
Programming for Linguists:
Perl for Language Researchers

Michael Hammond

Allie

Programming for Linguists

Allie

Programming for Linguists:
Perl for Language Researchers

Michael Hammond

© 2003 by Michael Hammond

350 Main Street, Malden, MA 02148–5018, USA
108 Cowley Road, Oxford OX4 1JF, UK
550 Swanston Street, Carlton South, Melbourne, Victoria 3053, Australia
Kurfürstendamm 57, 10707 Berlin, Germany

The right of Michael Hammond to be identified as the Author of this Work has been
asserted in accordance with the UK Copyright, Designs, and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, except as permitted by
the UK Copyright, Designs, and Patents Act 1988, without the prior permission
of the publisher.

First published 2003 by Blackwell Publishing Ltd

Library of Congress Cataloging-in-Publication Data

Hammond, Michael (Michael T.)
Programming for linguistics : Perl for language researchers / Michael Hammond.

p. cm.
Includes bibliographical references and index.
ISBN 0-631-23433-0 (alk. paper) — ISBN 0-631-23434-9 (pbk. : alk. paper)
1. Computational linguistics. 2. Perl (Computer program language) I. Title.

P98 .H344 2003
410′.285—dc21

2002034221

A catalogue record for this title is available from the British Library.

Set in 10.5/13pt Sabon
by Graphicraft Limited, Hong Kong
Printed and bound in the United Kingdom
by MPG Books Ltd, Bodmin, Cornwall

For further information on
Blackwell Publishing, visit our website:
http://www.blackwellpublishing.com

Contents

Preface ix
Acknowledgments xi

1 Why Programming and Why Perl? 1

1.1 Why programming? 1
1.2 Why Perl? 2
1.3 Download and install Perl 3
1.4 How to read this book 3

2 Getting Started 5
2.1 Edit and run 5

2.1.1 Edit 5
2.1.2 Run 6

2.2 Other platforms 7
2.3 Summary 7
2.4 Exercises 7

3 Basics: Control Structures and Variables 8

3.1 Statements 8
3.2 Numbers and strings 9
3.3 Variables 11
3.4 Arrays 13
3.5 Control structures 15

3.5.1 if 15
3.5.2 while 19
3.5.3 for 23
3.5.4 foreach 23

3.6 Experimental materials 24
3.7 Summary 27
3.8 Exercises 28

4 Input and Output 30

4.1 Overview 30
4.2 The command line 31
4.3 Prompt input 32
4.4 Prompt output 34
4.5 File IO 36
4.6 Array operations and randomizing 40

4.6.1 Array operations 40
4.6.2 Randomizing 41

4.7 Collecting experimental data 43
4.8 Summary 44
4.9 Exercises 45

5 Subroutines and Modules 46

5.1 Japhs 46
5.2 Style and comments 47
5.3 The anonymous variables 50
5.4 Subroutines 52
5.5 Localizing information 54
5.6 Arguments 57
5.7 Collecting more experimental data 61
5.8 Modules 63
5.9 Multidimensional arrays 65
5.10 Localizing variables 68
5.11 Subroutines to modules 71
5.12 Using Exporter 73
5.13 Taking advantage of separate modules 77
5.14 Summary 79
5.15 Exercises 79

6 Regular Expressions 80
6.1 Basic syntax 80
6.2 Special characters 82
6.3 Commenting regular expressions 83
6.4 Extra stuff 84
6.5 Using variables in regular expressions 85
6.6 Greediness 87
6.7 Pig Latin 88

vi Contents

6.8 Sentences 90
6.9 Summary 92
6.10 Exercises 93

7 Text Manipulation 94

7.1 s/// 94
7.2 tr/// 97
7.3 split() and join() 99
7.4 The anonymous variable again 102
7.5 sort() 104
7.6 Hashes 107

7.6.1 exists() 108
7.6.2 delete() 109
7.6.3 keys() 110
7.6.4 values() 112
7.6.5 each() 113

7.7 Concordances 114
7.8 Bigrams 118
7.9 Summary 119
7.10 Exercises 119

8 HTML 121

8.1 How the web works 121
8.2 Basic HTML 122
8.3 Mounting your pages 130
8.4 Links 131
8.5 Searching the web 135
8.6 Summary 138
8.7 Exercises 139

9 CGI 140

9.1 CGI access 140
9.2 Simple CGI 141
9.3 Finding CGI errors 145
9.4 HTTP requests 145
9.5 Using links to interact 147
9.6 HTML forms 153
9.7 Running an experiment over the web 164
9.8 A glitch 169
9.9 Summary 170
9.10 Exercises 171

Contents vii

Appendix A Objects 173
A.1 Object-oriented programming 173
A.2 References 175
A.3 Basic syntax 180
A.4 Using objects 183
A.5 Summary 186

Appendix B Tk 188
B.1 Installing Tk 188
B.2 Building a GUI 189
B.3 Geometry management 190
B.4 Widgets 193

B.4.1 Button 193
B.4.2 Label 195
B.4.3 Radiobutton 197
B.4.4 Changing things 201

B.5 Graphic experiments 203
B.6 Summary 207

Appendix C Special Variables 209

Appendix D Where to Find Out More 210
D.1 Documentation 210
D.2 The web 210
D.3 The usenet 211
D.4 Other books 211

Index 213

viii Contents

Preface

Computational literacy is essential for the modern linguist or related language
professional; for example, speech pathologists, psycholinguists, literary theor-
ists, and so on. Simple programming expertise is an essential part of many
forms of data collection and analysis in these fields. Unfortunately, people
interested in language often have little or no math background and are some-
times put off by typical programming courses.

This book undertakes to introduce a completely naive person to the
rudiments of Perl programming. Through a series of simple examples and
exercises, the reader is gradually introduced to the essentials of good pro-
gramming. The examples are carefully constructed so as to make the intro-
duction of new concepts as simple as possible, while at the same time using
sample programs that make sense to someone who works with language as
data. Many of these programs can be used immediately, with minimal or no
modification.

How is this Book Different?

A number of books on Perl are available. How is this book different from the
rest?

First, the most important respect in which this book is different is that it
focuses on language. The book is intended for readers interested in using Perl
to help them understand language.

Second, unlike many books, every example given is a full program and can
stand alone. Thus, for the reader starting from scratch, there is minimal
mystery in applying material from any example.

Third, the book is written for a naive reader who may know nothing about
programming. No prior programming experience is assumed whatsoever.

What this Book Isn’t

This is not a book on computational linguistics. I spend no time modeling
linguistic theory or discussing theory of any sort. Readers who are interested
in language but who have no interest in modern linguistic theory should have
no fear that knowledge of that field might be required, or that we will be
preoccupied with the minutiae of linguistic theory.1

This book is not a compendium on Perl. There are many details that are
left aside. The goal is to expose the naive reader with an interest in language
to the most usable aspects of Perl, those most relevant for writing programs
that deal with language.

This is not a Book on Java™

I have written a previous book on the Java programming language. Although
I have used similar arguments here for why someone interested in language
should know how to program, Java and Perl are very different kinds of
language. For example, Java offers a rich system for building graphical user
interfaces, while generic Perl does not. On the other hand, Perl has built-in
support for pattern-matching based on regular expressions, while Java does
not. There are a host of other differences as well.

As a consequence, while this book begins with a rather similar structure to
the Java book, the structures rapidly depart. While the Java book deals ex-
tensively with graphics, this book does not. Moreover, I spend substantially
more time in this book on the niceties of regular expressions.

Website

The text is accompanied by exercises at the end of each chapter and all the
code is available from the companion website:

http://www.u.arizona.edu/~hammond

Answers to selected even-numbered exercises are also available on the website.

Michael Hammond
July 2002

x Preface

1 Though how anybody could be left cold by all those minutiae is a mystery to the linguist–
author!

Acknowledgments

Thanks to Sean Burke, Rachel Hayes, Will Lewis, Tania Zamuner, and an
anonymous reviewer for much useful feedback. Thanks also to my wife Diane,
my son Joe, and my constant programming partner Puck. All errors and
omissions are my own.

Allie

Why Programming and Why Perl? 1

Chapter 1

Why Programming and Why Perl?

This chapter provides two central premises for the rest of the book. First,
why would a linguist, psycholinguist, literary theorist, and so on want to
know anything about programming? Second, why would Perl be a good
choice?

1.1 Why Programming?

Working with language data is nearly impossible these days without a com-
puter. Data are massaged, analyzed, sorted, and distributed on computers.
Various software packages are available for language researchers, but to
truly take control of this domain, some amount of programming expertise is
essential. Consider the following simple examples.

Imagine that you are a syntactician interested in the use of present-tense
verbs. You have an electronic corpus and want to find all the cases of verbs in
the present tense. How do you do it?

You’re a literary stylist and want to investigate the distribution of words
with iambic stress in Milton’s poetry.

Imagine you are a phonologist. You’re interested in consonant clusters.
You have an electronic dictionary and want to find the largest word-final
consonant cluster. Do you go through it by hand?

Finally, you’re a psycholinguist and you want to perform an experiment
investigating how people syllabify nonsense words.

All of these are fairly typical research tasks. If you don’t know how to
program yourself, you have only limited options. One possibility is to do the
job by hand. For example, the syntactician could simply print out the corpus
and go through it line by line. If the corpus is small enough, this might not be
so onerous, but if the corpus is large, or if one really wants to be sure of one’s

2 Why Programming and Why Perl?

results, then this method is fraught with peril (and really boring). Another
solution is to hire somebody else to do the job, but the same considerations
apply. Yet a third possibility is to make use of some existing software package.

This last option is occasionally workable, but can fall short in several
ways. First, an existing package is restricted by its design. That is, your needs
may not match what the software was designed to do, rendering your task
impossible or very difficult. Moreover, the software may not be intuitive, and
may require learning some arcane set of commands or some difficult control
language.1 Finally, while software may exist to do what you want, it may not
be available on the platform you work on (Windows, Mac, Unix), or may be
too costly.

1.2 Why Perl?

The Perl programming language may provide an answer. There are a number
of reasons why Perl may be an excellent choice.

First, Perl was designed for extracting information from text files. This
makes it ideal for many of the kinds of tasks language researchers need.

Second, there are free Perl implementations for every type of computer. It
doesn’t matter what kind of operating system you use or computer architec-
ture it’s running on. There is a free Perl implementation available.

Third, it’s free. Again, for any imaginable computer configuration, there is
a free Perl implementation.

Fourth, it’s extremely easy. In fact, it might not be an exaggeration to
claim that of the languages that can do the kinds of things language researchers
need, Perl may be the easiest to learn.

Fifth, Perl is an interpreted language. This means that you can write and
run your programs immediately without going through an explicit intermedi-
ate stage to convert your program into something that the computer will
understand.

Sixth, Perl is a natural choice for programming for the web. In chapter 9,
I’ll show how this presents some very useful opportunities to the language
researcher.

Finally, Perl is a powerful programming language. While Perl is optimized
for text manipulation, it can be used for just about anything else that one
might want to do with a programming language.2

What this means is that learning all of Perl would be a monumental task.
We won’t let this deter us though. My strategy will be to pick and choose.
I’ll introduce those bits of Perl necessary to do the kinds of things people
who work with language typically want to do. The rest – all the bells and
whistles we don’t need on our train – we’ll leave for later. I’ll let you know

Why Programming and Why Perl? 3

where they are and how to find out more, but we won’t digress to deal with
them here.

1.3 Download and Install Perl

You may already have Perl on your system. If you’re using some flavor of
Unix, type perl -v. If you already have Perl, the program should display what
version you have. It’s possible that you have Perl, but that the program is not
in your path. To check if it’s anywhere on your system, you can use the
where or whereis commands.

Under Windows, you should call up the MS-DOS prompt, and again type
perl -v. If Perl is on your system, but not in your path, you can use the
Windows Find File function to search for perl.exe.

For Macintosh, there is only one implementation of Perl, called MacPerl.
Find the MacPerl icon and click on it.3

If you do not have Perl on your computer system, you can obtain it for free
over the web. The following URL provides links to all implementations of
Perl: http://www.cpan.org.

At the time of writing, the most recent version of Perl available is version 5.
You should make sure that you have access to this version (or later), as the
previous version (4) is lacking a number of important properties.

1.4 How to Read this Book

Learning to program isn’t really hard, but you do need to do it the right way.
The key is to start programming right away. As you read this book, you
should make sure to try out the programs as we go through them. In fact, it
would be ideal to read the book at the computer. Also, don’t forget to try the
exercises! You’ll note that answers are not given at the end of the book. This
is for two reasons. First, having answers is a big temptation. More import-
antly, however, most of the exercises involve revising or writing programs.
There are often many ways to achieve the same goal and I would rather you
find some way to answer an exercise question than feel you have to find my
way of answering one of them.

Start by running the example programs exactly as given, either by
downloading them from the website or, even better, by typing them in your-
self. (Typing them in yourself will make the task familiar and draw your
attention to aspects of the code you might miss otherwise.)

When you start to feel more comfortable, try varying the code a bit. The
programs up through chapter 3 are perfectly safe and variations can’t harm

4 Why Programming and Why Perl?

your computer. After that point, certain operations should be handled with
care, but I’ll warn you about those as we go through.

The key, though, is to have fun!

Notes

1 This latter point may seem analogous to learning a programming language, but
notice that learning an arcane set of commands doesn’t generalize; you would need
to do that for every separate package that you have.

2 The only place where Perl is lacking is in terms of graphics and graphical user
interfaces. It’s not possible to directly construct windows, buttons, and the like all
in Perl. There are very reasonable ways around this limit, however. For example, as
I discuss in appendix B, the optional Tk module allows for graphical user interfaces
and other graphical programming.

3 As of MacOS X, generic Unix Perl is available for Macs as well.

Getting Started 5

Chapter 2

Getting Started

This chapter explains how Perl works and introduces the edit–run cycle for
readers with no background in programming. I begin with how to edit a file
using any number of editors, and go on to explain how to compile and run
the programs we write.

2.1 Edit and Run

Just in case you’ve never written a computer program in your life, let’s go
over the basic idea. A programming language allows you to issue instructions
to your computer. In effect, it is a lingua franca, a mediating language. You
translate your ideas into it and the computer translates it into something it
can understand: machine code.

The process of writing up your program in the programming language is
the edit phase. Once you’ve written out your program in Perl, you then
convert it to machine code and run it using the perl command. This is re-
ferred to as the run phase. Let’s go through each of these in turn.

2.1.1 Edit

You need to create your program using some sort of text editor. In principle,
you can use any editor, but it’s easiest to use a very simple one. There are a
number of possibilities and I list some of them below. The key component is
that the file you create should be saved as a text file with the extension “.pl”.
This can certainly be done with a normal text editor, but is often easier to do
with one of these:

6 Getting Started

Windows Edit, Notepad, Vim, TextPad, and so on.
Mac MacPerl, SimpleText, Alpha, BBEdit, and so on.
Unix Emacs, Vi(m), Pico, and so on.

Let’s go through how to create a program using the MS-DOS command
edit under Windows. First, open the MS-DOS prompt on the program menu
of Windows. Switch to an appropriate directory using the cd command. For
example, if you plan to put all your Perl programs in an existing directory
myperl, you would switch to that directory using the command cd \myperl.

Once you’re in the appropriate directory, it’s time to edit a program file.
To create a Perl program file called helloworld.pl, type the following in the
DOS window: edit helloworld.pl. This will bring up a simple text editor into
which we will type our code. Type the following into the window exactly:

print("Hello World!");

To save your code, select save from the File menu. Then choose quit from the
same menu to exit back to the DOS window.

Let’s go through the code that you typed in very briefly. I’ll treat it in more
depth later on, but let’s just get a sense of what you just did. First, programs
have two basic organizational units: statements and groups. Statements are
instructions for the computer to carry out. They are always terminated by a
semicolon and are executed in sequence from top to bottom. Groups indicate
the organization of statements into larger units and are always marked with
curly braces.1 In this particularly simple example, there is only a single state-
ment and no groups.

The single statement here is the print() command applied to the string
“Hello World!”. There are many more details and nuances to even this little
snippet of code, but I’ll defer these to later.

2.1.2 Run

The next step is to translate your program into something that your computer
will understand and run. You do this by typing the following at the com-
mand line:

perl helloworld.pl

The computer should whir away for a second or two and then print out this
string: Hello World!.

If something has gone wrong, then you will get a perhaps cryptic error mess-
age. There are really only three possibilities. One is that you did not actually cre-
ate the helloworld.pl file or did not save it in the right form. To check this under
Windows, type type helloworld.pl. The file should scroll by in a legible form.

Getting Started 7

If that worked, and perl helloworld.pl still doesn’t work, then you must
have made some sort of error in typing in the original program. Open the file
again with your text editor and confirm that it is exactly as above.

A third possibility under Windows or Unix is that perl is not in your path.
Follow the instructions appropriate to your operating system to correct this.
For Windows, this typically involves editing the autoexec.bat file. For Unix,
this typically involves making changes to your .login file or your .cshrc file (or
its equivalent). These are delicate tasks though, so you should seek assistance
before attempting them on your own if you’ve never done this before.

2.2 Other Platforms

Running Perl programs under Unix is essentially the same as under Win-
dows. There are different editors, and the command prompt is always avail-
able, but the steps are essentially the same.

For Macintosh, it goes a little differently. Assuming the MacPerl imple-
mentation of Perl, there are two differences. First, there is no command-line
prompt on a Mac. Second, the editor is integrated into the MacPerl program.
To do the same example as above, double-click on the MacPerl icon to bring
up the editor. Edit the program exactly as above. Save it as helloworld.pl,
using the Save command from the File menu. Then choose Run from the
MacPerl menu.

2.3 Summary

This chapter has introduced the basic task of writing and running programs.
We went through a very simple example, but the procedure will remain the
same for programs of any complexity.

2.4 Exercises

1. Change the text that’s printed when helloworld.pl is run.
2. Alter the helloworld.pl program so that it prints two different things.
3. Take the helloworld.pl program, rename it, and run it again.

Note

1 I treat groups in the next chapter.

8 Basics: Control Structures and Variables

Chapter 3

Basics: Control Structures
and Variables

In this chapter, I cover the basic structures of Perl. I start with the idea of a
computer program as a sequence of commands. I then introduce different
data types and different types of variables to hold these data types. The body
of the chapter is taken up with a discussion of the basic control structures.

The chapter concludes with a demonstration of how even this little snippet
of Perl can be used to solve problems of linguistic interest, here the construc-
tion of materials for psycholinguistic experiments.

3.1 Statements

Programs in Perl are composed of a sequence of commands. Each command
typically appears on a separate line terminated with a semicolon. For
example, the helloworld.pl program in the preceding chapter was composed
of a single command. Here is a more complex program composed of two
commands:1

hello2.pl

print("Hello");
print("there!");

This program first prints out the word Hello, and then prints out the string
there!. This produces an interaction like the following:

> perl hello2.pl
Hello there! >

Basics: Control Structures and Variables 9

Notice how the prompt appears on the same line as the string that Perl
printed. Notice too how the two different print() commands ended up on the
same line. We can remedy this by adding in an explicit return – or newline –
character in the string printed: \n. The above program is revised below:

hello3.pl

print("Hello\n");
print("there!\n");

Typed at the prompt, this program produces this interaction:

> perl hello3.pl
Hello
there!
>

So far, having two separate statements doesn’t do any more work than
having a single statement. This is only an artifact of the fact that so far we
have only a single command print(). The following program does the same
work as the preceding one, but with only a single statement:

hello4.pl

print("Hello\nthere!\n");

Before going on to add additional commands to our repertoire, we need to
treat primitive data types.

3.2 Numbers and Strings

For our purposes, there are really only two data types that we need to con-
cern ourselves with: numbers and strings. Perl can manipulate numbers just
like strings. For example, numbers can be printed:

numprint1.pl

print(3);

Numbers can also be manipulated by the usual numerical operations; for
example, +, –, *, /, %, and so on.2 The following program shows how these
can be used with the print() command:

10 Basics: Control Structures and Variables

numprint2.pl

print 3 + 4;
print(" ");
print(5 * 2);
print(" ");
print(3 – 9);
print(" ");
print(9 / 3);
print(" ");
print(10 % 3);
print("\n");

All other mathematical operators are available as well. (Incidentally, if it isn’t
apparent, the command print(" "); prints a single space.)

Strings are somewhat different than numbers and must always be quoted:
for example, "hat" or 'hat'. The difference between single and double quotes
is that special characters are not available in single-quoted strings. For example,
\n is not interpreted as return if it appears in a single-quoted string. Either
kind of quote is adequate for the print() command, as exemplified in the
following program:

stringprint.pl

print("hat\n");
print('chair\n');

This program produces the following interaction at the prompt:

> perl stringprint.pl
hat
chair\n >

Only the first \n is interpreted as a return since the second \n is enclosed in
single quotes. We will see in the next section that there are additional differ-
ences between single and double quotes.

There are various operations that can be performed with strings as well.
One of the most useful is concatenation. The operator for this is period (full
stop). The following little program shows how this works:

stringconcat.pl

print("string" . " " . "concatenation\n");

Basics: Control Structures and Variables 11

This program concatenates three strings and prints out the string string
concatenation.

3.3 Variables

Variables allow one to store information for later use.3 For example, one can
assign the result of some mathematical operation to a variable and then use
the print() command to print out the contents of the variable later. This turns
out to be an essential aspect of any sort of programming.

Variables are extremely easy to define and use in Perl. First, a variable is
simply any string of letters, numbers, or underlines (where the first character
must be a letter or underline) preceded by the special character $. For example,
the following are all legal variable names: $i, $_i, $variable, $i47, $my_vbl,
$myVbl.

The following program shows how this works:

varex1.pl

$myvariable = 4 + 2;
print("The variable is: ");
print($myvariable);
print("\n");

First, the variable $myvariable is assigned the result of adding 4 and 2. A
string is printed, then the contents of the variable, and then the return is
printed.

Variables can also be used in mathematical operations. For example, the
following program shows how numbers can be assigned to variables and
then mathematical operations performed on those variables:

varex2.pl

$one = 2;
$two = 3;
$three = $one + $two;
print($three);
print("\n");

The program uses some particularly confusing variable names so as to dramat-
ize the difference between the name of a variable and the contents of that
variable. Here the variable $one is assigned the contents or value 2; the

12 Basics: Control Structures and Variables

variable $two is assigned the value 3. The contents of $one and $two are
added together, which produces 5 (not 3!). The result of that operation is put
in another variable called $three, which is then printed out. The reader should
make very sure to understand why this program prints out 5 and not some
other value.

Strings can also be put into variables as well, as exemplified in the follow-
ing program:

varex3.pl

$hat = "chair";
$chair = "hat";
print($hat);
print("\n");
print($chair);
print("\n");

Again, I’ve used particularly inappropriate variable names to make clear that
the name of the variable is not to be confused with its value. For example, in
the above program, the variable $chair does not have the value chair, but the
value or contents hat.

