/2
p_|1/2 0 1/2
12 1/2 0

is irreducible and aperiodic.

The second chain is also irreducible and aperiodic.

The third chain has two aperiodic closed sets {e1,es} and {e3, e4}
and a transient state es.

15.2 Note that both the row sums and column sums are unity in this
case. Hence P represents a doubly stochastic matrix here, and

11 --- 11
) 11 --- 11
pPr—
m+1
11 --- 11
: 1
lim P{xn:ek}:ﬁ, k=0,1,2,---m.
n—00 m

15.3 This is the “success runs” problem discussed in Example 15-11
and 15-23. From Example 15-23, we get

1 U
U = —
i+ 1 (i+1)!

Uit+1 = Pii+1Ui =

so that from (15-206)

o oo 1
Zuk:uozyzauozl
k=1 k=1 "
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gives ug = 1/e and the steady state probabilities are given by

1/e
Uk:ﬂ, k,’:172,

15.4 If the zeroth generation has size m, then the overall process may
be considered as the sum of m independent and identically distributed
branching processes x*), k = 1,2,---m, each corresponding to unity
size at the zeroth generation. Hence if 7y represents the probability of
extinction for any one of these individual processes, then the overall
probability of extinction is given by

lim Plx, = 0[xo = m] =

= Plx® =0k = 1}N{xP = 0jx” = 11N {x{™ = 0fxf™ =1}]
= I, PP =0xf =1]
= 7y
15.5 From (15-288)-(15-289),
P(2) = po + p1z +poz?, since pp, =0, k>3.

Also po + p1 + p2 = 1, and from (15-307) the extinction probability is
given by sloving the equation

P(z) = z.

Notice that
P(z)—z =po— (1 —p1)z+ pe2*

=po — (po + p2)z + p22?
= (2 = 1)(p22 — po)
and hence the two roots of the equation P(z) = z are given by

21:1, Z9 = —.

Thus if py < pg, then 25 > 1 and hence the smallest positive root of
P(z) = z is 1, and it represents the probability of extinction. It follows
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that such a tribe which does not produce offspring in abundence is
bound to extinct.
15.6 Define the branching process {x,}

Xn
Xn+1 = Z Yk
k=1

where y; are i.i.d random variables with common moment generating
function P(z) so that (see (15-287)-(15-289))

P'(1) = E{ys} = p.

Thus
E{xplxn} = E{3ZE yilxn = m}
= E{X}L yilxn =m}
= E{30L yet = mE{yr} =xupt
Similarly

E{Xpialxn} = E{E{Xns2[Xps1,%n}}
= E{E{xps2[Xns1}[xn}
= B{yxalxa} = 5%,
and in general we obtain
B{%o e %0} = 1 X (i)
Also from (15-310)-(15-311)

E{x,}=pu". (i)
Define
W, = 1 (ii)
n ILLn
This gives
E{w,} =1
Dividing both sider of (i) with p"*" we get
Xn+7‘ r Xn Xn
{’un—i—r ‘ } Iun—i-r Iun
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or

which gives

the desired result.

15.7
Sp = X1+ X2+ + X,

where x,, are i.i.d. random variables. We have
Sn+1 = Sp + Xp41
so that
E{spi1lsn} = E{sn + Xpnt1lsn} = sn + E{xXp11} = sn.
Hence {s,} represents a Martingale.

15.8 (a) From Bayes’ theorem

P{Xn-l-l = i’Xn :]} P{Xn :]}
Xn+1:i

P{xy = j[Xn11 =i} =

—% = Dij>

where we have assumed the chain to be in steady state.
(b) Notice that time-reversibility is equivalent to

p:j = Dij
and using (i) this gives

q;j Pji ..
pZ} =22 =py (ii)
qi

or, for a time-reversible chain we get

q4j Pji = qi Pij- (iii)
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Thus using (ii) we obtain by direct substitution

DPij Djk Pri = (Cgl] pﬂ) (gk pk]) (g; pzk)
= Dik DPkj Pji;

the desired result.