Variables can also be used in strings. For example, the above program can
be simplified by enclosing all the variables in double quotes as follows:

varex4.pl

$hat = "chair";
$chair = "hat";
print("$hat\n$chair\n");

This produces exactly the same output as the preceding program.
Finally, note that variables in singly-quoted strings are not interpreted, but

are treated as literal strings. Thus if we assign the value of 3 to a variable
$hat, and try to print "$hat", we will get 3. On the other hand, if we try to
print '$hat', we will get literally $hat. The following program shows how this
works:

varex5.pl

$hat = 3;
print("$hat\n");
print('$hat\n');

Basics: Control Structures and Variables 13

This produces output as follows:

> perl varex5.pl
3
$hat\n>

Variables are not much use until we have some way of collecting informa-
tion from outside. The most useful way to do this is either from a file or from
the user, but there are other ways as well. As a rather silly example (though
one that makes use of some commands that will be useful later), consider the
following program. It makes use of two new commands. The first, time(),
returns the total number of seconds since January 1, 1970. The second new
command is getlogin(), which returns the name of the current user.4 The
program below first collects the start time and stores it in a variable $start.
Next, the program collects the user’s login name and stores it in a variable
$name. It then prints out a personalized greeting based on the value of $name.
It then collects a second end time and stores that in a variable $end. It
computes the difference between the two times and stores that in $diff, and
then prints it out.

varex6.pl

$start = time();
$name = getlogin();
print("Hello, $name!\n");
$end = time();
$diff = $end - $start;
print("That took $diff seconds.\n");

On most systems, the time to accomplish such a trivial task should be neglig-
ible, producing a difference of less than a second, which when evaluated in
this fashion should come out to 0. You might trying adding additional state-
ments in between the relevant statements above to force the computer to take
longer. This is a useful exercise to get a sense of how long it takes your com-
puter to do things. Although the time taken for this task is negligible, we will
soon see that it’s possible to write programs that take quite a bit of time to run.

3.4 Arrays

Another extremely useful data structure is an array. Arrays are really just
sequences of variables that are grouped together. They are a convenient way
of keeping track of a list of items. For example, one might store a list of verbs

14 Basics: Control Structures and Variables

in an array called @verbs. Array names are subject to the same alphanumeric
requirements as variable names. One key difference is that the array name is
preceded by the special character @, rather than $.

Individual array elements (the individual items in the sequence grouped
together by the array) are referred to by indices, where the index numbers
begin with zero! In addition, individual array elements are prefixed by $,
rather than @.5 Thus the entire array containing the list of verbs might be
called @verbs, but the individual elements of that array will be called $verbs[0],
$verbs[1], $verbs[2], and so on. Here’s a very simple program showing how
these can be used:

arr1.pl

$verb[0] = "run";
$verb[1] = "jump";
$verb[2] = "sing";
print("The three verbs are: $verb[0], $verb[1], and $verb[2].\n");

So far, arrays aren’t much good, except for the conceptual advantage of having
similar names for variables that contain similar content. However, arrays can
be assigned and recovered simultaneously as well. The following program
performs almost exactly the same way as the preceding program, except that
the array is assigned in one fell swoop and retrieved in the same way:

arr2.pl

@verb = ("run", "jump", "sing");
print("The three verbs are: @verb.\n");

Parentheses are used to demarcate a list of items. Since the entire array is
being assigned to, we use @verb, rather than $verb[0], and so on.

The only difference in how the programs work is how the @verb is inter-
preted in the print() command:

first one: The three verbs are: run, jump, and sing.
second one: The three verbs are: run jump sing.

In the latter case, the individual elements of the array in double quotes are
printed with only a space as a separator.

Arrays are actually an incredibly useful device. This is only apparent when
we consider how they can be used with the various control structures Perl
provides. I cover this in the next section.

Basics: Control Structures and Variables 15

3.5 Control Structures

The control structures of a programming language are powerful tools. These
allow you to group together commands into larger units and impose depend-
encies between the results of one command and other commands. In addi-
tion, these structures allow you to iterate in various ways. These are essential
for programming tasks of any complexity.

Perl provides all of the usual control structures and a few more to boot.
I go through these in the next few sections.6

3.5.1 if

The most common and most useful control structure is the if structure.
This allows a statement or block of statements to be executed only if some
condition is true. The usual form of an if structure is for the keyword if to
come first, followed by the conditional clause in parentheses, followed by any
number of statements – a block – surrounded by curly braces:

if (condition) { any number of statements }

For example, the following program prints out the results of a particular
equation only if two plus two is actually greater than three (which is, of
course, always true):

ifex1.pl

if (2 + 2 > 3) {
print("The laws of math still hold!");

}

In fact, any number of statements can occur within the curly braces. For
example:

ifex2.pl

if (2 + 2 < 5) {
$result = 2 + 2;
print("The result is $result.\n");

}

The if-clause can contain any number of logical tests. Here are some of the
most useful ones:

16 Basics: Control Structures and Variables

Numerical String Meaning

> gt Greater than
< lt Less than
>= ge Greater than or equal
<= le Less than or equal
== eq Equal
!= ne Not equal

These can also be combined using the logical connectives and or or.7

We’ve already seen examples of some of the numerical comparisons, but
not the equality comparison. Notice that the symbol to test for whether two
numerical expressions are equal is ==, not =. This is an extremely common
error. Consider the following example:

ifex3.pl

$number = 4;
if ($number == 2 + 2) {

print("$number\n");
}

This will print out the contents of the variable $number just in case it has a
value of 4. The following program prints nothing, as the numerical test fails:

ifex4.pl

$number = 4;
if ($number == 2 + 3) {

print("$number\n");
}

 Now consider what happens if we incorrectly replace the numerical equal-
ity test == with the assignment operator =:

ifex5.pl

$number = 4;
if ($number = 2 + 3) {

print("$number\n");
}

Not only does the if-clause return true here, but the value printed is 5, not 4.
This is because using the assignment operator = in the if-clause reassigns the

Basics: Control Structures and Variables 17

value of $number to 5. In addition, since that reassignment succeeds, the
if-clause is evaluated as true. Hence, when the print() clause is executed,
it prints the new value of $number. Again, this is an extremely common
mistake and you should be careful to avoid it.

Finally, let’s look at some numerical comparisons using the logical connect-
ives and and or. Here is a numerical example of or:

ifex6.pl

$x = 4;
$y = -7;
if ($x < 17 or $y == 6) {

print("$x and $y\n");
}

The program tests whether $x is less than 17 or $y equals 6. If either condi-
tion holds, their values are printed out. Replacing or with and would result in
nothing being printed. Both conditions would have to hold for the if-clause
to be true.

Let’s now consider the string comparison operators. The first thing to
notice is that they are different. For example, comparing any two strings with
== will always return true, while eq only returns true if the strings are ident-
ical. The comparison operators for strings allow one to compare strings for
alphabetic order. The following program exemplifies:

ifex7.pl

if ("hats" eq "hat" . "s") {
print("yes\n");

}
if ("had" lt "hat") {

print("yes again\n");
}

String and numerical comparisons can of course be combined with the logical
connectives:

ifex8.pl

$word = "chair";
$number = 7;
if ($word gt "chair" and $number <= 7) {

print("Yippee!\n");
}

18 Basics: Control Structures and Variables

This program assigns the string “chair” to $word, and the number 7 to the
variable $number. The if-clause tests if the value of $word (which is “chair”)
is alphabetically before the string “chair” and whether the contents of $number
are less than or equal to 7. Since only the latter is true, the if-clause is false
and nothing is printed.

The if structure has several variants. One of the most useful is else. The
block of statements that apply when the if-clause is true can optionally be
followed by another block of statements that apply if the if-clause is not true:

if (condition) { any number of statements } else { more statements }

This can be quite useful:

ifex9.pl

$furniture = "chairs";
$headgear = "hats";
if ($furniture lt $headgear) {

print("Put $furniture first.\n");
} else {

print("Put $headgear first.\n");
}

Here, the program prints out an appropriate message indicating which string
is alphabetically prior to the other.

The if structure also allows for optional elsif clauses, with or without a
final else-clause:

if (condition) { any number of statements } elsif (condition) { more statements }

For example, the following little program shows how an elsif can be used:

ifex10.pl

$result = (60/3) * 1.5;
if ($result > 100) {

print("Too big.\n");
} elsif ($result < 2) {

print("Too small.\n");
} else {

print("Just right: $result.\n");
}

In fact, there can be any number of elsifs after the initial if, with or without
a final else. The following program exemplifies:

Basics: Control Structures and Variables 19

ifex11.pl

$result = 6 * .5;
if ($result == 1) {

print("1\n");
} elsif ($result * 3 == 6) {

print("something small\n");
} elsif ($result == 0) {

print("nothing\n");
}

This program actually produces no output.
If-structures can also be embedded:

ifex12.pl

$name = getlogin();
print("Your name is: $name\n");
if ($name lt 'b') {

print("Your name begins with 'a'.\n");
if ($name lt 'ab') {

print("Your name must be 'aardvark'!\n");
}

}

This program tests whether the user’s login name begins with an “a”. If it
does, the program then tests whether it begins with an “aa”.

Finally, just in case the consequent is a single statement, there is an alternat-
ive abbreviated form of the if-structure. The ifex7.pl program on page 17 can
also be written as follows:

ifex13.pl

print("yes\n") if ("hats" eq "hat" . "s");
print("yes again\n") if ("had" lt "hat");

3.5.2 while

Another extremely useful structure is the while-loop:

while (while-condition) { any number of statements }

The while-loop allows a set of statements to be repeated as long as some
condition is true. The following example shows how the while-structure can
be used to iterate a command a specified number of times:

20 Basics: Control Structures and Variables

whileex1.pl

$i = 0;
while ($i < 10) {

print("$i\n");
$i = $i + 1;

}

First, the variable $i is initialized to 0. The while-condition tests whether $i is
less than 10. Since it is, the block of statements is evaluated. First, the value
of $i is printed out, and then the value of $i is augmented by one.

Pay careful attention to the logic of the while-structure. You must always
be careful to provide a mechanism to end the iteration. For example, here the
value of the variable $i is checked at each iteration for whether it exceeds the
threshold of 10. We include in the body of the while-structure a statement
that guarantees that with each iteration, $i will get closer to that threshold.

If you do not provide an exit condition, or do so incorrectly, you run the
risk of your program iterating forever – or until the user gets bored and stops
the program with ctrl-c (cmd-. for Mac users).

The above program uses an explicit counter to control the while-condition.
This is so very common that Perl has simplified syntax to increment or decre-
ment a variable; that is, $i++ and $i--. The above program can be rewritten
as follows:

whileex2.pl

$i = 0;
while ($i < 10) {

print("$i\n");
$i++;

}

As you may have guessed, the whole program can be rewritten using a
decremented variable instead:

whileex3.pl

$i = 10;
while ($i > 0) {

print("$i\n");
$i--;

}

This program prints the integers out in the opposite order.

Basics: Control Structures and Variables 21

The while-structure does not need to refer to an explicitly incremented or
decremented counter. The following program shows how a while-structure
can be used to wait a specified amount of time, here 5 seconds:

whileex4.pl

$then = time();
$diff = 0;
while ($diff < 6) {

$now = time();
$diff = $now - $then;

}
print("done!\n");

The program first collects the current time and stores it in a variable $then.
It then initializes a variable $diff to 0. The $diff variable will be used to
store the elapsed time. The program next enters a while-structure which
iterates until $diff exceeds 5. The statements in the while-structure collect the
current time and then calculate the elapsed time, storing it in $diff. When the
elapsed time reaches 6, the while-structure is exited and a final message is
printed.

There is an alternate form of the while-structure where the while-condition
is checked after the statements are executed:

do { any number of statements } while (while-condition);

If the while-condition is true, the statement block iterates again. Using the
do/while-structure, the above program can be rewritten as follows:

whileex5.pl

$then = time();
do {

$now = time();
$diff = $now - $then;

} while ($diff < 6);
print("done!\n");

There are two things to notice about the do/while-structure. First, notice that
it must be terminated with a semicolon, unlike the simple while-structure.
Second, the do/while-structure can result in slightly different behavior, given
when the while-condition is checked. Compare the output of the program
below with that of whileex2.pl on page 20:

22 Basics: Control Structures and Variables

whileex6.pl

$i = 0;
do {

print("$i\n");
$i++;

} while ($i < 10);

Both programs produce the same output. However, when the initialization
statements are changed from 0 to 10, different outputs result:

whileex7.pl

$i = 10;
while ($i < 10) {

print("$i\n");
$i++;

}

whileex8.pl

$i = 10;
do {

print("$i\n");
$i++;

} while ($i < 10);

The first program prints nothing, as $i already equals 10 when the while-
condition is checked. The second program completes one iteration before the
while-condition is checked, printing out the number 10.

Of course, a while-structure can also be used with an if-structure. Here is
an example where a while-structure is embedded in an if/else-structure to
calculate factorials; for example, 5! = 5 · 4 · 3 · 2 · 1. The nested structures
are used to capture the perhaps surprising fact that 0! = 1:

whileex9.pl

$num = 5;
if ($num == 0) {

print("1\n");
} else {

$res = 1;
$i = 1;

Basics: Control Structures and Variables 23

while ($i <= $num) {
$res = $res * $i;
$i++;

}
print("$res\n");

}

3.5.3 for

Counters are so prevalent as a way to control iteration that Perl, like most
other programming languages, includes a special structure that keeps track of
the counter – the for-structure:

for (counter; limit; increment) { any number of statements }

The for-clause includes three slots, separated by semicolons. The first pro-
vides for the initialization of the counter. The second describes the limit of
the counter. The third describes how it is incremented (or decremented).
With a for-structure, programs like whileex2.pl on page 20 can be rewritten
as follows:

forex1.pl

for ($i = 0; $i < 10; $i++) {
print("$i\n");

}

The for-structure is actually unnecessary, but it is quite useful nonetheless.
It helps you avoid programming mistakes with iteration controlled by a coun-
ter, because it forces you to specify all the essential properties of the counter
at the outset.8

3.5.4 foreach

One of the most useful control structures is the foreach structure:

foreach $vbl (list or array) { any number of statements }

The reserved word foreach is followed by some variable name. This variable
takes as its values each of the values provided by the following list or array.
The statements in the block can then apply to each value of the list or array
using the given variable name. For example, the following program prints
out a list of verbs:

24 Basics: Control Structures and Variables

foreachex1.pl

@verbs = ('run', 'jump', 'hit');
foreach $verb (@verbs) {

print("$verb\n");
}

In fact, the list can be referred to directly in the foreach-structure:

foreachex2.pl

foreach $verb ('run', 'jump', 'hit') {
print("$verb\n");

}

If a list is composed of ascending contiguous naturally ordered elements
like integers or letters, it can be abbreviated with ..; for example, (1, 2, 3, 4,
5) can be written as (1..5). The following program uses this device to print
the numbers 1 through 10:

foreachex3.pl

foreach $n (1..10) {
print("$n\n");

}

The following program does the same thing for the first 10 letters of the
alphabet:

foreachex4.pl

foreach $a ('a'..'j') {
print("$a\n");

}

3.6 Experimental Materials

The variables and control structures that we’ve covered so far are extremely
powerful programming tools, but it’s difficult to really see this until we cover
the various ways to supply data to our programs. However, even at this
stage, we can use the devices we’ve learned about so far to take care of
important tasks. In this section, I consider two examples.

Basics: Control Structures and Variables 25

Imagine you want to conduct an experiment involving nonsense strings.
You have some particular experimental task and you need every possible
combination of consonants (Cs) and vowels (Vs) in this pattern: CVCV. It
would be a hugely tedious task to generate all of these by hand, but it is a
trivial task given what we’ve learned so far.

Let’s consider the problem from a logical perspective. First, we need to
define what we mean by consonant and vowel, since Perl does not have such
a distinction built in. Second, we need to make sure that for each choice of
consonant or vowel, for each position, we create a string of all four segments.

Turning to more concrete steps, we can define two arrays, one for consonants
and one for vowels. Membership of one of these arrays constitutes defining a
segment as either a consonant or vowel. Combining all possible combinations
can be done with four foreach structures, each nested in the previous one.

Let’s develop these ideas incrementally. The following program defines the
set of consonants as @consonant and the set of vowels as @vowel. It then
prints out all the consonants and then all the vowels:

expmat1.pl

@consonant = ('b','c','d','f','g','h','j','k','l','m',
'n','p','q','r','s','t','v','w','x','y','z');

@vowel = ('a','e','i','o','u');

foreach $c (@consonant) {
print("$c\n");

}
foreach $v (@vowel) {

print("$v\n");
}

To combine these so that every vowel is paired with every consonant, we
need to nest the foreach loops as follows:

expmat2.pl

@consonant = ('b','c','d','f','g','h','j','k','l','m',
'n','p','q','r','s','t','v','w','x','y','z');

@vowel = ('a','e','i','o','u');

foreach $c (@consonant) {
foreach $v (@vowel) {

print("cv\n");
}

}

26 Basics: Control Structures and Variables

Each time a consonant is selected by the outer loop, a new vowel is selected
and both are printed. The next consonant is selected and the process is re-
peated. Creating all possible CVCV shapes then involves nesting four foreach-
structures. The following program exemplifies this:

expmat3.pl

@consonant = ('b','c','d','f','g','h','j','k','l','m',
'n','p','q','r','s','t','v','w','x','y','z');

@vowel = ('a','e','i','o','u');

foreach $c1 (@consonant) {
foreach $v1 (@vowel) {

foreach $c2 (@consonant) {
foreach $v2 (@vowel) {

print("$c1$v1$c2$v2\n");
}

}
}

}

This program will print out the 11025 (= 21 · 5 · 21 · 5) different possibilities.
Each time a selection is made by one of the foreach loops, the next inner loop
iterates through all its choices. So, for example, when $c1 is set to “m”, $v1
will iterate through all the vowel possibilities, and so on and so on and so on.9

The same sort of thing can of course be done with words and sentences,
and this is left as an exercise.

As a second example, consider the problem of determining the prime num-
bers.10 Imagine that we wish to know the prime numbers between 1 and
some upper bound, say 100.

Thinking about this logically, we need to go through the numbers one by
one. For each number, we need to check whether it is divisible by something
between 1 and itself. If it is so divisible, then it is not prime. Here is a
program that does this:

primes.pl

$max = 100;
for ($i = 2; $i <= $max; $i++) {

$isprime = 0;
for ($j = 2; $j < $i and $isprime != 1; $j++) {

$isprime = 1 if ($i % $j == 0);
}
print("$i\n") if ($isprime == 0);

}

Basics: Control Structures and Variables 27

The program makes use of a nested for-structure. The outer for iterates over
the integers between 2 and the defined maximum $max. The inner for iterates
over all the integers smaller than the current one ($i). For each integer it
checks, the program sets the value of a variable $isprime to 0 (or false). If the
current number is divisible by something other than itself or one, the value of
$isprime is set to 1 (or true). This is done using the modulus operator %,
which returns the remainder of a division operation. The $isprime variable is
used in two places. First, it is used to control the iteration of the internal for
loop. For the iteration to continue, the value of $j must be below $i and the
value of $isprime must be 0 (that is, false). Once the inner iteration ends, the
value of $isprime is inspected to see if the current value of $i is prime.

The preceding example was rather nonlinguistic, but similar techniques
can be required for linguistic purposes. Imagine that we have more specific
restrictions on the experimental materials we need in the example preceding;
that is, the vowels must be identical, but the consonants must be different.
Thus we would be interested in forms such as poko and kopo, but not popo
or poku. This can be done by making two changes to our earlier program.
First, we only use three nested foreach loops, as the vowels are the same.
Second, we add an if-structure to test if the two consonants are identical. If
they are not, the form is printed:

expmat4.pl

@consonant = ('b','c','d','f','g','h','j','k','l','m',
'n','p','q','r','s','t','v','w','x','y','z');

@vowel = ('a','e','i','o','u');

foreach $c1 (@consonant) {
foreach $v (@vowel) {

foreach $c2 (@consonant) {
print("$c1$v$c2$v\n") if ($c1 ne $c2);

}
}

}

This is simpler than expmat3.pl in that it has only three foreach loops. It is
more complex, however, in that like the primes.pl program, it tests for some
condition before printing.

3.7 Summary

This chapter has treated the syntactic heart of the Perl language: control
structures and variables.

28 Basics: Control Structures and Variables

Variables and arrays allow you to store data for later manipulation. Perl is
quite convenient on this score for several reasons. First, variables and arrays
are all marked with preceding special characters. Hence, in any bit of code,
you can always identify what the variables and arrays are. Second, variables
can just be invoked wherever you need them (unlike in other programming
languages where variables must be declared in advance). Finally, variables
and arrays are all of one type; there is no difference between variables and
arrays that hold strings, or characters, or numbers.

This chapter has also treated the principal control structures of Perl. These
are the essence of any program. They allow one to supercede the normal
top-down flow of control, allowing for looping, branching, and conditional
application of various sorts.

3.8 Exercises

1. Write a program that makes crucial use of all of the control structures
we’ve covered in this chapter (if, while, for, and foreach).

2. Write a program that will generate every noun–verb–noun sentence where
the nouns are John, Mary, and Joe, and the verbs are sees, meets, and
greets.

3. Revise the second program above to include people and linguists as nouns
and see, meet, and greet as verbs. Make sure your program handles number
agreement with the subject; for example, people see, but Mary sees.

4. The primes.pl program is extremely inefficient. Add code so that you can
keep track of how long it takes for the program to compute primes in
different ranges. (The numbers you get may not be very useful if you are
working on a machine that is swapping jobs, such as a large multi-user
system.)

Notes

1 In this and following examples, I give the name of the program in parentheses
before the code. This is not part of the program and should not go in the program
file. This is intended as a convenience to identify programs on the website.

2 If you’re not familiar with it, % is the modulus operator; it returns the remainder
of dividing the first of its operands by the second.

3 What I am calling a variable here is called a scalar in the technical Perl literature.
I use the more intuitive term here.

4 The getlogin() command behaves as expected under Unix, but may produce differ-
ing results under different operating systems. For example, it doesn’t work at all
under Windows.

Basics: Control Structures and Variables 29

5 It is an extremely common error to mix these up. Be careful!
6 The only common control structure that is missing in Perl is the switch structure of

C. However, this is readily paraphrased with if/elsif.
7 Perl also includes “high precedence” versions of these as well: && (and) and ||

(or). “Precedence” controls how expressions with multiple operators and no paren-
theses are interpreted.

8 There are a number of other control structures that Perl provides that are also
redundant; for example, until, unless, and ?:. Unlike for, these do not have virtues
that offset the memory burden of learning them for our purposes, and so I leave
them aside.

9 Under DOS or Unix, the output of this program can be sent to a file with the
redirection operator on the command line; for example, perl expmat1.pl > results.txt.
File output is treated more generally in chapter 4.

10 A prime number is a number divisible only by itself and 1; for example, 1, 2, 3, 5,
7, 11, and so on.

30 Input and Output

Chapter 4

Input and Output

The programs we have written so far have been of limited utility because we
haven’t really had sufficient options to get data into our programs. In this
chapter, I present the principal methods for reading and writing data: input
and output (IO).

4.1 Overview

There are really only two ways to get data into your programs. One is to type
it in, and the other is to read it in from some existing file. You can type the
data in right when you start your program; this is called command-line input.
This is appropriate if not much data is required or if the data are needed
before the program begins to run. For example, if you had a program
printword.pl that printed out a single word, say apple, you might enter that
word on the command line; for example, perl printword.pl apple.

The other kind of typed input is prompted input. In this case, the user
enters data while the program is running. This is appropriate in several cir-
cumstances. First, the amount of data should be relatively small. Second, this
is appropriate if the precise data aren’t known until the program has been
running. Finally, this is appropriate if the person who starts the program isn’t
necessarily the person who will be interacting with it.

The other kind of input is file input, where data is read in from a file. This
is always a preferred method, since it saves the user the effort of typing the
data. Huge amounts of data can be read in in this way, so typing the data in
by hand may be a virtually impossible alternative.

The computer can return data in several ways: to the screen or to a file.
Output to the screen is appropriate where there isn’t very much output,
or where the output is critical to some prompted input the user might

Input and Output 31

subsequently provide. File output is appropriate where there is a lot of out-
put and where the user is likely to want to keep a record of the output.

Under Unix or Windows/DOS, the distinction may seem a minor one.
After all, screen output can always be redirected to a file; for example, perl
myprog.pl > myfile.txt. This would print the output of myprog.pl into a file
myfile.txt. There are several reasons to reject this as a general solution. First,
this option is not available on a Mac.1 Second, this does not allow us to write
different bits of data to different files.

To summarize, the principal IO choices are given in the following table:

Input Output

Command line ✓

Prompt ✓ ✓

File ✓ ✓

We’ve actually already treated output to the prompt; this is what the print()
command does.2 In the remainder of this chapter, I’ll introduce all the others.
As usual, IO is a huge topic, but we will keep to only those aspects likely to
be of use to the language researcher.

4.2 The Command Line

Command-line input is quite easy in Perl. Any number of arguments can be
entered on the command line after the name of your program. For example,
to enter the number 10 as a command-line argument to a program myprog.pl,
you would type perl myprog.pl 10.

When your program begins, all its command-line arguments are automatic-
ally available in an array called @ARGV. The first command-line argument is
$ARGV[0], the second $ARGV[1], and so on. As an example, the following
program simply prints out its first command-line argument:

cmdln1.pl

print("$ARGV[0]\n");

We can also accommodate the situation in which any number of command-
line arguments may be entered. Defining any array, say @myarray, automatic-
ally defines a variable $#myarray that keeps track of the last index of the
corresponding array. For example, if we were to create an array @thearray

32 Input and Output

and put three integers in it, then the variable $#thearray would have the
value 2.3 If the array has no elements in it, then the associated variable has
the value −1. Using this general notion, the following program prints out all
its command-line arguments:

cmdln2.pl

if ($#ARGV == -1) {
print("No command-line arguments!\n");

} else {
for ($j = 0; $j <= $#ARGV; $j++) {

print("$ARGV[$j]\n");
}

}

Here’s a similar program that prints out the sum of its command-line
arguments:

cmdln3.pl

$total = 0;
for ($i = 0; $i <= $#ARGV; $i++) {

$total = $total + $ARGV[$i];
}
print("Total: $total\n");

4.3 Prompt Input

Prompt input requires several things: handles, reading, and chomping. For
files and prompt input and output, Perl makes use of handles. A handle is a
name for a particular input or output path. Perl predefines a certain number
of these, but new ones can also be defined by the programmer.

Perl predefines the three standard IO paths: standard input, standard out-
put, and standard error. The handle for standard input is STDIN.4 STDIN is
where Perl reads input from. (I’ll show below how to do this.) If you want to
collect prompt input at some point in your program, you will issue a com-
mand for Perl to read from STDIN at that point.

I return to standard output and standard error below. Let’s now consider
how to read from a handle. Putting the handle in angled brackets reads one
record from a handle. A record is predefined as a line.5 Thus <STDIN> reads
a line from the prompt. The following program shows how this can be used
to set the value of a variable:

Input and Output 33

promptex1.pl

print("Enter a number: ");
$num = <STDIN>;
print("You entered $num");

The program prints an instruction to the user to enter a number. The user
then enters a number followed by a return. The program prints back the
number with a brief message, producing interchanges such as the following:

> perl promptex1.pl
Enter a number: 10
You entered 10
>

You’ll note that no return was required at the end of the message printed.
The <STDIN> command reads in the number and the terminating return and,
in this case, assigns it to $num. While this turned out to be convenient for
printing the variable in the case at hand, this return would make it impossible
to do math, for example, on the number entered. To eliminate the return, we
can use the chomp() command:

promptex2.pl

print("Enter a number: ");
$num = <STDIN>;
chomp($num);
print("You entered $num\n");

The chomp() command removes a string-final return.6 Now, of course, we
must put an explicit return in the final print() statement. Otherwise, the
subsequent cursor would appear on the same line.

Here’s a second example of prompt input. This program takes a series of
lines typed at the prompt, saves them to an array, and then prints them all
back at the prompt, along with line numbers:

promptex3.pl

$i = 0;
print("Enter text below and a blank line to end.\n");
while ((length($line = <STDIN>)) > 1) {

$lines[$i++] = $line;
}

34 Input and Output

$i = 1;
foreach $line (@lines) {

print("$i:\t$line");
$i++;

}

The program uses several new features, so let’s go through the code slowly.
The first command sets the value of $i to 0. (This is actually unnecessary, as
Perl will automatically assign 0 to an uninitialized variable used in a numer-
ical context.) The second command simply prints out the instructions for the
user. The user will type a series of lines, each one terminated by a return. To
signal an end to the input, the user enters a blank line. The program will read
each of these lines into an array. It stops doing this when the current line has
nothing in it.

Recall that reading from STDIN, results in a line terminated by a return.
Thus an empty line actually has a single character in it: the terminating
return. To check for the exit condition, the program must check that the line
has more than one character. If it does, then the line is added to the buffer; if
it doesn’t, the program prints out whatever the contents of the array are at
that point.

The next part of the program contains a while-structure for checking that
the line has more than a return in it. The while-test here is rather complic-
ated, as reflected in the nested parentheses. The string typed at the prompt is
assigned to the variable $line. This assignment actually returns a value, the
value assigned. That value is then passed to the function length(), which
returns the length of its string argument. If the string is longer than one, if it
is more than just a return, the while-condition is evaluated as true. The body
of the while-structure assigns the value of $line to the current element of an
array @lines. The current element is held in an integer variable $i, which is
augmented immediately after it is used to assign the current element of the
array.

When the user enters a blank line, the while-condition evaluates as false,
and the structure is exited. The following foreach-structure is used to print
out the contents of the array one by one. Each line of the array is prefixed by
a counter and a tab (indicated in strings with the special character \t).

4.4 Prompt Output

We have actually already treated prompt output, presenting output at the
prompt. This is done with the command print(). In point of fact, the print()
command is an abbreviation for the command print(STDOUT), which prints
its string output to the predefined “standard output” path. (This is generally

Input and Output 35

defined as the screen.) The following program is thus identical to the preced-
ing one:

promptex4.pl

print(STDOUT "Enter text below and a blank line to end.\n");
while ((length($line = <STDIN>)) > 1) {

$lines[$i++] = $line;
}
$i = 1;
foreach $line (@lines) {

print(STDOUT "$i:\t$line");
$i++;

}

Notice how there is not a comma between STDOUT and the string argument
to print(). When a function or command takes two arguments, they are gen-
erally separated by a comma, but not in this case.7 This is a very common
error, so try to avoid it.

Recall that there is another predefined output stream: STDERR, or “stand-
ard error”. The print() command can also direct output to STDERR. The
preceding program can thus be revised as follows with no apparent difference
in behavior:

promptex5.pl

print(STDERR "Enter text below and a blank line to end.\n");
while ((length($line = <STDIN>)) > 1) {

$lines[$i++] = $line;
}
$i = 1;
foreach $line (@lines) {

print(STDERR "$i:\t$line");
$i++;

}

However, the two last programs actually do have different behavior
when we try to redirect the output of the programs to a file. Under Unix or in
the DOS window, this is done by following the program name (and any
command-line arguments) with > followed by the name of a file; for example,
perl myprog.pl > myfile.txt. If output has been printed using STDOUT, then
all the output from the program will end up in the file myfile.txt. If output
has been printed using STDERR, then none of it will end up in the file.

36 Input and Output

In point of fact, what we want is for only the output of the foreach loop to
end up in the file. The instructions to the user should not go to the file. To get
this result, we use STDERR for the instructions to the user and STDOUT for
the program’s later output (since, as we already noted, STDOUT is the default
case, we can leave any explicit handle out of the final print statement):

promptex6.pl

print(STDERR "Enter text below and a blank line to end.\n");
while ((length($line = <STDIN>)) > 1) {

$lines[$i++] = $line;
}
$i = 1;
foreach $line (@lines) {

print("$i:\t$line");
$i++;

}

4.5 File IO

Let’s now consider explicit file IO. The basic idea here is to read from and to
files. This is a little more complex and a little more dangerous than the other
IO cases we’ve considered. The danger is that you might accidentally over-
write a file with something important in it. Therefore I strongly recommend
that you do all your file IO practicing in a directory with nothing important
in it.

Both file input and file output require pairing a file with a file handle, read-
ing to or from that handle, and then closing it. You pair a file handle with a
file with the open() command. This command takes two arguments: a file handle,
and a string representing a file. For example, to read from a file myfile.txt,
you would first pair it with a file handle FILE as follows: open(FILE, myfile.txt);.

It is very easy to make a mistake here. You might be in the wrong direct-
ory, the file you are trying to read might not be a readable file, and so on. If
one of these things should happen, it is very difficult to diagnose. Your
program will simply do nothing and you will bang your head against a wall
until you remember that the file is actually named thefile.txt or some such.

To take care of this, you should add a test to the statement including the
open() function. Typically, Perl programmers use an or structure with the
die() command; for example, open(FILE, myfile.txt) or die("uhoh!\n");. If
the open() command fails to open the file for any number of reasons, it will
return false. This causes the statement after the or to be executed. The die()
function prints out a string to the screen and then terminates the program

Input and Output 37

immediately, without going through any other statements in the program. In
this case, it prints out the uninformative message “uhoh!”.8

Once a file is opened, once it is paired with a file handle, it can be read
from. When Perl exits, it closes any open files, but it is a good habit to close
these yourself. The reason you should is that when you write more complex
programs, you may have any number of open file handles at the same time, and
this can cause confusion on your part or problems for the Perl interpreter.

Closing a file is quite easy; you simply use the close() function. For example,
to continue the example above, you would close the file as follows:

open(FILE, "myfile.txt") or die("uhoh!\n");
. . .

close(FILE);

This, of course, is not very useful in itself. We must now read from the file.
We do this with angled brackets again. However, here, since a file can con-
tain any number of lines, we must make provision for how to stop reading
when the file has no more lines. The usual way to do this is with a while-
loop. A very simple program exemplifying this follows. This program takes a
filename as a command-line argument – for example, perl filex1.pl myfile.txt
– and then prints the contents of that file to the screen line by line:

fileex1.pl

open(F, $ARGV[0]) or die("File couldn't be opened!\n");

while ($line = <F>) {
print($line);

}

close(F);

Here the filename is given by $ARGV[0] and taken from the command line.
The open() command includes an or-die clause to take care of errors. The
program is also terminated by a close() command to close the file.

The body of the program is a while-structure. The while-test itself reads a
line of the file and assigns it to a variable $line. If this assignment succeeds –
if the file still has lines in it to read – then the body of the loop is executed. If
the while-test fails because there are no more lines in the file, then the body of
the loop is exited. The body of the while-loop simply prints out the contents
of $line. (Notice how the print() command does not include a \n since each
line of the file is already terminated by return.)

Here’s a second example. This program simply counts the number of lines
and number of characters in a file using the length() command:

38 Input and Output

fileex2.pl

open(F, $ARGV[0]) or die("File couldn't be opened!\n");

while ($line = <F>) {
$chars += length($line);
$lines++;

}

close(F);

print("lines: $lines, characters: $chars\n");

This program uses the same open(), close(), and while-structure. Inside the
while-loop there are two statements. The first takes the length of the current
line – calculated with length($line) – and adds it to a variable $chars. We use
the operator +=, which takes the initial value of $chars, adds it to length
$line, and then puts the total in $chars. This is thus shorthand for $chars =
$chars + length($line);.9 The second statement simply adds one to the vari-
able $lines every time the loop is iterated; that is, once for each line of the file.
Finally, the contents of the two counters are printed to the screen.

Let’s now consider file output. File output is actually quite simple given
what we know so far. First, a file must be paired with a file handle. Second,
we use that file handle to direct output to the file. Finally, we close the file.
The only new aspect is that we must specify that we are writing to a file.
Moreover, we must indicate whether we are creating a new file (or overwriting
an existing file) or whether we are appending to an existing file. This distinction
is indicated in the string argument to open(). If we write to a new file (over-
writing any already existing file with the same name), we would pass open()
a string composed of a filename with a leading >; for example,"> myfile.txt".
On the other hand, if we wanted to append to an existing file, we would pass
open() a filename with a leading >>; for example, ">> myfile.txt".

For example, the program we wrote on page 36 can be rewritten to print
directly to a file. The following program exemplifies this:

fileex3.pl

print(STDERR "Enter text below and a blank line to end.\n");
while ((length($line = <STDIN>)) > 1) {

$lines[$i++] = $line;
}
open(MYFILE, ">$ARGV[0]") or die("can't write to file!\n");
$i = 1;
foreach $line (@lines) {

Input and Output 39

print(MYFILE "$i:\t$line");
$i++;

}
close(MYFILE);

To write the output to a file myfile.txt if the program were called myprog.pl,
you would type the following: perl myprog.pl myfile.txt. Notice how no > is
required on the command line. Here myfile.txt is a command-line argument
to myprog.pl. The program itself handles the redirection to the file.

The code is very similar to the earlier version of the program, except that
we open a file handle MYFILE for output, using the command-line argument.
The print() function uses this file handle in the while-loop to print to the file.
Finally, the file is closed.

Notice that this program overwrites any existing file with the same name.
You can see this by running the program with the same command-line file
argument, but typing different contents each time. Examining the file after
the second run of the program will show that only the material typed during
the second run is in the file. This is true whether the redirection is handled
on the command line, as on page 36, or in the Perl code as above.

If, instead, we want the program to append to an existing file, we can do
that as well, either in Windows or DOS, or in the Perl code. To do this in
Windows or DOS, the promptex5.pl program on page 35 can be invoked like
this: perl myprog.pl >> myfile.txt.

To do this in the Perl code, the program above can be minimally revised as
follows:

fileex4.pl

print(STDERR "Enter text below and a blank line to end.\n");
while ((length($line = <STDIN>)) > 1) {

$lines[$i++] = $line;
}
open(MYFILE, ">> $ARGV[0]") or die("can't write to file!\n");
$i = 1;
foreach $line (@lines) {

print(MYFILE "$i:\t$line");
$i++;

}
close(MYFILE);

The only change here is that the > has been replaced with >>. Now if you
run the program twice with the same command-line argument, it will append
to the file, keeping a cumulative record of each run of the program.

40 Input and Output

This may all seem a little excessive, having several ways to redirect output
to a file, but there are several reasons why we need to be able to do this from
within Perl. First, since there is no command line on a Mac, we do not have
the option of redirecting outside of Perl.10 Second, we may not know the
name of the file we want to redirect to when we start the program and
therefore redirecting in Windows/Unix may not be an option even under
those operating systems.

4.6 Array Operations and Randomizing

To show how we can make use of what we know so far to collect data about
language, we will develop a program for collecting human subjects’ intuitions
about sentences. To do this effectively, though, we need some additional
functions that allow us to randomize materials. This section introduces these.

4.6.1 Array operations

Recall from chapter 3 that arrays allow us to store a set of items in an
indexed list of variables. Perl actually offers a set of functions that allow us
to access and manipulate arrays easily: push(), pop(), shift(), unshift(), and
splice(). As we’ve seen above, arrays are very convenient for storing the lines
read from a file. These functions allow us to manipulate those lines easily.

The push() function adds an element – or list of elements – on the end of
an array. The pop() function performs the complementary operation of re-
moving an element from the end of the array (shortening the array corres-
pondingly). The following simple program uses these to reverse the lines of a
text file:

pushpopex.pl

if ($#ARGV != 0) { die("Enter a file on the command-line\n") }
open(F, $ARGV[0]) or die("File can't be opened\n");
while ($line = <F>) {

push(@lines, $line);
}
close(F);
while ($#lines >= 0) {

print(pop(@lines));
}

First, there is a check to make sure the user enters a command-line argument.
Then, that argument – a filename – is opened for reading. Each line is pushed

Input and Output 41

onto the end of an array @lines. Finally, a while-structure uses pop() to pop
lines off the end of the array and print them.

We can actually do the same thing operating at the beginning of the array.
The shift() function returns the first element from an array, while the unshift()
function adds an element – or list of elements – to the front of the array. The
following program has exactly the same effect as the preceding one:

shiftex.pl

if ($#ARGV != 0) { die("Enter a file on the command-line\n") }
open(F, $ARGV[0]) or die("File can't be opened\n");
while ($line = <F>) {

unshift(@lines, $line);
}
close(F);
while ($#lines > = 0) {

print(shift(@lines));
}

Finally, Perl offers one other array function for accessing any element of an
array: splice(). This is an extremely useful function that can be called with
any of one to four arguments:

splice(array, offset, length, list) Removes elements from array starting at
offset for the number of elements specified by length, replacing them by the
elements of the list.

splice(array, offset, length) Removes elements from array starting at offset
for the number of elements specified by length.

splice(array, offset) Truncates the array from offset on.
splice(array) Removes everything in the array.

I exemplify the splice() function in the following section.

4.6.2 Randomizing

Perl provides the rand() function to generate random numbers. When in-
voked without an argument, it returns a random decimal between 0 and 1.
When invoked with a (numerical) argument, it returns a decimal between 0
and the argument. Here is a simple program that returns however many
random numbers the user requires in whatever range the user requires. The
number of random numbers required is given as the first command-line argu-
ment, and the range of those numbers is given by the second:

42 Input and Output

ranex1.pl

$howmany = $ARGV[0];
$howbig = $ARGV[1];
for ($i = 0; $i < $howmany; $i++) {

$r = rand($howbig);
print("$i\t$r\n");

}

The $howmany variable stores the number of random numbers required; the
$howbig variable stores the range of the random numbers. The for-loop
keeps track of the number of random numbers generated.

In conjunction with the splice() function, we can use rand() to randomize
an array of elements. The basic logic is as follows. Our program will start
with an array of elements. Using rand(), we will randomly select one of those
elements (using splice()) and push it onto the end of a second different array
(using push() of course). We continue this until there are no more elements in
the first array and all of them have been pushed onto the end of the second:

ranex2.pl

@digits = 0..9;
print("@digits\n");
while ($#digits > -1) {

$r = rand($#digits+1);
$digit = splice(@digits, $r, 1);
push(@newdigits, $digit);

}
print("@newdigits\n");

This program exemplifies several new features, so let’s go through it line by
line. The first line creates an array @digits composed of the integers one
through nine. Recall that the .. operator defines a list composed of the ele-
ments delimited by its two arguments.11 The second statement prints out the
elements of the array, confirming that the assignment did, in fact, work.

Next, there is a while-loop. This forces the statements within it to iterate
until there are no more elements in the @digits array. Recall that the variable
$#digits holds the last index of the array.

There are three statements in the while-loop. The first collects a random
number between 0 and the last index of @digits, plus one. Thus, if there are
eight elements in the array, the first statement will return a number between
0 and 9. The second splices off a random element from @digits and assigns it
to $digit. This works because the splice() command coerces the number returned

Input and Output 43

by rand() into an integer. Thus, if rand() were to generate 6.8, splice() would
interpret it as 6.12 Finally, $digit is pushed on the end of @newdigits.

4.7 Collecting Experimental Data

Let’s now show how we can use what we’ve learned to write a little program
to collect experimental data. The program is called expprog.pl, and it has a
number of parts. It is the largest program we have constructed so far, but
each bit is actually composed of familiar material.

The program will present stimuli one by one, collecting typed responses to
each. The results are saved to a file at the end of the program. I’ll go over the
program in sections. First, there are a set of commands to initialize the pro-
gram. The first command is a new one. The system() command executes the
following command from the relevant operating system. In the example at
hand, the cls command is an MS-DOS command to clear the screen.13 The
next two commands simply read the command-line arguments into two
mnemonically named variables. The first holds the name of the file that the
experimental materials are stored in, while the second holds the name of the
file that the results will be appended to:

expprog.pl

system(cls);
$materials = $ARGV[0];
$results = $ARGV[1];
. . .

The next bit of code reads the experimental materials into an array @mats,
using push(). It also creates an array @indices which holds just a sequence of
integers mirroring the indices of the materials in the @mats array. This will
be used to keep track of the original order of the items in the material file:

. . .
open(MATS, $materials) or die("Can't open materials file!\n");
$i = 0;
while ($line = <MATS>) {

chomp($line);
push(@mats, $line);
push(@indices, $i);
$i++;

}
close(MATS);
. . .

44 Input and Output

The next bit of code randomizes the materials into a new array @newmats.
This bit is essentially identical to the ranex2.pl randomization program on
page 42.

This snippet also keeps track of the original order of the materials in a
separate array @newindices. We will use that array as a way of storing which
item gets which response:

. . .
while ($#mats > -1) {

$r = rand($#mats+1);
$item = splice(@mats, $r, 1);
$index = splice(@indices, $r, 1);
push(@newmats, $item);
push(@newindices, $index);

}
. . .

The next bit of code presents the materials, collects the responses, and
saves the results to the results file. First, instructions are printed out. Then the
results file is opened for appending results. There is then a for-loop to iterate
through the randomized materials. Responses are collected and then printed
to the results file:

. . .
print("For each of the following sentences, indicate
whether you find it acceptable or not.\n");
open(RES, ">> $results") or die("Can't save results!\n");
for ($i = 0; $i <= $#newmats; $i++) {

print("$newmats[$i] (y/n): ");
$response = <STDIN>;
print(RES "$newindices[$i]\t$newmats[$i]\t$response");

}

close(RES);

Notice how each line printed to the results file includes the index from the
@newindices array. In this way, we know which response goes with which
item.

4.8 Summary

This chapter has covered the basic Perl IO system. We’ve discussed how to
read from and write to the screen and files. In addition, we’ve discussed how

Input and Output 45

to use command-line arguments. We’ve made extensive use of arrays as a
way of storing information read from input, and this has necessitated some
additional commands for manipulating arrays.

We have concluded with a program for collecting experimental language
data that makes use of many of the ideas developed in the chapter.

4.9 Exercises

1. Write a program that does simple word translations from one language
to another for some limited set of words. The user enters a word at an
appropriate prompt and the program returns the appropriate translation
at the prompt.

2. Write a program that prints out the even-numbered lines of a file in
reverse order.

3. Write a program that uses all the IO options we’ve discussed.
4. Revise expprog.pl to collect reaction times.

Notes

1 Though it is available as of MacOS 10.
2 Traditionally, this is referred to as console output.
3 Don’t forget that the first index of an array is 0!
4 The predefined handles are all capitalized, and this is an extremely useful habit to

follow when you define your own handles.
5 but this can be changed by resetting the appropriate special variable; see appendix

C.
6 In older versions of Perl, this command was unavailable. The older command,

which you still see in very old code, is chop(). This removes whatever the final
character of the string is.

7 Technically, the handle is not an argument to the function, and that’s why there is
no comma.

8 More specific information about the nature of the error can be obtained if the
predefined variable $! is given as an argument to die(). This will return a number
indicating the specific error.

9 There are analogous shorthand operators for many other functions; for example,
*=, -=, /=, .=, and so on.

10 Macs do have a command line as of MacOS 10.
11 This will, of course, only work if the arguments are part of a naturally ordered

ascending sequence.
12 Notice that the decimal isn’t rounded off, but stripped off or ignored.
13 If you are running this program under UNIX, you must replace cls with clear.

46 Subroutines and Modules

Chapter 5

Subroutines and Modules

We’ve now learned enough to make larger and really quite useful programs.
However, we don’t yet have enough to do that elegantly. In this chapter, I
show how to break your programs up into useful and reusable components.

5.1 Japhs

One very interesting property of Perl is exemplified by the japh phenomenon.
When the Perl language was just being introduced, there was a lot of activity
on the relevant usenet groups. It got to be something of a joke for people
posting to these groups on Perl to sign themselves as “just another Perl
hacker”. For some reason, people eventually started signing their emails with
little Perl programs that would print out the “just another Perl hacker” phrase
when run in Perl. Eventually, this escalated into people trying to outdo each
other in writing the most convoluted Perl program to produce this phrase.
Such programs are called japhs (for Just Another Perl Hacker).

Here’s an example of a particularly obscure japh:

$_ = <<EOF; s#[-+]\d+#pack('C',$c+=$&)#eg; print;
+74+43-2+1-84+65+13+1+5-12-3+13-82+48+21+13-6-76+72-7+2+8-6+13-70
EOF

This particular example is due to Randal Schwartz, a now well-known au-
thor of numerous books on Perl.