15.9 (a) It is given that A = AT (a;; = a;;) and a;; > 0. Define the i
row sum
ri=Y_ ay >0, i=12,---
k

and let
Dy = CLZ'J' . CLij
= = = -
Dok Ak Ty
Then
P = ji _ Gij
_]Z - - T - fr‘
> Gim ! !
" (i)
_ T a’l] T Di
Ty Ty T b
or
TiPij = Tj Pji-
Hence
Do Tipi = il =T ) Pji =Ty (i)
since

Zp]z_zaﬂ:ﬁzl-

Ty Ty

Notice that (ii) satisfies the steady state probability distribution equa-
tion (15-167) with
q; = cry, 1=1,2,---

where c is given by

1 1
cYy ri=) ¢g=1=c= = .
; ; 2T > Zjaij
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Thus

DY 17

B > T B > Zj Q45

represents the stationary probability distribution of the chain.
With (iii) in (i) we get

a >0 (i)

4di
Pji = qupz‘j
or

q;j Pji *
qi "
and hence the chain is time-reversible.

ij

15.10 (a) M = (m;;) is given by

M=(I-W)!
or
(I - WM =1
M=I+WM
which gives
mi; =0y + Yp Wik, My, €,6; €T

= 0ij + 2 Pik Mg, €65 €T

(b) The general case is solved in pages 743-744. From page 744,
with N = 6 (2 absorbing states; 5 transcient states), and with r = p/q
we obtain

(p—q)(r®—1) " J=
Mij = (r' —1)(r® " =it ;
w—att -1 7"

15.11 If a stochastic matrix A = (a;;), a;; > 0 corresponds to the two-
step transition matrix of a Markov chain, then there must exist another
stochastic matrix P such that

A=P  P=(py)
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where
J

and this may not be always possible. For example in a two state chain,

let
o l—«
P =

1-6 B

P+(1-a)1-F) (a+f)1-a)
(@+p)1-5) F+1-a)1-p)
This gives the sum of this its diagonal entries to be
ap +axp =a*+2(1—a)(l-p3)+ 5
= (a+0)* = 2(a+p)+2 (i)
—1+(a+B8-12 >1.
Hence condition (i) necessary. Since 0 < o« < 1,0 < 8 < 1, we also

get 1 < ajy + age < 2. Futher, the condition (i) is also sufficient in the
2 X 2 case, since aq; + ag9 > 1, gives

(a+ﬁ—1)2=a11+a22—1>0

and hence

a+6:1i\/a11+a22—1

and this equation may be solved for all admissible set of values 0 <
a<land 0< g < 1.

15.12 In this case the chain is irreducible and aperiodic and there are
no absorption states. The steady state distribution {uy} satisfies (15-
167),and hence we get

N
_ _ N\ & Nok
Uk—zujpjk—zuj L p;q; -
j =0
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Then if @ > 0 and # > 0 then “fixation to pure genes” does not occur.

15.13 The transition probabilities in all these cases are given by (page
765) (15A-7) for specific values of A(z) = B(z) as shown in Exam-
ples 15A-1, 15A-2 and 15A-3. The eigenvalues in general satisfy the
equation

Zpij:c§k) = )\kxl(-k), k=0,1,2,---N

j

and trivially 3=, p;; = 1 for all 7 implies \g = 1 is an eigenvalue in all
cases.

However to determine the remaining eigenvalues we can exploit the
relation in (15A-7). From there the corresponding conditional moment
generating function in (15-291) is given by

G(s) = 2_) pij (i)

where from (15A-7)

py = AE B ()
T AR B () ”
_ coefficient of §j 2Nin {Ai(sz) BN-i(2)} (ii)
{A(z) BN (2)

Substituting (ii) in (i) we get the compact expression

_ {Ai(sz) BN_‘Z'<Z)}N '
{A'(z) BY ' (2)}x

G(s) (iii)

Differentiating G(s) with respect to s we obtain
N .
G'(s) =D Pyjs™
j=0

_ {iA™! (s;) A’(sz);; BY"(2)}y (i)
{A'(z) BY ' (2)}w
. {Ai_l(sz) A'(sz) BN_%Z)}N—l.
{A"(2) BY"(2)}w
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Letting s = 1 in the above expression we get

oy AT A BY )y .
= VIENE) N
In the special case when A(z) = B(z), Eq.(v) reduces to

where

{AM(2) A'(2)bv
{AY)

Notice that (vi) can be written as

lez)\lxl, 33'1:[0,1,2,"'N]T

)\1:

and by direct computation with A(z) = B(z) = (¢ + pz)? (Example
15A-1) we obtain

N = Ua+p2)* YV ap(g + p2) by
{(¢+p2)""}n

~ 229( )quNl
_2p{(g+p2) v . \N -1

fa+p™ <2N>quN -

N

Thus Zé\;o pij j = @ and from (15-224) these chains represent Martin-
gales. (Similarly for Examples 15A-2 and 15A-3 as well).