The point of the example is that it is surprisingly easy to write completely
unreadable code in Perl. Even a seasoned Perl professional would have diffi-
culty in figuring out what the example above is supposed to do.

Subroutines and Modules 47

The fact that it is so easy to do this may have lots of causes. Most likely, it
has to do with how easy the Perl language is to use. In any case, the upshot is
that while it is always a good idea to write your programs in a readable
fashion that makes it possible to reconstruct later what the program is sup-
posed to do, this is even more crucial in Perl, where it is so easy to write
mysterious-looking code.

5.2 Style and Comments

As you write larger and more complex programs, it becomes more and more
essential that you write clear readable code. It is quite easy in Perl to write
programs that simply look like raving gibberish – even to experienced Perl
programmers! If you want your programs to be easy to maintain, easy to
revise, easy to share with colleagues, then you should work at developing
good programming style.

In this section, I make five specific recommendations for good program-
ming style:1

• line breaks
• spaces and indentation
• comments
• mnemonic variable names
• avoiding command condensation

Let’s go through these one by one.
The first thing is to make use of line breaks judiciously. Recall the ranex2.pl

randomization program on page 42. The following program is formatted so
that it breaks lines in completely different places, yet works just as well:

ranwrong1.pl

@digits =
0..9; print(
"@digits\n"); while
($#digits > -1) {$r = rand(
$#digits+1); $digit
= splice(@digits,
$r, 1); push(@newdigits, $digit);
} print("@newdigits\n");

Perl doesn’t care where you break lines (except in strings); it can interpret
this code just as easily as it interprets the earlier version.

48 Subroutines and Modules

For the human reader, though, this latter example is gibberish. It’s ex-
tremely difficult to interpret. It’s much easier to make errors when working
with such illogically formatted code. Therefore, use line breaks to help make
sense of your code.

Another thing to do is to make use of spaces and tabs appropriately.
Again, Perl doesn’t care how many spaces separate terms (except in strings).
So these should be used judiciously. In addition, it is extremely helpful to use
tabs to make program structure clear. For example, in the examples given so
far, we have used tabs to show control structures. Again, here is a revision of
the randomizing program that works just as well as the original, yet uses tabs
in a completely unhelpful way:

ranwrong2.pl

@digits = 0..9;
print("@digits\n");

while ($#digits > -1) {
$r = rand($#digits+1);

$digit = splice(@digits, $r, 1);
push(@newdigits, $digit);

}
print("@newdigits\n");

Here I’ve simply indented every other line, and the result is far less interpret-
able than the original.

Perl also allows for comments, lines of text that can be inserted in a
program that are not interpreted by Perl, but that serve to remind the pro-
grammer of salient aspects of the code. Comments in Perl are indicated with
and go to the end of the line.2 Here is yet another version of the randomizer
program, this time with extensive comments:

ran-commented.pl

#randomization demo
@digits = 0..9; #creates array of 10 numbers
print("@digits\n");
#loops over the @digits array
while ($#digits > -1) {

#gets random number
$r = rand($#digits+1);
#pulls out random array element
$digit = splice(@digits, $r, 1);

Subroutines and Modules 49

#puts it in the new array
push(@newdigits, $digit);

}
print("@newdigits\n");

The comments here are probably excessive, but serve to illustrate the syntax
of Perl comments. Notice how comments can occur on their own line or on
the right side of a line with code on it.

Another very important aspect of good style is using mnemonic variable
names. For example, we can once again take our randomizer program and
replace all the variables with very unintuitive variable names:

ranwrong3.pl

@a = 0..9;
print("@a\n");
while ($#a > -1) {

$b = rand($#a+1);
$c = splice(@a, $b, 1);
push(@d, $c);

}
print("@d\n");

Here the names of the variables give no clue as to what they are used for.
This makes it that much harder to figure out what the code is supposed to be
doing, and that much easier to make mistakes. For example, should the last
$c actually be $d?

Finally, it is extremely important to avoid what I’ll term command con-
densation. This is when you collapse multiple commands into a single state-
ment. Once again, this can be exemplified with a revision of the randomizer
program:

ranwrong4.pl

@digits = 0..9;
print("@digits\n");
while ($#digits > -1) {

push(@newdigits, splice(@digits, rand($#digits+1), 1));
}
print("@newdigits\n");

Here, we have collapsed the generation of the random number, splicing out
the respective element from the first array, and pushing it onto the new array

50 Subroutines and Modules

into a single statement. While this is clearly more economical in terms of
space on the page, it results in far less clarity and should be avoided.

There are actually a number of other aspects to good programming style,
but they involve aspects of Perl that we haven’t treated yet. As we learn more
about the language, I will point out places where programming style and
clarity are most important.

5.3 The Anonymous Variables

One major threat to writing easy-to-read programs is anonymous variables.
They are incredibly convenient, and virtually unavoidable when we discuss
subroutines (in the next section). In addition, they are quite common in the
code of experienced programmers, so if you ever hope to make use of other
people’s code, you need to understand them. In the interests of clarity, I will
avoid them whenever possible.

Perl provides for a number of predefined special variables. Typically, they
are composed of a $ followed by some punctuation mark. For example, the
special variable $] holds the version number of the Perl interpreter. The
following short program thus prints out the version of your Perl interpreter:

specex1.pl

print("version: $]\n");

This is only one of many. Many more – though not all! – are summarized in
appendix C.

In this section, we discuss the special variable $_, the anonymous variable.
Many (but not all!) functions in Perl that take an argument can be used
without an argument. In that case, they automatically take $_ as their argu-
ment. Consider the following brief example:

anonex1.pl

open(F, $ARGV[0]) or die("Can't open file!\n");
while (<F>) {

print();
}
close(F);

This program simply prints the contents of a file to the screen. It does so by
making use of the anonymous variable $_. Notice that when the file handle F

Subroutines and Modules 51

is read from with <F>, it is not explicitly assigned to any variable. In addi-
tion, the function print() does not have an argument. In both cases, Perl
automatically inserts the anonymous variable $_. Thus, the above program is
automatically converted into the following:

anonex2.pl

open(F, $ARGV[0]) or die("Can't open file!\n");
while ($_ = <F>) {

print($_);
}
close(F);

In fact, you can enter and run the second program as is, but that would
certainly detract from the utility of the anonymous variable. You would get
the same functionality by replacing $_ with some named variable of your
own; for example, $myLine. The value of $_ lies in the fact that it can be left
out, that Perl automatically supplies it in certain contexts when an argument
is required.

Most functions that take a single argument can default to the anonymous
variable. In addition, as we’ve seen, reading from a file handle in a while-loop
defaults to the anonymous variable as well. The pattern-matching operators
treated in the next two chapters also default to the anonymous variable.

The last place it can be used is in foreach structures. Recall our first exam-
ple of foreach on page 24, repeated below:

@verbs = ('run', 'jump', 'hit');
foreach $verb (@verbs) {

print("$verb\n");
}

Very nearly the same functionality can be achieved with the anonymous
variable, as follows:

anonex3.pl

@verbs = ('run', 'jump', 'hit');
foreach (@verbs) {

print();
}

The only difference here is that the three verbs are printed on the same line
with no spaces between them. The anonymous variable is interpolated after
foreach, and after print(). The simplest way to print a return after each item,

52 Subroutines and Modules

with minimal redundancy, and still making use of the anonymous variable,
would be to actually include the anonymous variable overtly in the print()
statement, as follows:

anonex4.pl

@verbs = ('run', 'jump', 'hit');
foreach (@verbs) {

print("$_ \n");
}

Here, we are forced to use the anonymous variable overtly in the print()
statement to get the return after each item. Notice though that we still don’t
need to use it overtly after the foreach.

The anonymous variable is an extremely convenient feature of Perl, but
you should use it cautiously at the early stages. It is quite easy to generate
very opaque code with it. Our goal at this stage is good workable code, not
“maximally condensed” code.

5.4 Subroutines

Subroutines are an essential part of substantive programming. The basic idea
is that reusable bits of code can be set off from the rest of the program and
invoked with a simple command. Here’s a rather simple example. Recall that
to generate a new line at the end of a print() statement, we must terminate the
print statement with \n, as in the program above. If we have a lot of print()
statements, however, this can get tedious. The following program includes a
separate subroutine to print a return at the end of each line:

subex1.pl

@verbs = ('run', 'jump', 'hit');
foreach (@verbs) {

print();
pn();

}

sub pn {
print("\n");

}

Here’s how this works. The command sub defines a subroutine with the name
given, here pn(). The commands executed by this subroutine are given in the

Subroutines and Modules 53

subsequent block, marked with curly braces. The subroutine is then invoked
just like any other command.

Notice that the subroutine definition does not have to precede its use. That
is, we can invoke the subroutine in the fourth line of the program even
though it isn’t defined until later in the program:

subex2.pl

sub pn {
print("\n");

}

@verbs = ('run', 'jump', 'hit');
foreach (@verbs) {

print();
pn();

}

The examples given so far don’t really show the full utility of subroutines.
Where they really shine is when they provide some substantial savings, where
some set of commands recurs more than once in a program and can therefore
be replaced with a defined subroutine. We will see examples of this below.

Another extremely important property of subroutines is that – like primitive
functions – they can return values. The following simple example illustrates:

subex3.pl

print("Enter a number: ");
$number = <STDIN>;
chomp($number);
print(times37());
pn();

sub times37 {
return($number * 37);

}

sub pn {
print("\n");

}

This program makes use of the pn() subroutine as well. In addition, it defines
a new subroutine that calculates the value of $number multiplied by 37. It
does this with the return command, followed by the value to be returned. The

54 Subroutines and Modules

times37() function can be invoked just like any other, except that it returns a
number, and can therefore be used anywhere a number might be used.

Subroutines can return any sort of value. For example, the following pro-
gram exemplifies how a subroutine can return a value appropriate for testing
in an if-structure:

subex4.pl

$num = $ARGV[0];
if (div37()) {

print("Divisible by 37!\n");
} else {

print("Not divisible by 37.\n");
}

sub div37 {
if ($num % 37 == 0) {

return(1);
}
return(0);

}

The subroutine tests if $num is divisible by 37. If it is, the subroutine
returns 1. The return command immediately exits from the subroutine, so the
final statement of the subroutine, return(0);, is only executed if the if-test is
false. We could just as easily add an else clause, but although it is clearer, it
isn’t strictly necessary.

Notice too how the div37() subroutine can be invoked directly in the if-
test. This is because Perl treats 1 as true, and 0 as false.

5.5 Localizing Information

Subroutines can get quite large. Eventually, you will find it necessary to
use variables in your subroutines and it then becomes possible for the vari-
ables in each of your subroutines to conflict. Consider the following larger
program:

subex5.pl

@letters = 'a'..$ARGV[0];
@numbers = 1..$ARGV[1];
printLetters();

Subroutines and Modules 55

sub printLetters {
for ($i = 0; $i < = $#letters; $i++) {

print("$letters[$i]");
printNumbers();
pn();

}
}

sub printNumbers {
for ($j = 0; $j <= $#numbers; $j++) {

print("\t$numbers[$j]");
}

}

sub pn {
print("\n");

}

The program takes two command-line arguments, the first a letter, and the
second a number. For each letter from “a” to the letter given, it prints out a
row with that letter at the left. Each row is composed of a sequence of
numbers from 1 to the number given as the second command-line argument.
This display isn’t very interesting in its own right, but provides a convenient
representation of the looping behavior produced by the two subroutines that
the program defines.

The first subroutine, printLetters(), prints out each letter in the letter se-
quence defined by @letters on its own line. This subroutine calls two others.
One, pn(), simply prints out line breaks. The other, printNumbers() prints out
the sequence of numbers defined by @numbers on the same line.

Both of the subroutines printNumbers() and printLetters() are constructed
using for-structures. Notice that it is essential that the indices used in these
structures be different. The following revision – where the indices are identical
– will not work. It loops infinitely.

subwrong1.pl

@letters = 'a'..$ARGV[0];
@numbers = 1..$ARGV[1];
printLetters();

sub printLetters {
for ($i = 0; $i <= $#letters; $i++) {

print("$letters[$i]");

56 Subroutines and Modules

printNumbers();
pn();

}
}

sub printNumbers {
for ($i = 0; $i <= $#numbers; $i++) {

print("\t$numbers[$i]");
}

}

sub pn {
print("\n");

}

The problem is that the inner loop in the printNumbers() subroutine resets
$i to zero at each iteration of the outer loop (from the printLetters() sub-
routine). Hence, the outer loop will never terminate, because the value of $i
will never reach $letters.

One solution is to make sure that none of the variables conflict (as in
subex6.pl), but this doesn’t solve the problem generally. It requires that you
keep track of all the names of all your variables over your entire program,
however large it might be.

Perl provides a simpler solution, however: scoped variables. Variables can
be defined to exist in a specified domain. This is done with the my() com-
mand, which defines a variable only within the current block (curly braces)
or file. The program above – the one that doesn’t work – can be saved if the
first mention of each $i is an argument of my(), as follows:

subex6.pl

@letters = 'a'..$ARGV[0];
@numbers = 1..$ARGV[1];
printLetters();

sub printLetters {
for (my($i) = 0; $i <= $#letters; $i++) {

print("$letters[$i]");
printNumbers();
pn();

}
}

Subroutines and Modules 57

sub printNumbers {
for (my($i) = 0; $i <= $#numbers; $i++) {

print("\t$numbers[$i]");
}

}

sub pn {
print("\n");

}

What this does is define each variable only within the smallest enclosing
block – here, the two subroutines. This means that the $i in printNumbers() is
now distinct from the $i within printLetters(), and that setting the former to
zero won’t affect the latter.

Now you might be thinking that it would be a simpler matter to simply use
different variables, and in the example at hand, that probably is the simplest
solution. The problem is that as your programs get larger and larger, it becomes
harder and harder to keep track of what variable names you’ve already used
in earlier parts of the program. The my() command avoids this problem.

5.6 Arguments

So far, our subroutines have operated on the variables that are globally avail-
able, but we can invoke our subroutines on specific arguments. This allows
us to control the flow of data in a program more carefully, and makes possible
recursive subroutines.

Arguments can be given to a subroutine the same way they are given to
any other predefined function, either in parentheses or directly following the
subroutine name, separated by commas. These arguments are automatically
put into the predefined array @_. Using these arguments is as simple as
examining this array. The only tricky part is that – like $_ – the @_ array can
be used anonymously. I will demonstrate this below.

Let’s first consider a very simple example. This program is a revision of the
subex3.pl program on page 53 (to focus in on relevant details, the pn() sub-
routine has been eliminated):

subex7.pl

print("Enter a number: ");
$number = <STDIN>;
chomp($number);
print(times37($number), "\n");

58 Subroutines and Modules

sub times37 {
my($num) = $_[0];
return($num * 37);

}

Here, the times37() subroutine is constructed to take an argument. When the
subroutine is invoked, the argument is placed in parentheses after the sub-
routine name. In the subroutine itself, the argument is available as the first
element of the array @_. This is assigned to a local variable which is declared
with the my() command.

Notice too that $num is introduced with my() since $num is only used
within the times37() subroutine.

Note also that @_ is an anonymous variable, like $_. Thus, the following
revision of the above program will also work:

subex8.pl

print("Enter a number: ");
$number = <STDIN>;
chomp($number);

sub times37 {
my($num) = shift();
return($num * 37);

}

print(times37($number), "\n");

Here the local variable $num is assigned the value of the first argument to
times37() with the shift() command. Since shift() is given no argument, it
takes the anonymous array @_ as an argument, shifting the first (and only)
element of the array off, and assigning it to $num.

Subroutines can take multiple arguments as well. The following rather silly
example takes two string arguments and prints out a message tailored to its
arguments:

subex9.pl

sub thank {
my($name) = shift();
my($food) = shift();
print("Dear $name:\nThank you for the $food!\n\n");

}

Subroutines and Modules 59

thank("Joe", "donuts");
thank("Diane", "cookies");

Here, the subroutine thank() is invoked twice with different arguments. It
collects those arguments from the anonymous array @_ by invoking shift()
twice.

It is, of course, also possible to dump the contents of the array as a list.
The following revision of the preceding program exemplifies:

subex10.pl

sub thank {
my ($name, $food) = @_;
print("Dear $name:\nThank you for the $food!\n\n");

}

thank("Joe", "donuts");
thank("Diane", "cookies");

Here the local variables $name and $food are placed in list context, by
placing them in parentheses. The elements of the @_ array are then assigned
one by one to the elements in parentheses.

In fact, it is possible for a subroutine to have an indeterminate number of
arguments, as exemplified in the following program. This program is like the
preceding one, except that it has a slightly different result depending on the
number of arguments it is given:

subex11.pl

sub thank {
my ($name, $food);
if ($#_ == -1) {

$name = "Joe";
$food = "donuts";

} elsif ($#_ == 0) {
$name = shift();
$food = "donuts";

} else {
$name = shift();
$food = shift();
foreach (@_) {

$food = $food . " and " . $_;
}

60 Subroutines and Modules

}
print("Dear $name:\nThank you for the $food!\n\n");

}

thank("Joe", "donuts");
thank("Diane", "cookies");
thank("Puck", "pizza", "apricots", "asparagus");

If the subroutine is invoked with no arguments, it sets $name to “Joe” and
$food to “donuts”, and prints out the same message as before. If it’s given a
single argument, then it takes that argument as $name and sets $food to
“donuts” again. If it’s given two arguments, it sets the variable accordingly.
If it’s given more than two arguments, then it assigns the first to $name and
all the rest to $food as a conjoined list.

It does this with an if-structure, which produces different results depending
on the size of the anonymous array, which is stored, as we expect, in a
variable $#_. Depending on the value of $#_, differing numbers of arguments
are peeled off with shift(). The last case is the most interesting because the
foreach-structure makes use of both the anonymous array @_ and the anony-
mous variable $_. Recall that the values that foreach iterates on are auto-
matically assigned to $_ unless a specific variable name is given.

As a final example of a subroutine, let’s consider an example of recursion,
an example where the subroutine is defined in terms of itself. The particular
example below calculates the factorial of a number (written n!). Recall from
page 22 that the factorial of a number is calculated by multiplying all the
numbers between it and zero together. For example, the factorial of 5 is 5 ×
4 × 3 × 2 × 1 = 120. The factorial of 0 is defined as 1 (0! = 1), and the
factorial of a negative number is undefined:

recur1.pl

my($data) = fac($ARGV[0]);
print("The factorial of $ARGV[0] is $data\n");

sub fac {
my($out);
my($in) = shift();
if ($in < 0) {

$out = "undefined";
} elsif ($in == 0) {

$out = 1;
} else {

Subroutines and Modules 61

$out = $in * fac($in-1);
}
return($out);

}

The body of the program is an if/else structure based on the size of the
argument. If the argument is less than zero, the subroutine returns “un-
defined”. If the number is zero, the subroutine returns 1. The recursive case
occurs when the number is greater than 0. In that case, the subroutine returns
the number multiplied times the result of applying the subroutine to the
number minus one.

For example, if the subroutine is invoked with the number 3, the if-
structure takes us to the recursive case, telling us that fac(3) should return
3 times fac(2). That in turn tells us that fac(2) should return 2 times fac(1).
Again, we are taken to the recursive block of the subroutine, which tells us
that fac(1) should return 1 times fac(0). Finally, the last call to fac() takes us
to a nonrecursive block of the if-structure. The upshot of all this is that 3! is
defined like this: 3! = 3 × 2! = 3 × 2 × 1! = 3 × 2 × 1 × 0! = 3 × 2 × 1 × 1.

5.7 Collecting More Experimental Data

In section 4.7, we developed a program to collect experimental data. In this
section, we revise that program making use of subroutines, using my() to
localize variables where possible.

The following program exemplifies this. Compare it with the original pro-
gram, beginning on page 43. The original program was broken up into con-
ceptual units that were marked simply by spacing in the program. In the
following program, these conceptual units have each been put in separate
subroutines.

In addition, some of the variables declared are only really needed within one
or another of the subroutines; they are not needed outside of the subroutine
they are declared in. In these cases, the relevant variables are now marked
with my().

expprog2.pl

initialize();
readmaterials();
randomizemats();
presentmats();

62 Subroutines and Modules

#does initialization; replace "cls" with "clear" for unix
sub initialize {

system(cls);
$materials = $ARGV[0];
$results = $ARGV[1];

}

#reads materials from file into array
sub readmaterials {

my($line);
open(MATS, $materials) or die("Can't open materials file!\n");
my($i) = 0;
while ($line = <MATS>) {

chomp($line);
push(@mats, $line);
push(@indices, $i);
$i++;

}
close(MATS);

}

#randomizes materials, saving initial indices
sub randomizemats {

my ($r, $item, $index);
while ($#mats > -1) {

$r = rand($#mats+1);
$item = splice(@mats, $r, 1);
$index = splice(@indices, $r, 1);
push(@newmats, $item);
push(@newindices, $index);

}
}

#present materials, saving results
sub presentmats {

my($response);
print("For each of the following sentences, indicate

whether you find it acceptable or not.\n");
open(RES, ">>$results")or die("Can't save results!\n");
for (my($i) = 0; $i <= $#newmats; $i++) {

print("$newmats[$i] (y/n): ");
$response = <STDIN>;

Subroutines and Modules 63

print(RES "$newindices[$i]\t$newmats[$i]\t$response");
}
close(RES);

}

The following table shows which variables need to be shared across which
subroutines and which are local to only one subroutine. The checklists on the
right show which subroutines use which variables:

Variable Local init. read. rand. pres.

$materials No Yes Yes
$results No Yes Yes
$line Yes Yes
$i Yes Yes
@mats No Yes Yes
@indices No Yes Yes
$r Yes Yes
$item Yes Yes
$index Yes Yes
@newmats No Yes Yes
@newindices No Yes Yes
$response Yes Yes
$i Yes Yes

Variables are declared local with my() when they appear in only one sub-
routine. The only exception is $i, which is referred to in readmaterials() and
presentmats(). Note, however, that the value of $i is not carried over between
the subroutines. Instead, presentmats() reinitializes $i to zero at its first invoca-
tion. Since the value of $i doesn’t carry over, these can be treated as distinct
local variables. The my() command allows this.

5.8 Modules

The whole point of subroutines is to separate out reusable bits of code. This
can be much more efficient, for example, when the same command sequence
would otherwise be called again and again. It can also be conceptually super-
ior, when separating your code into separate subroutines makes clearer the
division of labor in your program.

This latter point may sound fairly abstract, but it translates into real-world
benefits. Separating your code into separate subroutines helps make the

64 Subroutines and Modules

different tasks your program is taking care of clearer, and that helps you –
the programmer – to see how best to program those different tasks.

There is, in fact, another level of conceptual separation available in Perl.
So far, we have used subroutines as a way of separating out some sequence
of commands that might otherwise be repeated in some program. What about
the case of some sequence of commands that might otherwise be repeated in
several different programs? Imagine, for example, that you have several differ-
ent programs that each need access to factorials? One possibility is to copy
the fac() subroutine into each of them. This is problematic for two reasons.

First, this is inefficient, as you have to repeat the same bit of code again
and again.

Second, imagine you discover a more efficient way to calculate factorials. If
you did, you would then have to go to each of the programs that uses the
fac() subroutine and change them all separately. This is inefficient and there
is a reasonable chance of error.

Perl modules provide a solution to this problem. The basic idea is that bits
of code can be put in separate files, which are available to any program that
you tell where that file is. Such files are termed modules, and are marked with
the file extension .pm.

Here’s how it works. You put the code that you want access to in a file with
the extension .pm. Second, you put a package declaration at the beginning of
the module file. The package statement takes a single argument which should
match the name of the module file. Third, you make sure that the last line of
the file is a line that returns as true; this is usually done by making the last
line of the module file 1;. Finally, you invoke the module in your program
with the use statement. Let’s revise the subex11.pl program on page 59 as an
example. First, we extract the subroutine thank() and put it in a separate file,
which we call Modex1.pm:

Modex1.pm

package Modex1;

sub thank {
my ($name, $food);
if ($#_== -1) {

$name = "Joe";
$food = "donuts";

} elsif ($#_== 0) {
$name = shift();
$food = "donuts";

} else {
$name = shift();
$food = shift();

Subroutines and Modules 65

foreach (@_) {
$food = $food . " and " . $_;

}
}
print("Dear $name:\nThank you for the $food!\n\n");

}

1;

This file also includes a final line which is guaranteed to return true.
The second file in this program is the one that calls the module file. It

includes all the rest of the original program, aside from the subroutine defini-
tion. In addition, it includes the use statement, which takes the name of the
module file as an argument (without the .pm extension). Finally, anything
called from the Modex1 module must be qualified with the module name,
separated by two colons; for example, Modex1::thank():

modcallex1.pl

use Modex1;

Modex1::thank("Joe", "donuts");
Modex1::thank("Diane", "cookies");
Modex1::thank("Puck", "pizza", "apricots", "asparagus");

This allows us to reuse the thank() subroutine in any program we like. In
fact, as we will see in subsequent sections, we can put whatever we like into
a module; we are not limited to a single subroutine.

5.9 Multidimensional Arrays

The next logical step is to separate our subroutines into separate modules.
This will allow us to write new code to run new types of experiments that
make use of the modules we have written.

To do this, however, we need to make some changes to the subroutines we
have written. In particular, readmaterials(), randomizemats(), and presentmats()
need to be revised so that the array variables they manipulate are passed as argu-
ments, rather than being available globally. There are several ways to do this,
but the simplest is to collapse the two arrays into a single multidimensional
array.3

In section 3.4, we introduced one-dimensional arrays. An array is a
group of variables that have a single name. Each individual variable in the

66 Subroutines and Modules

array is identified with an integer index. Thus we might have a one-
dimensional array @hat with three component variables: $hat[0], $hat[1],
and $hat[2].

A multidimensional array is simply an array of arrays. Each member of the
main array is itself an array. If the array is two-dimensional, then each vari-
able in the multidimensional array would be identified with two indices. The
first index would indicate which subarray the variable is in. The second
index would indicate which variable of the subarray is being referred to. For
example, we could define a two-dimensional array @chair with three subarrays,
each containing two variables. The individual elements would then be re-
ferred to as follows: $chair[0][0], $chair[0][1], $chair[1][0], $chair[1][1],
$chair[2][0], and $chair[2][1]. The logic of a two-dimensional array is per-
haps best seen in a table:

First subarray element Second subarray element

First subarray $chair[0][0] $chair[0][1]
Second subarray $chair[1][0] $chair[1][1]
Third subarray $chair[2][0] $chair[2][1]

Another way to think of a two-dimensional array is to think of it as defining
a plane on which the individual variables are located. Each variable is accessed
in terms of its x,y-coordinates on that plane.4

Multidimensional arrays are extremely handy data structures. They allow
you to assign subgroups to a larger set of data. For example, imagine you
wanted to keep a database of language names, organized in terms of lan-
guage families. This can be readily accomplished with a multidimensional
array. The basic idea is to use the first index of the multidimensional array to
store language families. The second index is used to store individual language
names. Here’s a very simple program that collects the names of language
families, and individual languages. The user is prompted to enter the names
of language families, and then specific language names. Hitting return at
either prompt either moves on to a new language family, or ends the user
input phase of the program. The program then simply iterates through the
multidimensional array printing out each language family, along with the
languages that belong to it.

The logic of the program is straightforward. There are two nested while-
structures for reading in the names of language families and languages re-
spectively. The while-tests test for whether the user has entered a string or
only hit return. Notice how the name of each language family occurs in the
zeroth position of the second index:

Subroutines and Modules 67

languagefamily.pl

print("Language family program\n");

$theprompt = "Enter a language family> ";
$otherprompt = "Enter a specific language> ";
$i = 0;

print($theprompt);

while (($family = <STDIN>) ne "\n") {
chomp($family);
$j = 0;
$family[$i][$j++] = $family;
print($otherprompt);
while (($language = <STDIN>) ne "\n") {

chomp($language);
$family[$i][$j++] = $language;
print($otherprompt);

}
print($theprompt);
$i++;

}

for ($i = 0; $i <= $#family; $i++) {
print("Family:\t$family[$i][0]\n");
for ($j = 1; $j <= $#{$family[$i]}; $j++) {

print("Language:\t$family[$i][$j]\n");
}

}

There are two things to notice about this code. First, notice how the index
maxima for the two indices of @family are represented. For the first index,
the usual syntax applies: $#family. For the second index, we must specify
what the first index is to determine which slice of the array we want to
determine the index maximum of. For example, to determine the maximum
for the second subarray of @family, we use $#{$family[1]}. This may seem a
little convoluted until one notes that each slice of the array can have different
numbers of elements. In other words, the program allows for each language
family to have different numbers of component languages. Hence, we need to
be able to determine an index maximum for any one of them.

Here is the kind of input–output pattern that the program produces (user
input is indicated in bold here):

68 Subroutines and Modules

> perl languagefamily.pl
Language family program
Enter a language family> Italic
Enter a specific language> French
Enter a specific language> Italian
Enter a specific language>
Enter a language family> Germanic
Enter a specific language> English
Enter a specific language> Dutch
Enter a specific language> German
Enter a specific language>
Enter a language family> Athabaskan
Enter a specific language> Navajo
Enter a specific language> Apache
Enter a specific language>
Enter a language family>
Family: Italic
Language: French
Language: Italian
Family: Germanic
Language: English
Language: Dutch
Language: German
Family: Athabaskan
Language: Navajo
Language: Apache
>

5.10 Localizing Variables

We can use multidimensional arrays to localize the variables that the experi-
mental program manipulates. We’ve seen that a subroutine can take multiple
arguments; the problem is that they can return only a single value.5 Several of
the subroutines in expprog2.pl manipulate several variables. Hence, to turn
these into local variables, to turn them into variables that are returned by each
subroutine, we need a mechanism to have several of them returned at once.

In each case, the relevant variables are parallel arrays, arrays that can be
readily compressed into multidimensional arrays. These, in turn, can be passed
from subroutine to subroutine via arguments and return statements. The
following program shows how this is done. I go through it in stages.

The first lines of the program simply call the subsequent subroutines using
@ARGV as arguments. The second call uses the output of each of the various
subroutines as input to the others. The readmaterials() subroutine takes a

Subroutines and Modules 69

filename as an argument and returns an array of items. These items are then
passed as an argument to randomizemats(), which returns a multidimensional
array. That in turn is taken as an argument to presentmats(), which presents
the materials, saving the results in a filename given by its first argument:

expprog3.pl

initialize(@ARGV);
presentmats($ARGV[1],randomizemats(readmaterials($ARGV[0])));
. . .

The first subroutine is initialize(). This clears the screen and checks the
number of arguments given on the command line:

. . .
#does initialization; replace "cls" with "clear" for unix
sub initialize {

my(@args) = @_;
system(cls);
if ($#args != 1) {

die("usage:\tperl expprog3.pl materialsfile resultsfile\n");
}

}
. . .

The next subroutine is readmaterials(). It reads through the materials file
line by line, storing each item in the first slice of a multidimensional array.
The second slice of the array is used for storing the item number. This may
appear to be redundant, as the item numbers stored are minimally different
from the indices used to store them. However, when the materials are
randomized in the next step, these item numbers will be critical in recovering
the original order of the items:

. . .
#reads materials from file into array
sub readmaterials {

my(@mats);
my($line);
my($matsfile) = shift();
open(MATS, $matsfile) or die("Can't open materials file!\n");
my($i) = 0;
while ($line = <MATS>) {

chomp($line);
push(@{$mats[0]}, $line);

70 Subroutines and Modules

push(@{$mats[1]}, $i);
$i++;

}
close(MATS);
return(@mats);

}
. . .

The randomizemats() subroutine randomizes both slices of the multi-
dimensional array @mats. Since both slices of the array are randomized as a
pair, the original position of the element is recoverable from the second
member of each pair. The randomizemats() subroutine returns the multi-
dimensional array with its final return() statement:

. . .
#randomizes materials, saving initial indices
sub randomizemats {

my ($r, $item, $index);
my(@mats) = @_;
my(@newmats);
while ($#{$mats[0]}> -1) {

$r = rand($#{$mats[0]}+1);
$item = splice(@{$mats[0]}, $r, 1);
$index = splice(@{$mats[1]}, $r, 1);
push(@{$newmats[0]}, $item);
push(@{$newmats[1]}, $index);

}
return(@newmats);

}
. . .

Finally, the presentmats() subroutine presents the items one by one, saving
responses, items, and the original item numbers to a file given as its first
argument:

. . .
#present materials, saving results
sub presentmats {

my($response);
my($resfile) = shift();
my(@mats) = @_;
print("For each of the following sentences, indicate

whether you find it acceptable or not.\n");
open(RES, ">>$resfile") or die("Can't save results!\n");

Subroutines and Modules 71

for (my($i) = 0; $i <= $#{$mats[0]}; $i++) {
print("$mats[0][$i] (y/n): ");
$response = <STDIN>;
print(RES "$mats[1][$i]\t$mats[0][$i]\t$response");

}
close(RES);

}

5.11 Subroutines to Modules

Putting these separate subroutines into separate modules is now quite simple.
Each subroutine goes in a separate file. The files end with the extension .pm
and the text of the file begins with a package declaration that matches the
filename. For example, we put the initialize() subroutine in a file called
Exp_init.pm that begins with a statement package Exp_init;.

In addition, as already discussed above, each module file must end with a
statement that evaluates to true. This is done by making 1; the last line of
each module file.

Here are the four module files created from the four subroutines in the
previous section:

Exp_init.pm

package Exp_init;

#does initialization; replace "cls" with "clear" for unix
sub initialize {

my(@args) = @_;
system(cls);
if ($#args != 1) {

die("usage:\tperl expprog4.pl materialsfile resultsfile\n");
}

}

1;

Exp_read.pm

package Exp_read;

#reads materials from file into array
sub readmaterials {

my(@mats);
my($line);

72 Subroutines and Modules

my($matsfile) = shift();
open(MATS, $matsfile) or die("Can't open materials file!\n");
my($i) = 0;
while ($line = <MATS>) {

chomp($line);
push(@{$mats[0]}, $line);
push(@{$mats[1]}, $i);
$i++;

}
close(MATS);
return(@mats);

}

1;

Exp_rand.pm

package Exp_rand;

#randomizes materials, saving initial indices
sub randomizemats {

my ($r, $item, $index);
my(@mats) = @_;
my(@newmats);
while ($#{$mats[0]}> -1) {

$r = rand($#{$mats[0]}+1);
$item = splice(@{$mats[0]}, $r, 1);
$index = splice(@{$mats[1]}, $r, 1);
push(@{$newmats[0]}, $item);
push(@{$newmats[1]}, $index);

}
return(@newmats);

}

1;

Exp_pres.pm

package Exp_pres;

#present materials, saving results
sub presentmats {

my($response);
my($resfile) = shift();

Subroutines and Modules 73

my(@mats) = @_;
print("For each of the following sentences, indicate

whether you find it acceptable or not.\n");
open(RES, ">>$resfile") or die("Can't save results!\n");
for (my($i) = 0; $i <= $#{$mats[0]}; $i++) {

print("$mats[0][$i] (y/n): ");
$response = <STDIN>;
print(RES "$mats[1][$i]\t$mats[0][$i]\t$response");

}
close(RES);

}

1;

Making use of these modules is also straightforward. We simply include a
use statement at the beginning of the calling program, and then invoke the
methods by naming the package overtly. The following revision of the
expprog.pl program shows how this works:

expprog4.pl

use Exp_init;
use Exp_read;
use Exp_pres;
use Exp_rand;

Exp_init::initialize(@ARGV);

Exp_pres::presentmats($ARGV[1],
Exp_rand::randomizemats(Exp_read::readmaterials($ARGV[0])));

5.12 Using Exporter

If we write a package that we expect to use a great deal, it is rather an incon-
venience to have to name the package each time we call a subroutine from it.
We can avoid this by making use of the standard Exporter module. Adding a
few lines of code to each module file will enable us to use its subroutines
without naming the package overtly every time one of the subroutines is
invoked.

The Exporter module is part of every Perl distribution. Precisely how it
does what it does and what the statements we must include mean is some-
thing that we won’t be covering until appendix A. We can still make use of it

74 Subroutines and Modules

to simplify how module subroutines are called. The basic idea is that each
module we write should itself use the Exporter module. In addition, each
module should include two additional statements. The first specifies that the
relevant module is an “instance” of the Exporter class. The second statement
stipulates which of your module’s subroutines are available when the module
is invoked:

package Mypackage;
use Exporter;
@ISA = "Exporter";
@EXPORT = ("mysubroutine", "myothersubroutine");
. . .

Here you would replace Mypackage with the name of your package and
mysubroutine, and so on with the names of the subroutines you are exporting.

Here are the four modules now rewritten to invoke the Exporter module:

Exp_init2.pm

package Exp_init2;

use Exporter;
@ISA = ("Exporter");
@EXPORT = ("initialize");

#does initialization; replace "cls" with "clear" for unix
sub initialize {

my(@args) = @_;
system(cls);
if ($#args != 1) {

die("usage:\tperl expprog5.pl materialsfile resultsfile\n");
}

}

1;

Exp_read2.pm

package Exp_read2;

use Exporter;
@ISA = ("Exporter");
@EXPORT = ("readmaterials");

Subroutines and Modules 75

#reads materials from file into array
sub readmaterials {

my(@mats);
my($line);
my($matsfile) = shift();
open(MATS, $matsfile) or die("Can't open materials file!\n");
my($i) = 0;
while ($line = <MATS>) {

chomp($line);
push(@{$mats[0]}, $line);
push(@{$mats[1]}, $i);
$i++;

}
close(MATS);
return(@mats);

}

1;

Exp_rand2.pm

package Exp_rand2;

use Exporter;
@ISA = ("Exporter");
@EXPORT = ("randomizemats");

#randomizes materials, saving initial indices
sub randomizemats {

my ($r, $item, $index);
my(@mats) = @_;
my(@newmats);
while ($#{$mats[0]}> -1) {

$r = rand($#{$mats[0]}+1);
$item = splice(@{$mats[0]}, $r, 1);
$index = splice(@{$mats[1]}, $r, 1);
push(@{$newmats[0]}, $item);
push(@{$newmats[1]}, $index);

}
return(@newmats);

}

1;

76 Subroutines and Modules

Exp_pres2.pm

package Exp_pres2;

use Exporter;
@ISA = ("Exporter");
@EXPORT = ("presentmats");

#present materials, saving results
sub presentmats {

my($response);
my($resfile) = shift();
my(@mats) = @_;
print("For each of the following sentences, indicate

whether you find it acceptable or not.\n");
open(RES, ">>$resfile") or die("Can't save results!\n");
for (my($i) = 0; $i <= $#{$mats[0]}; $i++) {

print("$mats[0][$i] (y/n): ");
$response = <STDIN>;
print(RES "$mats[1][$i]\t$mats[0][$i]\t$response");

}
close(RES);

}

1;

Calling these modules is then quite simple. The following program is a
revision of the expprog.pl program that takes advantage of the fact that the
modules now use the Exporter module:

expprog5.pl

use Exp_init2;
use Exp_read2;
use Exp_pres2;
use Exp_rand2;

initialize(@ARGV);

presentmats($ARGV[1], randomizemats(readmaterials($ARGV[0])));

Subroutines and Modules 77

5.13 Taking Advantage of Separate Modules

The advantage of separate modules is that they can be easily reused for
different programs. In this section, we develop another experiment type, taking
advantage of the modules we have already written for the experiment above.

Imagine you want to collect people’s intuitions about the number of syl-
lables in words. The number of syllables for some word types is quite straight-
forward. For example, table has two syllables, potato three, and intercalation
five. However, some words are a little more difficult to characterize. For
example, does flour have one or two syllables? Quite reasonably, you might
believe that the spelling will affect how people syllabify words like flour
versus flower, and you want to test this experimentally.

The task will be quite similar to the preceding one. Subjects will be pre-
sented with a randomized set of words and asked to indicate how many
syllables each word has.

Let’s make this more challenging though. Let’s add in some code to insure
that subjects actually respond with a number. If subjects respond with some-
thing other than a number, then they will be prompted again to enter a number.

We can accomplish this straightforwardly with minimal revisions to the
experimental code we’ve already written. We will leave most of the modules
intact: Exp_init2.pm, Exp_read2.pm, and Exp_rand2.pm. Substantive revisions
will only go in the Exp_pres2.pm module, renamed Exp_pres3.pm. The
expprog5.pl program must be revised as well to call this new module:

expprog6.pl

use Exp_init2;
use Exp_read2;
use Exp_pres3;
use Exp_rand2;

initialize(@ARGV);

presentmats($ARGV[1], randomizemats(readmaterials($ARGV[0])));

Most of the changes for the new experiment type are straightforward. The
instructions must be different and subjects must be prompted to enter a
number, rather than “yes” or “no” to each item.

To check that subjects actually enter a number, we use a while-loop. The
subject’s response is saved in a variable $response. If it is not a number, the
subject is prompted again. To check that the response is actually a number,
we use a trick. By adding something to $response, we force Perl to treat it as
a number. If it is, in fact, a nonnumeric string, then Perl treats it as 0. We

78 Subroutines and Modules

then simply check whether the result of adding 0 to $response is greater than
0.6 Here is the code for the new module:

Exp_pres3.pm

package Exp_pres3;

use Exporter;
@ISA = ("Exporter");
@EXPORT = ("presentmats");

#present materials, saving results
sub presentmats {

my($response);
my($resfile) = shift();
my(@mats) = @_;
print("For each of the following words, indicate

the number of syllables.\n");
open(RES, ">>$resfile") or die("Can't save results!\n");
for (my($i) = 0; $i <=$#{$mats[0]}; $i++) {

print($mats[0][$i]);
$response = getResp();
print(RES "$mats[1][$i]\t$mats[0][$i]\t$response");

}
close(RES);

}

sub getResp {
my($response) = 0;
while ($response < 1) {

print(" (enter a number): ");
$response = <STDIN>;
$response += 0;

}
return($response);

}

1;

All the interesting new action is in the getResp() subroutine. The only other
thing to note is that this new subroutine is not exported in the @EXPORT
array at the beginning of the module. This is because the new subroutine is
invoked only inside its own module; there is no need to make it available
outside the module.

Subroutines and Modules 79

5.14 Summary

We’ve covered a lot of important topics in this chapter. We began by discuss-
ing Perl style and comments. We have already reached the point at which it’s
possible to write fairly complex programs. Anything you can do to help keep
your programs comprehensible will benefit you in the long run.

We next went on to treat the anonymous variable, probably one of the most
convenient features of Perl, but also one of the most dangerous to easy-to-
read code. The anonymous variable is essential to understanding arguments
to subroutines.

We next treated subroutines, showing how they provide a means of simpli-
fying and organizing larger programs. We showed how subroutines can take
arguments and how they can return values. In addition, we showed how
subroutines allow for recursive algorithms.

Finally, we treated Perl modules, a more extreme way of organizing your
programs. Modules allow you to reuse subroutines in different programs.

5.15 Exercises

1. Add appropriate comments to the expprog6.pl program – and all the
relevant modules.

2. Find a language-related problem that can be solved using a recursive
algorithm in Perl.

3. Propose and implement another experiment type that extends the expprog
network of modules.

Notes

1 There are some Perl style standards, only some of which I use here. These can be
seen in the standard Perl documentation with the command perldoc perlstyle.

2 Perl thus does use line breaks in interpreting comments.
3 Another method is to make use of references, but this is a very complicated topic

that I defer to appendix A.
4 It is, in fact, possible to define any number of dimensions in an array, but we will

not need more than two in this book.
5 This is actually not quite true. There is no problem specifying that a subroutine return

a list of elements. The problem is when those elements include arrays. A list of arrays
is automatically treated as a flattened list of elements. There are two solutions to
this: multidimensional arrays, as in the text, or references, as in appendix A.

6 We will see in the next chapter that there are other more efficient ways to determine
if something is a number.

80 Regular Expressions

Chapter 6

Regular Expressions

Probably the most useful aspect of Perl for language-related programming is
its regular expression syntax. This chapter (and the next) show how regular
expressions can be constructed to handle the most intricate kinds of pattern-
matching, and how this is useful for language researchers. Several programs
demonstrating the utility of regular expressions are given at the end of the
chapter.

6.1 Basic Syntax

Regular expressions are a way of characterizing some set of strings. Specific-
ally, a regular expression is built on three primitive operations: concatenation,
union, and Kleene star. Patterns are matched in Perl by first characterizing
the pattern to be matched in terms of a regular expression, and then using the
pattern-matching syntax to test whether some string matches the pattern.

For example, to test whether a string contains the substring abc, we use this
syntax: $string = ˜ m/abc/;. This expression returns true or false, depending on
whether $string contains abc. The regular expression itself is enclosed in slashes,
preceded by an (optional) m. The pattern is bound to the string with =˜. The
following very simple program shows how every line in a file that matches
some pattern – given as a command-line argument – can be printed out:

pat1.pl

open(F, $ARGV[1]) or die("Can't open file!\n");

while ($line = <F>) {
if ($line = ˜ m/$ARGV[0]/) {

Regular Expressions 81

print($line);
}

}

close(F);

The m is optional, so the following code is exactly equivalent:

pat2.pl

open(F, $ARGV[1]) or die("Can't open file!\n");

while ($line = <F>) {
if ($line = ˜ /$ARGV[0]/) {

print($line);
}

}

close(F);

Note that you must use =˜ for pattern-matching. Other operators – for example,
=, ==, or eq – will not work.

The regular expression above made use of only concatenation. Let’s now
consider the other basic operations. First, there is union. Union allows us to
stipulate that one or another symbol must occur in some position in the
pattern. We use a tiebar | with parentheses to show grouping. For example,
to match the pattern abc or adc, we have m/a(b|d)c/.

Essentially, the preceding example puts a union inside a concatenation. We
can also put a concatenation inside a union; for example, m/(abc|def)/. This
stands for either abc or def.

Finally, we can use Kleene star * to indicate any number of instances of the
preceding element (including 0). For example, m/ab*c/ will match ac, abc,
abbc, abbbc, and so on. Kleene star can also apply to a union or to a whole
string that has been marked with parentheses; for example, m/a(b|c)*d/ or
m/a(bc)*d/. The first matches a string composed of an a followed by a d
with any number of b’s or c’s intervening. The second matches a string
composed of an a followed by a d with any number of repetitions of bc
intervening; for example, ad, abcd, abcbcd, abcbcbcd, and so on.

You can play with these using the two little programs we have written
above. However, some of the special characters need to be escaped when
entered on the command-line under Windows or Unix. For example, at the
DOS prompt, a pattern such as a(b|c)d cannot be entered directly, but must
be entered with quotes; for example, perl pat1.pl "a(b|c)d" filename. At the

82 Regular Expressions

Unix prompt, union, Kleene star, and parentheses must be preceded by a
backslash, and the entire pattern put in double quotes; for example, perl
pat1.pl "a\(b\ |c\)d" filename.

6.2 Special Characters

Perl regular expressions offer a number of special symbols which are not
strictly necessary, but turn out to be quite useful. The most useful are given
in the following list:

. Matches any single character.
ˆ Matches the beginning of the string.
$ Matches the end of the string.
\w Matches letters, numbers, and “_”.
\W Matches anything but letters, numbers, and “_”.
\s Matches white space; that is, space, tab, and new line.
\S Matches anything but white space; that is anything but space and tab.
\d Matches a number.
\D Matches anything but a number.
\b Matches a word boundary.
\B Matches anything but a word boundary.