To determine the remaining eigenvalues we differentiate G'(s) once
more. This gives

G"(s) = Z_: pij (G —1)s7?
_{ii— 1A (s2)[A(s2)]* 2 BN_i(z) + iAT (s2) A (s2)2 BN 7(2) Yy 1
{A'(2) BY ' (2)}w

_ {iAT(52) BYT(2)[( — 1) (A(52))* 4 A(s2) A (s2)]bwoe
{A7(=) B (2)}n
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With s = 1, and A(z) = B(z), the above expression simplifies to

> pii(j = 1) = heili = 1) +ipa (viii)
where
N = AT A s
{AN(2)} v
and
o AT A
{AN@)}

Eq. (viii) can be rewritten as
N
> piji* = X21* + (polynomial in i of degree < 1)
=0

and in general repeating this procedure it follows that (show this)

N
> pij ¥ = Ai" + (polynomial in i of degree <k —1)  (ix)
i=0

where
_ A ) [A(R)) v
{AN(2)}n ’

Equations (viii)—(z) motivate to consider the identities

Ak

k=1,2,---N. (x)

Paq, = M\ qr (xi)

where g are polynomials in ¢ of degree < k, and by proper choice of
constants they can be chosen in that form. It follows that A\x, & =
1,2,--- N given by (ix) represent the desired eigenvalues.

(a) The transition probabilities in this case follow from Example 15A-1
(page 765-766) with A(z) = B(z) = (q + pz)®. Thus using (iz) we
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obtain the desired eigenvalues to be
e = gt p2 002p(g + p2) s
{la+p2)"" I

Ll +p2)"" v
(q +pZ)2N}N}

(b) The transition probabilities in this case follows from Example 15A-2
(page 766) with
A(z) = B(z) = X7V
and hence
{eA(N k)(z—1) )\k Ak(z— 1)}
= { AN (z— 1)}N

ML= o NEQN)Y TR /(N — k)
{2y (AN)Y/N!

:vavwe:(l—le)( —12v>"'< —kﬁl> k=12--N

Ak

(¢) The transition probabilities in this case follow from Example 15A-3
(page 766-767) with

A(z) = B(z) = . _qu.

Thus

_ {1/(1_p2)N+k}N—k
M =P T )

B i B v ) R

o))
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15.14 From (15-240), the mean time to absorption vector is given by
m=I-W)'E, E=][1,---1],

where
VVzk:ka:» jakzlaza"'N_17
with pji, as given in (15-30) and (15-31) respectively.

15.15 The mean time to absorption satisfies (15-240). From there

m; =1+ pimy =1+ piiy1 Mig1 + Piim1 Mi—y
kET

=1+pmip +qmi_y,

or
my =1+ pmgi1+qgme_1.
This gives
p(mig1 —my) = q (mg —my_y) — 1
Let

Mk+1 = Mpiy1 — Mg

so that the above iteration gives

Mk+1 =



This gives

i—1
m; = Z M1
k=0

1 AL
(M“Lp—q)z::(p) p—q P74
a . iti— 1) 3
ZMI_Ta b=4q
1\ 1—(q¢/p) i
(M1+p—<1> 1—4q/p p—q’ P#4q
- ) (i — 1
le——Q—mp ), P=q
where we have used m, = 0. Similarly m,,, = 0 gives
1 a+b 1—
My + - ' q/IZka'
p—q p—q 1-(q/p)
Thus o/ )
a+b 1—1(q/p) i
— : . aer_ _q7 p#q
m, =4 P71 1=(a/p) p
ila+b—1), p=q
which gives for i = a
a+b. 1—-(/p)*  a
P=4 1—(q/p)™ P~ P74
m, =
ab, P=q
b at+b 1-(p/q)"
-1 -1 T— (g P71
ab, p=gq
by writing
L—(a/p)* _, (a/p)*—(a¢/0)"" _  1-(/9)
1— (g/p)** 1—(g/p)** 1—(p/q)**

1—1

(see also problem 3-10).
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