Let’s look at a few examples to show how these work:

ˆa.c matches a three-letter sequence at the beginning of the string, where a is
the first letter, c is the third, and anything can be the second.

\w$ matches a string that ends with a letter or number.
ˆ\S\S*$ matches a string that has no white space, and that is at least one

character long.
\w*\d matches a string composed of any number of letters, numbers, and _

(underscore), but that ends with at least one number.
\b..\b matches two characters at the beginning and end of a word.
\d\d \D\d matches a two-digit number followed by a space, followed by

something that isn’t a number, and then a single-digit number.

These are actually rather simple; let’s consider a few more complex examples:

(ab|(c|de))f abf or cf or def.
(aa)*b(bb)* An even number of a’s followed by an odd number of b’s.
(aa*|b)ab* Equivalent to aaa*b*|bab* (at least one a followed by any number

of b’s or ba followed by any number of b’s).
((ab)*|(ba)*) abab. . . or baba. . . .
(x|y|z)(x|y|z) xx, xy, xz, yx, yy, yz, zx, zy, zz.

Regular Expressions 83

Regular expressions can also be used to define patterns of linguistic interest:

(a|e|i|o|u) Vowels.
(g|c|t|s|p|w)h Digraphs with h.
(b|p|m) Bilabials.
(ed|ing|s|es|t|en)\b Verbal inflection.
s(i|a|u)ng Forms of sing.
m(ous|ic)e Forms of mouse.

Regular expressions can also make use of the characters for tab and new line:
\t and \n. For example, to match one or more tabs, this works: /\t\t*/.

We’ve seen that regular expressions use certain characters in special ways.
What if, for example, you wanted to search for a literal asterisk? To use any
of the special regular expression characters literally, they must be preceded
by a backslash. The following list shows the characters that we have treated
so far that must be backslashed in regular expressions:

\(left parenthesis
\) right parenthesis
* asterisk
\ | tiebar
\\ backslash

For example, to search for the literal string (a|b), you would use /\(a\ |b\)/.

6.3 Commenting Regular Expressions

We’ve now gotten sufficient machinery that we can create incredibly complex
regular expressions. For example: /e(a(ab|c\d*)\W)*d/.1 Perl provides a con-
venient mechanism for inserting comments inside a regular expression. If the
trailing slash of the pattern is suffixed with the letter x, then spaces, tabs,
returns, and comments are ignored. This allows us to space out the pieces of
a regular expression and insert comments at appropriate intervals. The fol-
lowing simple program demonstrates:

pat3.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
if ($line = ˜

/e #begins with e

84 Regular Expressions

(#followed by any number of (a(ab|c\d*)\W)
a #a

(#union of (ab|c\d*)
ab #first conjunct
| #or
c\d*#second conjunct

) #end of union
\W #nonalphanumeric

)* #end of big Kleene group
d/x #ends with a d
) {
print($line);

}
}

close(F);

Comments internal to a regular expression can be quite useful, especially for
very large, very complex expressions.

To actually get spaces, tabs, and # in regular expressions with the x flag,
they must be backslashed; for example, m/number\ \#3/x.

6.4 Extra Stuff

Perl provides other devices that can be used in regular expressions as well.
These can be quite convenient for complex expressions. The following list
displays them:

[a-f] The union (disjunction) of the series of items denoted by the hyphen-
ated string – here, all the letters a through f, for example a or b or c or d or
e or f.

[xyz] The union of the letters (equivalent to (x|y|z)).
x{m,n} x must occur at least m times and at most n times.
x+ One or more of x.
x? Zero or one x.
[ˆx] Anything but x.

Here are some examples of these:

[1-5]+ One or more of the integers 1 through 5.
[ˆaeiou] Anything but a vowel.
[A-Z]?\d Zero or one capital letters followed by a single digit.

Regular Expressions 85

6.5 Using Variables in Regular Expressions

You can perhaps already see how regular expressions can be tailored for
language-related purposes. As we’ve seen, it is a simple matter to define, for
example, vowels (/[aeiou]/), verbal inflection (/(ed|t|ing|en|s)\b/), and the like.

You can also use variables in regular expressions, which allows you to set
up complex regular expressions in a modular fashion. For example, the fol-
lowing program shows how we can define consonants to search for lines of a
file that contain final clusters of different sizes:

pat4.pl

if ($#ARGV != 1) {
die("Usage:\tperl pat4.pl filename number-of-consonants\n");

}

if ($ARGV[1] =˜ /\D/) {
die("Second argument must be a number\n");

}

$c = "[bcdfghjklmnpqrstvwxz]";
$thepattern = "";

for ($i = 1; $i <= $ARGV[1]; $i++) {
$thepattern .= $c;

}

$thepattern .= "[\.\?!;:]";

open(F, $ARGV[0]) or die("Can\'t open file...\n");

while ($line = <F>) {
if ($line =˜ /$thepattern/) {

print($line);
}

}

close(F);

First, there are several tests to make sure that the proper number and type of
command-line arguments are provided. We then define consonants as a disjunc-
tion of consonant letters. The $thepattern variable is initialized to the empty string
and these are then appended to the pattern variable as many times as speci-
fied by the second argument. (Note that .= is the incrementing concatenation

86 Regular Expressions

operator, parallel to +=, -=, and so on.) Finally, the consonants must occur at
the end of a word, as indicated by various punctuation marks or space.

Perl also provides for several other predefined special variables for use with
regular expressions. First, there are the numbered backreferences: \1 through \9
and $1 through $9. These allow one to refer back to an element in a regular
expression marked with parentheses. The backslash backreferences are used
inside the regular expression itself, and the variable backreferences are used
outside the pattern up to the next pattern-match. For example, /(.).\1/ matches
two identical characters, with a single character intervening; for example,
axa, qrq, and so on. Here is an example of a little program that uses both:

back1.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
if ($line = /(\w{3,})\1/) {

print("$1:\t$line");
}

}

close(F);

This program searches a file for sequences of three or more alphanumeric
characters that are repeated in sequence; for example, abcabc, xxaxxa, catcat,
and so on. If it finds them, it prints out the character sequence that is re-
peated and the line it occurs in. The regular expression uses \w{3,} to find
sequences of at least three characters. That expression is put in parentheses
so that it can be backreferenced by \1 later in the pattern, and by $1 later in
the program. The \1 detects if the letter sequence is repeated. If so, the if-
clause is true, and the consequent applies, printing out the original character
sequence with $1, and the entire line as well.

The same construction works if we use the abbreviated if-structure, as in
back2.pl below:

back2.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
print("$1:\t$line") if ($line = ˜ /(\w{3,})\1/)

}

close(F);

Regular Expressions 87

The fact that this works may seem surprising; $1 should refer back to the
previous pattern-match, yet here there is none. Perl automatically converts
the abbreviated if-structure back into its longer form, where the if-test pre-
cedes the consequent clause. Hence, as far as Perl is concerned, $1 does
follow the pattern-match in back2.pl.

Finally, Perl pattern-matching defines three special variables: $&, $', and
$'. These are defined by each pattern-match, and refer back, respectively, to
the string before the match, the match itself, and the string after the match.
Thus, for example, if a string like John loves Mary is matched by /o.*s/, then
the three variables will have the following values:

$ John l
$& oves
$ Mary

(Note that $' here has a space as its first character.)
Here is a sample program exemplifying how these special variables can be

used:

pat5.pl

open(F, $ARGV[1]) or die("Oops!\n");

while ($line = <F>) {
if ($line = ̃/$ARGV[0]/) {

print("before:\t$'\n");
print("match:\t$&\n");
print("after:\t$'\n");

}
}

close(F);

The program takes a filename and pattern as command-line arguments.2 It
then looks for matches line by line, and prints out the match, preceding
string, and following string.

6.6 Greediness

The regular expression operations that allow for multiple matches are all
interpreted “greedily”, as matching the largest span possible. For example, if
we match the pattern /ab*/ against the string abbbc, the span matched by

'

'

'
'

'

'

'

88 Regular Expressions

the pattern ($&) is abbb. Other operations interpreted this way include: +, {,},
and ?.

Perl also allows for “lazy” matching. In this case, the relevant operator is
suffixed with ?; for example, *?, +?, ??, and {,}?.3 In this case, the pattern
matches as few instances as possible. Thus, if /ab*?/ is matched against
abbbc, it extends only over a. You can test all these combinations by entering
appropriate patterns as a command-line argument to pat5.pl.

6.7 Pig Latin

The various special variables associated with pattern-matching allow one to
manipulate strings directly. Perl actually provides specific tools for this that
we treat in the next chapter, but the machinery we’ve already treated actually
allows for quite a bit of power. As an example, we give a simple program in
this section for producing language game forms.

The particular language game I use here is Pig Latin. The game is played by
taking all the consonants at the beginning of a word, moving them to the
end, and adding the vowel ay, as in may, ray, say, and so on. For example, a
word such as start is pronounced art-stay in Pig Latin.

There are several interesting complications, however. First, what happens
with a word that begins with a vowel, such as ant? It turns out that there are
different dialects of Pig Latin, giving ant-’ay, ant-yay, or ant-hay. The pro-
gram below models the second dialect, where vowel-initial words get an
epenthetic y.

The program only handles words that are orthographically vowel-initial,
such as ant. Words such as honest that are phonetically vowel-initial, but
begin with an orthographic consonant, are not treated correctly. In the rel-
evant dialect, they are pronounced onest-yay, but the program operates from
the orthographic representation and produces onest-hay.

The other challenge for the program is to treat orthographic y, as in words
like myth and yacht. It is a vowel in the first, but a consonant in the second.
The program handles this by treating a word-initial y followed by a vowel
as a consonant. Otherwise, it is treated as a vowel. This handles the two
cases above correctly, but also treats words such as Yvonne appropriately as
well.

The general logic of the program is as follows. The name of a file is given
on the command line. There’s some error-checking to make sure the number
of command-line arguments is appropriate, and then several embedded while-
structures. The outermost while-structure loops over each line of the file one
by one. The inner while-loop iterates over each word of each line, using
backreferences to reset the string each time the pattern match succeeds. Let’s
go through it line by line.

Regular Expressions 89

First, the program checks the number of command-line arguments, defines
consonants and vowels, and then opens the file:

piglatin1.pl

die("Usage:\tperl piglatin1.pl filename\n") if ($#ARGV != 0);

$c = "[bcdfghjklmnpqrstvwxzBCDFGHJKLMNPQRSTVWXZ]";
$v = "[aeiouyAEIOUY]";

open(F, $ARGV[0]) or die("Oops!\n");
. . .

We then come to the first while-loop, the one that iterates over each line of
the file. It first checks whether the current line has any characters in it. If it
does not, if it is only the return character, then the line is printed:

. . .
while ($line = <F>) {

if (length($line) == 1) {
print($line);
. . .

If there is more to the line than the return character, then there’s a bunch of
pattern-matching and reordering. First, we identify the first word on the line
with / ˆ(\W*)(\w+)(\W*)/. The parentheses are used so that the individual bits
can be manipulated in subsequent code. The idea here is to find the first word
on the line, and then use backreferences to reset $line to everything following
that first word. Within the current loop, we then process that first word. On
each subsequent loop, we process each subsequent word on the line:

. . .
} else {

while ($line =˜ / ˆ(\W*)(\w+)(\W*)/) {
$prebreak = $1;
$word = $2;
$break = $3;
$line = $';
. . .

The rest of the while-loop actually does the Pig Latin changes. The first
pattern-match checks for words that begin with y, where it is a consonant, or
for words that begin with a vowel. In either case, the initial y is stripped off,
and the word is suffixed with yay.4 The second pattern-match handles the
general case of words beginning with some number of consonants:

'

90 Regular Expressions

. . .
if ($word =˜ / ˆ[yY]?($v.*)$/) {

print("$1-yay");
}elsif ($word =˜ / ˆ($c+)(.*)$/) {

print("$2-$1ay");
}
print($break);

}
}

}

close(F);

This program nicely exemplifies some of the power of backreferences. We
will see in the next chapter, however, that Perl provides some dedicated
functions for manipulating strings directly without using backreferences.

6.8 Sentences

In this section, we develop another program that makes use of regular
expressions. This program takes a text file and breaks it up into sentences.
The program is interesting for several reasons. First, it makes use of ideas
that anticipate machinery introduced in the following chapter. Second, the
task is actually rather challenging, although widely applicable in linguistic
applications.

The task has several parts. First, we open a file and read through it line by
line as usual. We then locate instances of sentence-final punctuation and
break each line into fragments based on the punctuation. All the fragments
are pushed onto a single array. We then go through the array adding frag-
ments together up to a sentence-final punctuation fragment. Finally, all the
sentences are printed out.

Let’s now go through the code. The first bit of code assigns a value to $file
from the command line and defines sentence-final punctuation. Notice how
the latter is perhaps more complicated than expected, because we must ac-
commodate quoted sentences:

sentences.pl

$file = $ARGV[0];

#punctuation characters
$punc = "[\.!\?]+[\"']? *";
. . .

Regular Expressions 91

Next, we open the file and go through it line by line. We remove the final
return and check if there is anything left on the line. We define a subroutine
below mysplit() that returns a list of the sentence fragments on the line. Each
fragment is an instance of $punc or an actual sentence fragment. For example, a
line of text such as and phonemes. Is this a sentence? Yes, it would be broken
up into five fragments: “and phonemes”, “. ”, “Is this a sentence”, “?”, and
“Yes, it”.

. . .
open(F, $file) or die("Can't open file.\n");

#split each line into fragments using $punc
while ($line = <F>) {

chomp($line);
if (length($line) > 1) {

push(@fragments, mysplit($line));
}

}

close(F);
. . .

The next loop goes through the fragments once again, appending them to-
gether until a sentence-final fragment is reached:

. . .
#add all fragments together until an instance of punctuation
for ($i = 1; $i < $#fragments; $i++) {

if ($fragments[$i-1] ! ˜ /$punc/) {
$fragments[$i-1] .= $fragments[$i];
splice(@fragments, $i, 1);
$i--;

}
}
. . .

Each fragment is now a sentence and is printed out:

. . .
#print out each sentence
for ($i = 0; $i < $#fragments; $i++) {

print("$fragments[$i]\n\n");
}
. . .

92 Regular Expressions

The mysplit() subroutine appears at the end of the program. The core of
the method is a while-structure that checks the line for instances of $punc. If
it finds one, it pushes the preceding string and the match onto @frags. It then
tries again with everything after the match. This procedure works because
the pattern matches the first instance of $punc in the line. Finally, the con-
tents of @frags are returned:

. . .
#splits the line repeatedly into fragments
sub mysplit {

my(@frags, $line);
$line = shift();
while ($line = ˜ /$punc/) {

push(@frags,$');
push(@frags,$&);
$line = $';

}
push(@frags,$line);
return(@frags);

}

6.9 Summary

This chapter has introduced one of the most important and powerful aspects
of Perl: pattern-matching and regular expressions. Pattern-matching allows
one to inspect any sort of input for string patterns. Regular expression syntax
provides for an extremely versatile range of patterns.

Formally, Perl regular expressions can be (virtually!) reduced to three
simple operations: concatenation, union, and Kleene star. In practice, however,
Perl provides for many abbreviatory conventions to characterize string pat-
terns. These include a number of special constructions, but also many special
variables for various classes of characters.

Perl also provides, via the m//x construction, for embedded com-
ments in regular expressions. Thus, although interesting regular expressions
can quickly become quite complex, it is possible to document a pattern
exhaustively.

Finally, Perl also allows for variables in pattern-matching. There are two
ways of backreferencing available: both internal to the pattern being matched,
and after the last pattern matched. These allow one to manipulate strings in
very intricate ways. We will see some additional tools for this in the next
chapter.

'

'

Regular Expressions 93

6.10 Exercises

1. For your operating system, show precisely which special regular expres-
sion operators cannot be entered directly on the command line and how
they must be escaped (backslashed) so that they will work.

2. Revise the piglatin1.pl program so that it produces one of the other Pig
Latin dialects instead.

3. Regular expression exercises:
(a) Give three ways of matching all vowels except i.
(b) What does this abbreviate: /\\\\a/?
(c) Given a file composed of a single column of words, give a regular

expression that will find all two-syllable words.
(d) Given the same type of file, give a regular expression that will match

any word that does not contain two identical letters in a row.
(e) What does this abbreviate: / \$ $ /x?
(f) Write a regular expression to match any word containing an even

number of vowels.
4. The mysplit() function can be mirrored by a function that does the re-

verse. This new function takes two arguments: a string and a list. It
returns a string where all the elements of the list are joined by instances
of the string; for example, myjoin("-",('a','b','c')) produces a-b-c. Write
this function as a separate module.

Notes

1 This matches edeaab d, eac7 d, and so on.
2 Don’t forget that patterns entered on the command line need to be escaped

properly under Unix or Windows.
3 Question mark thus has two interpretations in regular expressions: “zero or one”

or laziness.
4 Notice that the other Pig Latin dialects would be somewhat more difficult to treat!

This is left as an exercise.

94 Text Manipulation

Chapter 7

Text Manipulation

In this chapter, we augment our pattern-matching toolbox. We present several
functions for manipulating strings: s/// and tr///. The former is used for
string replacement and the latter for character-by-character replacement.

In addition, we treat the split() and join() functions, which are used to split
a string into tokens, or join a list of strings into a bigger string.

Finally, we introduce hashes, an extremely important data structure. We
use these devices to develop a concordancing program and to develop a
program for collecting letter bigrams.

7.1 s///

The s/// function is actually not required formally, but is quite convenient
nonetheless. It allows one to replace some string by some other string. For
example, something like $string =˜ s/hat/box/; replaces the first instance of
hat with box in $string. Like m//, s/// is bound to the string with =˜, not
with == or =.

If s/// is used with the g flag (“global”) which replaces all instances of the
pattern in the string in question, then using s/// with = returns the number of
matches. Using it with =˜ replaces all instances of the pattern.

Here is a simple program that takes the two arguments for s/// and
a filename from the command line. It prints out each line in the file after
all replacements have been made. It also keeps track of the number of
replacements made. It uses the g flag to force all possible replacements on
each line.

Text Manipulation 95

replace1.pl

open(F, $ARGV[2]) or die("Oops!\n");

while ($line = <F>) {
$num += ($line = ˜ s/$ARGV[0]/$ARGV[1]/g);
print($line);

}

close(F);

print("how many:\t$num\n");

The substitutions are stored in $line, while $num keeps track of the number
of substitutions made. Without the g flag, $num would only keep track of
the number of lines that contain the pattern, incrementing only once even for
lines that contain more than one instance of the pattern.

Interestingly, m//g can be used to simply test for how many times a pattern
occurs, but the number of matches isn’t returned the same way. The following
program keeps track of the number of times a pattern is matched in a file.
The program also keeps track of the maximum number of matches per line.

pat6.pl

open(F, $ARGV[1]) or die("Oops!\n");

$biggest = 0;

while ($line = <F>) {
$lines++;
$matches = 0;
$matches++ while ($line =˜ /$ARGV[0]/g);
$allmatches += $matches;
$biggest = $matches if ($matches > $biggest);

}

close(F);

print("Total number of lines:\t$lines\n");
print("Total matches:\t$allmatches\n");
print("Max per line:\t$biggest\n");

Here $lines keeps track of the number of lines in the file. The $matches vari-
able is reset to zero every time a line is read from the file and keeps track of
the number of matches in the current line. It does this with a while-structure

96 Text Manipulation

iterating over the number of matches with m//g. The total number of matches
is kept in $allmatches, and the largest number of matches in any line is stored
in $biggest. Finally, the results are printed to the screen.

The substitution function takes a number of other flags as well. The most
important are s///x and s///e. The former is just like m//x, allowing the
programmer to interpose spaces and comments for clarity.

The s///e flag (“expression”), however, is quite interesting; it forces Perl to
interpret the second argument to s///e as a full Perl expression. Here is a
very simple example:

replace2.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
$line =˜ s/

\d+ #some number of digits
/
$& #the numbers again
*3 #multiplied by 3
/gxe;

print($line);
}

close(F);

The substitution is given three flags. The g flag allows for multiple substitu-
tions on the same line. The x flag allows for the interspersed spaces and
comments. Finally, the e flag allows the second argument of s/// to be inter-
preted as a Perl expression. Here, that argument is $& * 3; this multiplies the
number found by the pattern-matcher by three, replacing the original number
by this product.

The e flag even allows you to insert your own subroutines as a second argu-
ment. The following program does exactly the same thing as the preceding one:

replace3.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
$line =˜ s/\d+/times3($&)/ge;
print($line);

}

Text Manipulation 97

close(F);

sub times3 {
my $in = shift();
return($in * 3);

}

7.2 tr///

The tr/// function is for making character-by-character substitutions. It takes
two arguments, each of which is a list of characters. The lists can also be given
as sequences; for example, a-z or 1-9. Here is a simple program for replacing
each digit with the corresponding letter of the alphabet:

replace4.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
$line =˜ tr/0-9/a-j/;
print($line);

}

close(F);

Note that by its very nature, the tr/// command does not use a g flag. It
always applies in a “global” fashion, making all possible replacements.

Here is a more useful example of tr///. The following program takes all
vowels with an acute accent, á, é, í, ó, and ú, and replaces them with un-
accented vowels:

replace5.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
$line =˜ tr/\341\351\355\363\372/aeiou/;
print($line);

}

close(F);

98 Text Manipulation

Perl regular expressions can refer to characters by their octal numbers.1 The
appropriate octal number is preceded by a backslash. Thus \341 is á.

Here is a little Perl module for retrieving octal numbers from characters:

Octal.pm

package Octal;

use Exporter;
@ISA = ("Exporter");
@EXPORT = ("char2octal");

sub char2octal {
my($arg) = shift();
$arg = ord($arg);
$arg = sprintf("%o", $arg);
return($arg);

}

1;

The program begins with the package declaration and ends with the true
statement required by all Perl modules. Next, there are the three lines that
allow programs calling the module to use simply the subroutine name in each
invocation.

The module defines a single subroutine char2octal(). It first takes a single
argument from @_, and applies the ord() function to it, retrieving its ASCII
number. That number is then converted to octal using the sprintf() function.
Finally, char2octal() returns the number determined.

The tr/// command would seem to require that the length of its two lists
be the same, but this is not the case. If the second argument is longer than the
first, extra characters are ignored. For example, tr/abc/1234/ would convert
a to 1, b to 2, and c to 3, ignoring 4. On the other hand, if the second
argument is shorter than the first, then extra items in the first argument are
translated as the last item of the second argument. For example, tr/abc/12/
would convert a to 1, b to 2, and c to 2.

If, however, tr/// is used with the d flag (“delete”), then unpaired items
from the first argument are deleted. For example, tr/abc/12/d would convert
a to 1, b to 2, and delete c, rather than converting it to 2.

Here is a little program that simply deletes numbers:

Text Manipulation 99

replace6.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
$line =˜ tr/0-9//d;
print($line);

}

close(F);

Finally, tr/// behaves like s/// in that it returns the number of mat-
ches when used with =. The following simple program, which counts digits,
exemplifies:

replace7.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
$num += $line =˜ tr/0-9/0-9/;

}

close(F);

print("$num\n");

7.3 split() and join()

The split() function is an extremely useful one. It takes two arguments, the
first of which is a pattern while the second is a string. What split() does is
break a string up into tokens at every occurrence of the pattern. The result of
split() is a list of tokens. For example, @words = split(/ /, $string); would
split the string $string up into individual tokens, at each space, and put the
results into the array @words.

The split() function is most useful for finding the words in a file for subse-
quent processing. Here is a simple example, where split() is used to find all
the sentences in a file, each of which is printed out separately. (Over the next
few programs, we develop a revision of the sentences.pl program from the
previous chapter.)

100 Text Manipulation

split1.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
@f = split(/[\.\?!]/, $line);
push(@frags, @f);

}

close(F);

foreach $frag (@frags) {
if ($frag =˜ /\n$/) {

chomp($frag);
print("$frag ");

} else {
print("$frag\n\n");

}
}

The program takes a filename from the command line. It goes through the file
line by line, splitting the line into fragments at each occurrence of a sentence
punctuation mark. These sentence fragments are then pushed onto a big
array of fragments. Finally, the fragments are printed out one by one. If the
current fragment ends in a return, then it must be a sentence that wraps
across two lines. In these cases, the return is replaced with a space. If, on the
other hand, the fragment does not end in a return, then it must be a sentence-
final fragment, in which case it is printed, followed by several returns to
separate it from the next sentence.

One problem with this program is that it loses what the particular punctu-
ation was that terminated the sentence. This can be rectified by putting
parentheses in the pattern used to split the line into fragments. If the pattern
used by split() is marked with parentheses, then split() will return the delimiters,
as well as the fragments, in the array. The following revision does this:

split2.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
@f = split(/([\.\?!])/, $line);
push(@frags, @f);

}

Text Manipulation 101

close(F);

foreach $frag (@frags) {
if ($frag ! ˜ /\w/) {

print("$frag\n\n");
} else {

print("$frag");
}

}

Here the foreach loop first tests if the current fragment is a punctuation
mark. If it is, it prints it followed by several returns. If it is not, it just prints
the fragment. Notice how the parentheses in the invocation of split() return
the punctuation that the foreach loop tests for.

There are several problems still with this version of the program. The main
one is that it doesn’t save the sentences into any kind of usable data struc-
ture. That is, if we want to actually do something with the sentences we are
locating in the file, this program won’t allow for it. There is another problem
as well: the current program doesn’t handle line breaks very well. It would be
useful to strip line breaks and replace them with spaces. It will turn out that
this is much easier once we’ve actually saved each sentence separately. The
following revision handles these:

split3.pl

open(F, $ARGV[0]) or die("Oops!\n");

$punc = "[\.\?!]";

while ($line = <F>) {
@f = split(/($punc)/, $line);
push(@frags, @f);

}

close(F);

foreach $frag (@frags) {
$sentence .= $frag;
if ($frag = ˜ /$punc/) {

$sentence = ˜ tr/\n/ /;
$sentence = ˜ s/ +/ /g;
$sentence = ˜ s/ ˆ\W+//;

102 Text Manipulation

push(@sentences, $sentence);
$sentence = "";

}
}

foreach $s (@sentences) {
print("$s\n\n");

}

First, we put the punctuation characters in a variable, since we will be refer-
ring to them more than once.2 Next, we go through the file, line by line as
before, breaking it into fragments based on sentence punctuation. As before,
this results in three sorts of fragments: (i) fragments terminated by a line
break, (ii) fragments preceding sentence punctuation, and (iii) the sentence
punctuation itself. Finally, the program loops through the fragments, reas-
sembling them into sentence-sized units. Each fragment is concatenated to
the current sentence. If the fragment is a sentence punctuation character, then
the current sentence is complete and added to an array of sentences. Before
being added to the array, returns are replaced by spaces, and extra spaces are
removed.

As one might expect, split() is mirrored by another function for joining
strings together: join(). The join() function takes a string and a list as argu-
ments. The string is what is used as “glue” to tie the elements of the list into
a single string. For example, the statement print(join("-", 1..5)) prints out 1-
2-3-4-5.

7.4 The Anonymous Variable Again

We have covered all of the following pattern-matching functions:

m// Matches a pattern.
tr/// Makes character-by-character substitutions/translations.
s/// Does string substitution(s).
split(//, string) Splits a string up based on a delimiter specified as a regular

expression.

All of the pattern-matching functions can be used with the anonymous
variable. As usual, this can be confusing, but it is done quite often and can be
quite convenient. The split3.pl program above made use of all of them. The
following program revises split3.pl to make use of the anonymous variable
whenever possible:

Text Manipulation 103

split4.pl

open(F, $ARGV[0]) or die("Oops!\n");

$punc = "[\.\?!]";

while (<F>) {
@f = split(/($punc)/);
push(@frags, @f);

}

close(F);

foreach (@frags) {
$sentence .= $_;
if (/$punc/) {

$sentence = ˜ tr/\n/ /;
$sentence = ˜ s/ +/ /g;
$sentence = ˜ s/ ˆ\W+//;
push(@sentences, $sentence);
$sentence = "";

}
}

foreach (@sentences) {
print();
print("\n\n");

}

This program shows how m// and split() can be used with the anonymous
variable.

The following simple program shows how tr/// and s/// can also be used
with it. The program is a silly one. It replaces every instance of the word
“fruit” with “vegetable”, and capitalizes all vowels.

anon1.pl

open(F, $ARGV[0]) or die("Oops!\n");

while (<F>) {
s/[Ff]ruit/vegetable/g;
tr/aeiou/AEIOU/;

104 Text Manipulation

print();
}

close(F);

Finally, note how m// can occur with the anonymous variable with while
if the g flag is used. The following program prints out all capitalized words in
a file:

anon2.pl

open(F, $ARGV[0]) or die("Oops!\n");

while (<F>) {
while (/[A-Z]\w*/g) {

print("$&\n");
}

}

close(F);

This program is quite interesting, because the anonymous variable is used
twice. There is an outer while-loop where on each iteration, $_ is set to the
current line of the file. Then there is an inner while-loop that iterates over
matches in the line.

7.5 sort()

The sort() function takes a list argument and returns a sorted list. It also
allows you to specify – with an optional first argument – a specific compar-
ison method. For example, sort('d', 'a', 'b'); returns the list ('a', 'b', 'd'). Here
is a simple program that takes a filename argument on the command line,
and prints out a sorted list of the words in that file:

sort1.pl

open(F, $ARGV[0]) or die("Uh-oh!\n");

while ($line = <F>) {
@wordsInLine = split(/\W+/, $line);
push(@words, @wordsInLine);

}

Text Manipulation 105

close(F);

foreach $word (sort(@words)) {
print("$word\n");

}

Everything here is as usual, except the invocation of sort() in the foreach
structure. Here, sort() allows foreach to return the items of @words in sorted
order.

The default sort order is that returned by the built-in cmp operator. This
returns -1, 0, or 1, depending on whether its first operand is less than, equal
to, or greater than the second operand alphabetically. Note that capital let-
ters are less than lower-case letters.

This can be changed by invoking sort() with an explicit sorting function as
a first argument. This function can either be laid out explicitly as the first
argument, or defined by a subroutine name, given elsewhere in the program.
There are two things to keep in mind about this sorting function, however.
First, like cmp, your sorting function must return -1, 0, or 1, depending on
the relationship between the sorted elements. Second, the sorting function
should not take explicit arguments, but should use the global predefined
variables $a and $b.3 The sort() function automatically places the elements to
be compared in these variables. The following program shows how a sorting
function can be provided:

sort2.pl

open(F, $ARGV[0]) or die("Uh-oh!\n");

while ($line = <F>) {
@wordsInLine = split(/\W+/, $line);
push(@words, @wordsInLine);

}

close(F);

print("sorted with default sorting routine:\n");

foreach $word (sort(@words)) {
print("$word\n");

}

print("Sorted with specified sorting routine:\n");

106 Text Manipulation

foreach $word (sort({$a cmp $b} @words)) {
print("$word\n");

}

print("Sorted with subroutine:\n");

foreach $word (sort(boring @words)) {
print("$word\n");

}

sub boring {
return($a cmp $b);

}

In the above program, the words to be sorted are taken from a file given on
the command line. As in the previous program, the lines are broken up into
words and put in an array which is then sorted. Here that array is sorted
three times. Here, each sort is exactly the same. The first invocation of sort()
uses the default alphabetic sorting routine. The second invocation does ex-
actly the same thing, by specifying that scheme as the first argument to sort().
Notice that the arguments are not separated with a comma, as with print()
(when used with a handle). Finally, the third sort does the same thing again,
in a different way, by putting the sorting routine in a separate subroutine
which is invoked by name as the first argument of sort().

Specifying a sorting routine can have far more useful consequences. For
example, items can be sorted in reverse alphabetical order by specifying the
sorting routine as {$b cmp $a}. Sorting in a case-insensitive fashion can be
done with the built-in functions lc() and uc() which return the lower-case or
upper-case versions of their arguments respectively. For example, {lc($a) cmp
lc($b)} results in a case-insensitive alphabetic sort. Finally, a numerical sort
can be obtained by using the numerical comparison operator <=>. Thus, {$a
<=> $b} gives a numerical comparison.

Here is a final example of using sort(). The following program collects the
words of a file and then sorts them by length. However, upper-case words all
precede lower-case words:

sort3.pl

open(F, $ARGV[0]) or die("Uh-oh!\n");

while ($line = <F>) {
@wordsInLine = split(/\W+/, $line);
push(@words, @wordsInLine);

}

Text Manipulation 107

close(F);

foreach $word (sort(mysort @words)) {
print("$word\n");

}

sub mysort {
if ($a = ˜ /ˆ[A-Z]/ and $b = ˜ / ˆ[A-Z]/) {

return(length($a) <=> length($b));
} elsif ($a ! ˜ /ˆ[A-Z]/ and $b !˜ / ˆ[A-Z]/) {

return(length($a) <=> length($b));
} elsif ($a = ˜ / ˆ[A-Z]/) {

return(-1);
} else {

return(1);
}

}

The sorting routine is relatively straightforward. If both words begin with an
upper-case letter, they are sorted by length. If both begin with a lower-case
letter, they are sorted by length. Else, the word that begins with an upper-
case letter goes first.

7.6 Hashes

Using split() to break lines into words and store them in arrays results in
repeated tokens if words are repeated in a file. Perl provides a very conveni-
ent data structure which we can use to avoid this: a hash. A hash – or
hashtable – is very much like an array. Like an array, it is a set of variables
linked together. However, it is unlike an array in two respects. First, unlike
an array, the elements of a hash have no particular order; they are a set,
rather than a list. Second, unlike an array, the elements of a hash are named,
rather than indexed.

The syntax for hashes is different from arrays. An entire hash is denoted
with a leading %, e.g. %myhash. Individual hash elements are denoted with
a leading $, just like individual array elements, but with curly braces around
the name, rather than square braces; for example, $myhash{aname}. Note
that the individual hash element name does not need to be quoted. Thus
$myhash{'aname'} is the same thing as $myhash{aname}. Individual hash
names are called keys and the contents of individual hash elements are called
values.

108 Text Manipulation

Here is a very simple example showing how hashes can be used. The pro-
gram creates a hash called %myhash. The user can call individual hash element
keys on the command line, and the program prints out the appropriate value:

hash1.pl

$myhash{lion} = 6;
$myhash{tiger} = "lion";
$myhash{bear} = $myhash{lion} . " " . $myhash{tiger} . "s";

print($myhash{$ARGV[0]} . "\n");

The names and values given here are meant to help distinguish the keys from
the values. For example, $myhash{tiger} has a value lion, but a key tiger. On
the other hand, the element $myhash{lion} has a key lion, but a value 6. Thus,
if the user enters lion on the command line, the program prints out “6”. If the
user enters tiger on the command line, the program prints out “lion”, and if
the user enters bear, then the program prints out “6 lions”. Remember that
the easiest way to think of a hash is like an array, but where the individual
elements are named, rather than numbered.

Notice too how the array element $ARGV[0] can be used as the key of
%myhash. In this case, the string contained in $ARGV[0] is used as the name/
key of %myhash.

We now have enough funny symbols for Perl data types that it is conveni-
ent to review them:4

$a variable
%a hash
@a array
$a{name} hash element
$a[1] array element
A filehandle

There are a number of functions that are used with hashes, and I will go
through each of them now.

7.6.1 exists()

The exists() function returns true if its argument actually exists. It is particu-
larly useful for checking if some particular hash-key combination is actually
defined. For example, we can add a clause to the program above to check
whether the command-line argument entered by the user is actually an exist-
ing key of %myhash:

Text Manipulation 109

hash2.pl

$myhash{lion} = 6;
$myhash{tiger} = "lion";
$myhash{bear} = $myhash{lion} . " " . $myhash{tiger} . "s";
if (exists($myhash{$ARGV[0]})) {

print($myhash{$ARGV[0]} . "\n");
} else {

print("Not a key in this hash!\n");
}

Note that if no argument is entered on the command line, the program treats
that as an instance of a nonexisting hash key.

7.6.2 delete()

Another very useful function for hashes is delete(), which removes a hash
element. The following program exemplifies. First, like the previous pro-
grams exemplifying hashes, it creates a hash with several named elements. It
then goes into a loop, prompting the user to enter new hash elements. If the
user enters an existing hash key, it is deleted; if the user enters a nonexisting
hash key, it is added.

hash3.pl

$myhash{lion} = 6;
$myhash{tiger} = "lion";
$myhash{bear} = $myhash{lion} . " " . $myhash{tiger} . "s";
enter();

while (length($line) > 0) {
if (exists($myhash{$line})) {

print("The value of \$myhash{$line} was: $myhash{$line}\n");
delete($myhash{$line});

} else {
print("New key!\nEnter a value: ");
$val = <STDIN>;
chomp($val);
$myhash{$line} = $val;

}
enter();

}

110 Text Manipulation

sub enter {
print("Enter a key: ");
$line = <STDIN>;
chomp($line);

}

There are three parts to the program. The first part initializes the hash as
usual, with the same key–value pairs as the preceding programs. The second
part of the program is a subroutine called enter(), which collects input from
the user, puts it in a variable $line, and chomps off the terminating return.

The main part of the program is a while-loop, which iterates as long as the
user entered something to the enter() subroutine. Within the while-loop, there
is an if-test, which checks if what the user entered is a valid key in $myhash.
If it is, its value is printed out and it is removed from the hash with delete().
If it is not, then the user is prompted for a value, and the new key–value pair
is added to the hash.

Note especially the first print() statement in the if-structure, informing the
user of the current value of the key entered. Notice how the backslash is used
so that the literal string $myhash{ . . . } can be represented in the first part of
the string. There’s nothing especially new here, but it shows once again how
when using Perl, one must attend to the niceties of putting backslashes in the
right places.

7.6.3 keys()

Perl also offers a function keys() which is extremely useful for iterating through
the keys of a hash. What it does is return all the keys of a hash as a list. Thus
keys(%myhash) returns a list of all the keys in %myhash. Let’s exemplify
this by revising the hash3.pl program above. This program prints out the
contents of the hash before prompting the user to enter a key. It responds to
that key just like the preceding program:

hash4.pl

$myhash{lion} = 6;
$myhash{tiger} = "lion";
$myhash{bear} = $myhash{lion} . " " . $myhash{tiger} . "s";

enter();

while (length($line) > 0) {
if (exists($myhash{$line})) {

delete($myhash{$line});
} else {

Text Manipulation 111

print("New key!\nEnter a value: ");
$val = <STDIN>;
chomp($val);
$myhash{$line} = $val;

}
enter();

}

sub enter {
printall();
print("Enter a key: ");
$line = <STDIN>;
chomp($line);

}

sub printall {
foreach $key (keys(%myhash)) {

print("$key\t$myhash{$key}\n");
}

}

The program adds a new subroutine printall() which prints out each key–
value pair in the array. It does this by using keys() to return a list of keys, and
foreach to step through that list assigning each key to the variable $key.

It is extremely important to note that keys are returned in no specific
order. It is neither alphabetical or chronological. Rather, the order depends
on Perl’s internal treatment of hashes. However, if you do want to examine
the keys in a specific order, it is a simple matter to prefix the keys() command
with the sort() command. The following program simply adds in a case-
insensitive sorting of the keys:

hash5.pl

$myhash{lion} = 6;
$myhash{tiger} = "lion";
$myhash{bear} = $myhash{lion} . " " . $myhash{tiger} . "s";
enter();

while (length($line) > 0) {
if (exists($myhash{$line})) {

delete($myhash{$line});
} else {

print("New key!\nEnter a value: ");
$val = <STDIN>;

112 Text Manipulation

chomp($val);
$myhash{$line} = $val;

}
enter();

}

sub enter {
printall();
print("Enter a key: ");
$line = <STDIN>;
chomp($line);

}

sub printall {
foreach $key (sort({lc($a) cmp lc($b)} keys(%myhash))) {

print("$key\t$myhash{$key}\n");
}

}

The only addition here is sort {lc($a) cmp lc($b)} before the keys() command.

7.6.4 values()

Perl also offers a command for stepping through the values of a hash, but it
is far less useful. In its bare form, values() can always be replaced with a call
to keys() and then using the respective key to access the relevant value. The
following program exemplifies:

hash6.pl

$myhash{lion} = 6;
$myhash{tiger} = "lion";
$myhash{bear} = $myhash{lion} . " " . $myhash{tiger} . "s";

print("using \"values\"\n");
foreach $val (values(%myhash)) {

print("value:\t$val\n");
}

print("\nusing \"keys\"\n");
foreach $key (keys(%myhash)) {

print("value:\t$myhash{$key}\n");
}

Text Manipulation 113

However, if you wish to return a sorted list of the values in a hash, then
values() is quite convenient. The following program shows how this is done,
and it also shows how it can be done less conveniently using keys():

hash7.pl

$myhash{lion} = 6;
$myhash{tiger} = "lion";
$myhash{bear} = $myhash{lion} . " " . $myhash{tiger} . "s";

print("using \"values\"\n");
foreach $val (sort(values(%myhash))) {

print("value:\t$val\n");
}

print("\nusing \"keys\"\n");
foreach $key (keys(%myhash)) {

push(@myarray, $myhash{$key});
}
foreach $index (sort(@myarray)) {

print("value:\t$index\n");
}

As before, the hash is initialized at the beginning of the program. The
next few lines add sort() to the code for stepping through the values of a
hash. Finally, the last few lines show how the values of a hash can be sorted
without recourse to values(). First, you can use keys() to access the values
of the hash, pushing each value onto a new temporary array. You then
use foreach and sort() to print out the values in sorted order. Notice, incident-
ally, that this program demonstrates that sort() can also be used with array
elements.

7.6.5 each()

Finally, Perl offers a final command that returns entire key–value pairs: each().
The following program exemplifies:

hash8.pl

$myhash{lion} = 6;
$myhash{tiger} = "lion";
$myhash{bear} = $myhash{lion} . " " . $myhash{tiger} . "s";

114 Text Manipulation

while (($key, $value) = each(%myhash)) {
print("$key:\t$value\n");

}

Here, we step through the elements returned by each() with a while-structure.
Since each() returns a list of elements, we enclose our variables in parentheses.
Moreover, we cannot use foreach with each() because foreach only works
with singleton elements, rather than lists.

The each() command is of limited utility, but we include it for completeness.

7.7 Concordances

This chapter has introduced some of the essential tools that Perl offers for
text manipulation. In this section, we use these to develop several programs
for building concordances of various types. A concordance is a list of the
words that occur in a text. With the tools from this chapter, we can construct
concordances quite easily.

Here’s a very simple program that simply counts the occurrences of words
in a file:

conc1.pl

open(F, $ARGV[0]) or die("Enter a file name\n");

while ($line = <F>) {
chomp($line);
@words = split(/[\.\?,!;:]+/, $line);
foreach $word (@words) {

$conc{$word}++;
}

}

close(F);

foreach $word (sort(keys(%conc))) {
print("$word:\t$conc{$word}\n");

}

The program takes a filename as a command-line argument. There is then a
while-loop to read the file line by line. Each line is split up into words and the
words are added to an array. The words in the array are then added to a hash
%conc one by one. (Recall the way ++ works with uninitialized variables in

Text Manipulation 115

a numerical context: it sets the initial value to 0.) If the hash key is new, it is
assigned the value of 1. If the key already exists in the hash, its value is
augmented by one.

This concordance is only partially successful. There are two obvious flaws.
First, it counts capitalized instances of a word separately from lower-case
instances. Second, it sorts these separately. The following revision addresses
these problems, by converting all words to lower case before adding them to
the array:

conc2.pl

open(F, $ARGV[0]) or die("Enter a file name\n");

while ($line = <F>) {
chomp($line);
@words = split(/[\.\?,!;:]+/, $line);
foreach $word (@words) {

$word = lc($word);
$conc{$word}++;

}
}

close(F);

foreach $word (sort(keys(%conc))) {
print("$word:\t$conc{$word}\n");

}

While this would seem to solve the problem, it does so by obliterating the
difference between capitalized and lower-case letters in all locations. Thus,
when a word such as “John” occurs in the middle of a sentence, we want to
preserve the capitalization, and our program loses this.

Let’s now write a program that keeps track of the correct capitalization of
a word. The rules of capitalization in English would seem straightforward.
All words are capitalized at the beginning of a sentence; proper nouns are
capitalized everywhere.

First, the program must distinguish between sentence-initial words and all
other words. If a word is capitalized in medial position, then it is a proper noun
and its capitalization is preserved. The program must also have an algorithm for
dealing with sentence-initial words. This, in fact, is a rather complex problem.
Let’s have the program solve it by comparing sentence-initial words to medial
words. For example, if the program finds sentence-initial “Hats”, and finds
medial “hats”, but not medial “Hats”, it will convert “Hats” to lower case and

116 Text Manipulation

thus treat it as a normal noun. If the program finds sentence-initial “Hortence”,
and finds medial “Hortence”, but no medial “hortence”, then it will treat the
sentence-initial word as a proper noun. This will work in the general case,
but can fail just in case the text is skewed in the following way. Imagine, for
example, that the text contains the proper noun “John”, but only in sentence-
initial position. On the other hand, for some reason, all the sentence-medial
occurrences are of the common noun “john” (which has several other mean-
ings). In such a case, the algorithm would fail. I leave this possibility aside.

There is another possibility as well. Imagine that a text contains medial
instances of “John” and “john”. What should the algorithm do then? The
following program treats such cases as proper nouns. The assumption is that
it would be exceedingly unlikely for a common noun such as “john” to occur
sentence-initially.

Let’s go through the program slowly and see how it works. First, the
program is invoked with a command-line argument which gives the name of
the file to be concordanced. The program first opens this file. Next, the
program sets the value of a flag that it uses to keep track of whether the
current word is at the beginning of a sentence or not. The logic is that words
and punctuation will be read from the file one by one. If a sentence-final
punctuation mark is read, the flag is set to 1, or true. Once the program has
processed a sentence-initial word, the flag is set back to 0, or false:

conc3.pl

open(F, $ARGV[0]) or die("Enter a file name\n");

$initial = 1;
. . .

The next bit of the program is a large while-structure for iterating over the
lines of the file. Each line is read, the final return is stripped off, and then it is
split up into words:

. . .
while ($line = <F>) {

chomp($line);
@words = split(/([\.\?,!;:]+)/, $line);
. . .

Notice how the characters that are fed to split() for separating words are put
into parentheses. Recall that parentheses here force split() to return not just
the tokens, but the separating characters in the list. We will use these charac-
ters to set the $initial flag.

Text Manipulation 117

The next part of the program is a large foreach structure for iterating
through the words (and punctuation!) returned by split(). The basic idea
here is to monitor the current token for whether or not it is an instance of
sentence-final punctuation. This is used to set $initial. At the same time, the
value of $initial is monitored. There are four basic cases to consider, separ-
ated here at the highest level into four separate if/elsif/else blocks. The first
checks if the current word is sentence-final punctuation. If so, it sets the
$initial flag to true. The second clause checks if the current word is some
other sort of word-separating punctuation. If so, nothing happens. The third
clause handles a sentence-initial word, and the fourth clause handles a
sentence-medial word. In both cases, the words are added to a hash and the
number of occurrences is summed:

. . .
foreach $word (@words) {

if ($word = ˜ /[\.\?!]+/) {
$initial = 1;

} elsif ($word = ˜ /[;:]+/) {
#do nothing in this case!

} elsif ($initial) {
$initial = 0;
$init{$word}++;

} else {
$medial{$word}++;

}
}

}

close(F);
. . .

The next bit of code collapses the two hashes according to the algorithm
given above. It iterates over all the words in the hash of sentence-initial
words. It creates a lower-case copy and then checks the sentence-medial hash
for whether the word – or lower-case copy – exists. Finally, the merged hash
is printed out after being sorted in a case-insensitive fashion:

. . .
foreach $initword (keys(%init)) {

$lcword = lc($initword);
if (exists $medial{$initword}) {

$medial{$initword} += $init{$initword};
} elsif (exists $medial{$lcword}) {

118 Text Manipulation

$medial{$lcword} += $init{$initword};
} else {

$medial{$initword} = $init{$initword};
}

}

foreach $word (sort({lc($a) cmp lc($b)} keys(%medial))) {
print("$word:\t$medial{$word}\n");

}

7.8 Bigrams

In this section, we develop a program for collecting two-letter sequences, or
bigrams. This is a very similar task to concordancing and we make use of
similar techniques.

A text can be conceived as a sequence of elements: letters/sounds, words,
sentences, and so on. In computational linguistics, bigram distributions can
be used to model a text (or language). It is therefore necessary to collect
frequency information about bigrams to construct these models.

The program below collects bigram frequency information for within-word
bigrams. The logic of the program is as follows. We collect the name of the
file on the command line. We then loop through the file line by line, using
chomp() to strip the line-final return. Within this loop, we use split() to separ-
ate the line into individual words, and then use foreach to consider each
word in the line. Within this embedded loop, we then iterate across each
word using substr(). This function takes three arguments and returns a
substring of its string argument. The first argument is a string. The second is
an index for where the substring begins. The third is an integer that repres-
ents the length of the substring. We can use substr() to extract the bigrams of
each word. We use a hash to keep track of the frequency of each bigram.
Finally, we print out each bigram and its frequency:

bigrams.pl

open(F, $ARGV[0]) or die("Can't open file!\n");

while ($line = <F>) {
chomp($line);
@words = split(/\W+/, $line);
foreach $word (@words) {

$wordlength = length($word);
if ($wordlength > 1) {

for ($i = 0; $i < $wordlength - 1; $i++) {

Text Manipulation 119

$bigram = substr($word,$i,2);
$bigrams{$bigram}++;

}
}

}
}

close(F);

foreach $bigram (sort(keys(%bigrams))) {
print("$bigram\t$bigrams{$bigram}\n");

}

7.9 Summary

This chapter has introduced some of the most important Perl functions and
structures for manipulating text.

First, we introduced the commands for string replacement, either on the
string level or on the character level. The s/// command is used for string
substitution and the tr/// command is used for character substitution.

We also introduced the split() and join() commands which allow us to
break a string up into word- or sentence-like tokens, and assemble the same.

Third, we went over the sort() command which provides for any type of
sort.

Most importantly, we introduced hashes, a data structure that is extremely
useful for text manipulation. Hashes are like arrays in that they represent
a group of related variables. However, hashes provide a “name”, rather
than an index for its group of variables. Thus hashes define a set of named
variables.

We also covered a number of commands that are quite useful with hashes;
for example, keys(), values(), exists(), and delete().

Finally, we concluded the chapter with several programs for making con-
cordances from text files.

7.10 Exercises

1. Rewrite the replace1.pl program on page 95 using backreferences instead
of s///.

2. The replace6.pl program on page 99 can be rewritten in at least two
other ways. Do so.

120 Text Manipulation

3. The concordance program we wrote in the last section above doesn’t
work for titles. Can you revise the program so that it correctly handles a
text that includes a capitalized title or even capitalized titles in the body
of the text?

4. Notice that split3.pl on page 101 does not handle decimal points properly.
Revise it so that it does.

Notes

1 Octal numbers are base 8. Hence, octal 10 = decimal 8 and decimal 10 = octal 12.
2 It turns out that all the backslashes aren’t really necessary when we construct a

regular expression from a string variable. They don’t hurt, however, and I include
them all for simplicity.

3 Since $a and $b have this special role for Perl, you should take care not to create
your own variables with the same names!

4 There are really only two additional symbol types not in the above chart: *, which
is used for typeglobs (for example, *myglob), and &, which is used for subroutines
(for example, &mysub). These are very advanced topics, however, and are not
treated in this book.

HTML 121

Chapter 8

HTML

In this chapter, we consider the basics of HTML, “HyperText Markup
Language”. This is the basic formatting language for creating web pages. We
treat this here for two reasons. First, one of the strengths of Perl is that it can
be used over the web. You can write programs that create web pages dynami-
cally, and that respond to data that is fed to your program from web pages.
A second reason is that Perl can be used to retrieve and parse web pages, and
this can be a valuable tool for data collection and analysis.

Learning how to create elegant and informative web materials is a huge
topic and this chapter will only treat the very basics, only what we need to
make efficient use of Perl over the web.

8.1 How the Web Works

The World Wide Web allows computers to exchange a variety of data re-
motely. The basic model is that of a server and a client. You and your web
browser are the client. Out there, in the electronic ether, are the servers.
When you sit at your computer and tell your web browser to connect to
some particular URL, or web address, you are, in fact, requesting informa-
tion from a web server. The URL you enter typically includes the name of
the server, its location in webspace, perhaps along with an indication of what
data you want it to transmit to you. For example, entering a URL such
as http://www.bananas.org/plums.html sends a request to the web server
located at www.bananas.org to send back the HTML document plums.html.

There are a number of ways the information can be transferred from the
server to the client. The one we are concerned with is HTTP, or “HyperText
Transfer Protocol”. This is the format and method by which web-based data
is sent back to your web browser. Typically, that information is organized in

122 HTML

a specific fashion: HTML. In fact, in the above example, the particular bit of
data we requested from www.bananas.org was specified as being structured
in terms of HTML.

In general, then, the web is a network of web servers, each capable of
responding to HTTP requests and sending various kinds of data to web
clients. That data is typically structured using HTML.

The other key component to HTML is that the data that is displayed in
your browser can contain links to other web addresses and data. Selecting
one of these links issues a new request to some server for new data, which
may, in turn, contain additional links. Hence the term “web”.

Those are the central aspects of HTML and the web, but the system is
more complex. The example above made it appear as if plums.html was some
bit of data already available on the www.bananas.org web server. Such
material is referred to as static content. This is often, though not always, the
case. Sometimes a web server will send data that is constructed specifically in
response to the request. This is referred to as dynamic content.

It works like this. You, the client, type in a URL at your browser; for
example, http://www.bananas.org/plums.cgi. This sends a request to the web
server www.bananas.org to send some bit of data. In this case, what actually
happens is that a program plums.cgi runs on the web server, constructing
some HTML-formatted data, and sends that to you, the client. Rather than
send you some static saved page, the plums.cgi program constructs some
tailor-made data for you. This can be a simple matter of including the current
time or date in the returned data, but it can include virtually anything a
computer program is capable of producing.

When a web server provides dynamic content, it does so by running some
sort of program. There are actually a number of paradigms for doing this,
but the most common is called CGI, or “Common Gateway Interface”. This
topic will be treated in depth in chapter 9.

There is a lot more to the web that we can’t do justice to in this text. For
example, there are other ways of producing dynamic content on a web server;
for example, Java servlets, ASP, JSP, and so on. In addition, there are also
ways to run programs on the client side; for example, Java applets, JavaScript,
Flash, and so on.

8.2 Basic HTML

In this section, I introduce the general structure of HTML documents. The
basic idea is that a document is a body of text interleaved with tags. Tags are
HTML code which instructs the web browser how to display the text. In
addition, since nontextual material can be inserted in an HTML document,
these tags can also instruct the browser where to place images, what kind of
background to display, and so on.

HTML 123

HTML tags are quite simple. They are always surrounded by angled braces
and usually come in pairs. For example, <html> . . . </html> tells the browser
that the text between the tags is encoded using HTML. Note that ending tags
are always preceded by a slash; for example, </html>. The <p> tag indicates
a paragraph break, and is optionally paired with a </p> tag. The unpaired
<hr> tag draws a line across the screen. Here is an example of a typical
HTML document:

basic1.html

<html>
<head>
<title>A basic page</title>
</head>
<body>
This page has only three things in it. There is a title at the top. There is a
line across the middle of the page below.
<hr>
There is a second paragraph right here.
</body>
</html>

This document can be created in your usual text editor. When you open it
with your web browser, it displays the following page:

124 HTML

Let’s go through the tags that are used in this example. First, there are the
surrounding <html> . . . </html> tags, indicating that this is an HTML docu-
ment. Next, there are the <head> . . . </head> tags. This is where various
declarations about the nature of the document go. For our purposes, the only
thing that goes here is the title, marked with <title> . . . </title>.

Most of the action in an HTML document will go in the <body> . . .
</body> tags. In the example at hand, the <body> tag includes some text and
the unpaired <hr> tag. The latter simply separates the text by drawing a line
across the screen.

It is important to note that line breaks and the amount of space that
separates tags and textual elements are generally irrelevant. Hence, the fol-
lowing HTML code displays exactly like the preceding:

basic2.html

<html><head><title>A basic page</title></head><body> This page has only
three things in it. There is a title at the

top. There is a line across the
middle of the page below. <hr> There is a second paragraph
right here.</body></html>

The first is better, however, because the line breaks and spacing help reveal
the structure of the document.

Let’s now go through some of the more useful tags. First, there are the <p>
and
 tags, for breaking text into paragraphs or just to separate lines. The
difference is that the former inserts space between the separated text, while
the latter does not. Here is an example:

basic3.html

<html>
<head>
<title>Line breaks</title>
</head>
<body>
Here is the first line

Here is the second line

A third line<p>
And a fourth line!
</body>
</html>

This program produces this output:

HTML 125

HTML also provides for headings at six different levels. How precisely
these are formatted is controlled by settings in the browser. Thus, if you tag
some text as being heading level one, <h1> . . . </h1>, you can’t guarantee
precisely how that will display for each user. Typically, it involves a larger
typeface and some preceding and following spacing, but this isn’t guaran-
teed. Here is an HTML document that exemplifies all the headings:

basic4.html

<html>
<head>
<title>Different headings</title>
</head>
<body>
<h1>heading 1</h1>
Some text.

<h2>heading 2</h2>
More text.

<h3>heading 3</h3>
and more.

<h4>heading 4</h4>
even more.

126 HTML

<h5>heading 5</h5>
too much.

<h6>heading 6</h6>
way too much.

</body>
</html>

Here is how those headings are displayed in my own browser:

In addition, HTML offers tags for indicating formatting. These can refer
either “logical” formatting, like the . . . and . . . </
em> (for “emphatic”) tags, or “specific” formatting, like the <i> . . . </i> (for
“italic”) and . . . (for “bold”). The logical formatting cannot be
guaranteed typographically, but the specific formatting can.

HTML 127

In addition, there is <pre> . . . </pre> which turns off all formatting and
sets the tagged text in a monospaced font. In this case, line breaks and spaces
in the raw HTML do matter. Here is an example of all these. The example
also includes an instance of the <center> . . . </center> tag, for centering text:

basic5.html

<html>
<head>
<title>Logical and specific formatting</title>
</head>
<body>
<center>This sentence contains strong and
emphatic tags.</center>
<p>
This one has bold and <i>italic</i> text.
<p>
<pre>
Here is some
unformatted and very ugly
text.
</pre>
</body>
</html>

Here is how this file displays (given the settings for logical formatting in my
own browser):

128 HTML

Finally, HTML provides for several different kinds of list structures includ-
ing ordered lists (tagged with . . .) and unordered lists (tagged
with . . .). The latter provide for bulleted lists and the former for
numbered/lettered lists. Each allows for embedded lists as well. List items in
both cases are marked with the optionally symmetric tag . Here is a
simple example of embedded lists of both types:

basic6.html

<html>
<head>
<title>Ordered and unordered lists</title>
</head>
<body>
Here are three levels of embedded lists:<p>

first item highest level
second item highest level

first item intermediate level
second item intermediate level

first item lowest level
second item lowest level

</body>
</html>

Here is how these look:

HTML 129

Notice that the tabbing in the source HTML file is totally irrelevant; it is
there to help understand the structure of the document and is ignored com-
pletely when the HTML is interpreted by the browser.

The list structure given above provides a nice example of an important
point about HTML tags. Notice that paired tags can be nested inside each
other. Thus, in the previous example, one list is embedded in another em-
bedded in another. It is imperative that such nesting be “proper” when it
occurs. Thus the first of the following sequences is an instance of proper
nesting and well-formed in HTML. Although it might appear that it should
give the same output, the second is not properly nested and will be rejected
by your browser:

<head><title>A title</title></head>
<head><title>A title</head></title>

Finally, certain characters cannot be entered as is, but must be entered
using special alternate characters. The most frequently occurring ones are <,
>, ”, and &. The first two are used to demarcate tags and the last is used
itself to signal a special character. To display one of these characters in
HTML, you use a special escape sequence. Such sequences always begin with
an ampersand and end with a semicolon. Here is a table of the most frequent
ones:

< <
> >
& &
" ”

Here is an example of a file that uses some of these symbols:

basic7.html

<html>
<head>
<title>Special characters</title>
</head>
<body>
The "" tag is used to indicate important
&
critical material.
</body>
</html>

130 HTML

There are many many more tags to HTML and many nuances that
are glossed over here, but the above tags are sufficient to exemplify CGI
scripts.

8.3 Mounting Your Pages

So far, you have created our web pages on your own personal machine and
opened them with your own personal browser. To actually put them on a
web server, you need to have access to a server. This is typically not some-
thing you would do with your own personal computer over the phone lines.
Rather, to mount your HTML code on the web, you need to get an account
on a computer that hosts a web server. If you have an account on a main-
frame computer at your work or school, you may already have the power to
mount pages on the web. You should contact your computer system admin-
istrator to find out if this is so, and how to do this on your own particular
system. If you don’t have such an account, there are many companies that
provide this service. Some even do so for free (in exchange for advertising or
similar inducements).

Here’s how this looks:

HTML 131

8.4 Links

HTML derives its name from the fact that HyperText can contain hyper-
links. Hyperlinks are points in an HTML document that can be clicked to
take the client to another point in the document, another document or site
altogether, or perform some sort of action. In this section, we cover the
basics of hyperlinks.

A hyperlink is simply a tag with an added parameter to indicate where the
link should take the user. The basic tag is <a> . . . , but it is never used
without the added parameter. There are several choices. To indicate where
the link should go, the parameter added is href. Its value is indicated by
following the parameter with an equals sign followed by its value in paren-
theses. The text in between the tags indicates what text is highlighted for the
user to select to follow the link.

For example, consider the following HTML:

Peaches

This hyperlink displays the text “Peaches”. When this link is selected, the
browser will make an HTTP connection to the URL indicated. Note that the
URL is enclosed in quotes. Here is an example of a page that displays links to
all the example pages we have constructed so far:

links1.html

<html>
<head>
<title>Sample hyperlinks</title>
</head>
<body>
Here are some sample hyperlinks:<p>

Basic tags
Basic tags again
Line breaks
Headings
Formatting
Lists
Special characters

</body>
</html>

132 HTML

Here is how it looks:

Notice that there is no need to include the name of the web server if the
page linked to is on the same server. In addition, the code above assumes that
the pages linked to are in the same directory as the links1.html page.

It’s also possible to link to a specific location in the same page or a differ-
ent page. First, the relevant location must be marked with an anchor tag.
Then the hyperlink must refer to that anchor location. Anchor tags have the
following syntax:

some text

This would create an anchor called anchorname at this location. This could
be linked to within the same document with the following hyperlink:

some text

Clicking on the text in the hyperlink will take the user to the named anchor.
If the anchor is in a document called plums.html and the hyperlink is in a
different document, then the following hyperlink would work:

some text

Here is a simple example. Here is a simple HTML page with several anchors.
The page is a hypothetical discussion of the intricacies of phonology as a
discipline:

HTML 133

anchor1.html

<html>
<head>
<title>Some anchors</title>
</head>
<body>
<hr>
<h1>Phonology</h1>

Phonology is the study of the organization of sounds in a language.
It focuses on the unconscious knowledge a speaker
has of what sounds are possible in their language (inventory) and how those sounds can be
sequenced (phonotactics).

<h2>Inventory</h2>

For example, English has an aspirated bilabial stop [p], but Spanish
does not. On the other hand, Spanish has a voiced bilabial fricative [β],
but English does not.

<h2>Phonotactics</h2>

For example, words in English can begin with an [s] followed by another
consonant, e.g. [spay] "spy". In Spanish, such words are impossible.

<hr>
<h1>Phonetics</h1>

Phonetics is not phonology.

<hr>
</body>
</html>

The only novel features on this page, other than the anchors, are the follow-
ing. First, this page shows embedded anchors, within formatting commands.
Second, this page provides an example of yet another special character in
HTML: β which is used for β.1

Here is how this page looks:

134 HTML

Notice that the anchors are not displayed per se. That is, there is no special
rendering of text that is marked as an anchor.

Here is a separate page that contains links to the anchors we have placed
in the preceding page:

links2.html

<html>
<head>
<title>Phonology & Phonetics</title>
</head>
<body>
<h3>Some interesting areas of linguistics</h3>

Phonology

Inventory

HTML 135

Phonotactics

Phonetics

</body>
</html>

Notice how the links to the anchors must refer to the containing page as well,
since it is a different page from this one. In addition, no web server address is
given, since it is assumed that both pages are in the same directory on the
same server.

Here is how this second page looks:

There is much more to say on the topic of links and anchors, but this will
suffice to demonstrate the power of Perl CGI scripts.

8.5 Searching the Web

In this section, we develop a simple program that searches the web for spe-
cific text strings.2 The basic idea is that the web constitutes a huge repository
of language data that we can profitably exploit using Perl. The program
described here starts from a single URL, and searches through that page for

136 HTML

matches to the search term and any links. If there are matches, they are
printed out. The process repeats with any links it finds until it reaches a
specified number of matches.

The program makes use of the LWP::Simple module. This is a standard
Perl module, but is not necessarily already installed in your Perl system. To
check if it is installed in your system, write a program that includes a use
statement with this module name. If that runs satisfactorily, then the module
is already installed. If not, then you may be able to install it yourself from the
source files at www.cpan.org.3

The program below does a certain amount of work parsing HTML code;
that is, separating HTML tags from text. There are actually free Perl modules
that do this as well, but for our purposes here, there would actually be more
overhead to learning how to use these modules than writing the parsing code
ourselves.

Let’s consider the general logic of the program. It is invoked with three
command-line arguments: a URL, a search term, and the maximum number
of hits. The main data structures of the program are two arrays: one to keep
tabs on links found that haven’t yet been checked, and the other to keep
track of links that have already been checked (so they aren’t checked twice).

Starting with the seed URL given on the command line, the program goes
through the HTML page extracting matches with the search term and adding
links to the set of links to be checked. The only real complexity comes from
checking that any new links added haven’t already been checked.

Let’s now go through the program step by step. The program begins with
a use statement, signalling to Perl that it can make use of the LWP::Simple
module. This module has a single function that we want: get(), which will
retrieve a web page given a URL argument. Next we initialize several vari-
ables: $linkmax for the maximum number of pending links, @urlstodo to
hold the links to check, $pattern to hold the search term, and $hitmax to
hold the maximum number of hits:

websearch.pl

use LWP::Simple;

if ($#ARGV != 2) {
die("usage: perl websearch.pl URL pattern hits\n");

}

$linkMax = 50;
push(@urlstodo, $ARGV[0]);
$pattern = $ARGV[1];
$hitmax = $ARGV[2];
. . .

HTML 137

The body of the program is a while-structure that iterates over the links in
the @urlstodo array checking for the search term and adding new links when
they are found. The loop ends when there are no more links to check or the
appropriate number of hits have occurred.

Each time through the loop, a counter holding the number of links checked
is incremented. There is then an if-structure that prints an update message to
STDERR every ten links. The current URL is put in a local variable $theURL
and added to the list of URLs already done. The contents of the URL are
retrieved with the get() function of the LWP::Simple module. The text re-
turned by get() is then split into separate lines which we iterate through. If
the pattern is matched, the URL and line are printed. If the line contains a
link to an HTML document, we use a defined subroutine addURL() to add it
to @urlstodo:

. . .
while ($hits < $hitmax and $#urlstodo > -1) {

$linksChecked++;
if ($linksChecked % 10 == 0) {

print(STDERR "Checked: $linksChecked\n");
}
$theURL = pop(@urlstodo);
push(@done, $theURL);
$mycontent = get($theURL);
if ($mycontent) {

@lines = split(/\n/, $mycontent);
foreach $line (@lines) {

if ($line = ˜ /$pattern/) {
print("$theURL:\t$line\n\n");
$hits++;

}
if ($line = ˜ s/ ˆ.*(href |HREF)="([ˆ"]+

.
html?)".*$/\2/) {

addURL($theURL, $line);
}

}
}

}
. . .

The addURL() subroutine takes two arguments: the current URL and the
new link. It does three things. First, it checks if the link is relative to the
current URL. If it is, it reconstructs the full URL using the current URL as a
base. Next, it checks if the link is already in @urlstodo or @done. If it is, then
the subroutine exits without doing anything further. If it isn’t in either of
those arrays, it is added to @urlstodo:

138 HTML

. . .
#adds the url to the list of urls if it's not already there and hasn't already
#been checked.
sub addURL {

my($url);
if ($#urlstodo < $linkMax) {

my($prefix) = shift();
my($suffix) = shift();
if ($suffix ! ˜ / ˆhttp/) {

if ($prefix = ˜ /\/$/) {
$suffix = $prefix . $suffix;

} else {
$suffix = $prefix . "/" . $suffix;

}
}
foreach $url (@done) {

if ($suffix eq $url) {
return();

}
}
foreach $url (@urlstodo) {

if ($suffix eq $url) {
return();

}
}
push(@urlstodo, $suffix);

}
}

Notice finally, that there is a maximum to @urlstodo. This keeps the pro-
gram efficient, as the number of links can grow very quickly.

8.6 Summary

This chapter has introduced the basics of HTML, “HyperText Markup
Language”. We discussed the workings of the web and presented much of
the structure of HTML. We presented the basic tags for structuring and
formatting a web page and introduced the tags for hyperlinks and anchors.
We have also developed a program that runs over the web for retrieving,
parsing, and searching web pages. In the next chapter, we will make use of
all of this to develop Perl programs that run over the web in the other
direction.

HTML 139

8.7 Exercises

1. Create a web page that defines and exemplifies all the tags we have used.
2. Write a program that will convert logical to specific formatting and vice

versa.
3. Write a program that will concordance an HTML document.
4. Write a program that will strip all HTML tags from a document.
5. Write a program that will check an HTML page for proper nesting.
6. Write documentation for the preceding program in HTML.

Notes

1 This is the symbol in the International Phonetic Alphabet for a voiced bilabial
fricative.

2 This program is inspired by work of Will Lewis: “The web as linguistic resource:
methods for harvesting and analyzing linguistically relevant data off the web”,
manuscript, University of Arizona.

3 See appendix D. The module is already preinstalled in the ActiveState™ Perl distri-
bution for Windows. If you’re working on a large multi-user system, you should
ask the system administrator to install it for you.

140 CGI

Chapter 9

CGI

In this chapter, we treat CGI, or “Common Gateway Interface” pro-
gramming. We can write Perl programs that run over the web in response to
user queries.

This is a complex topic, but the advantages are so dramatic that it is
definitely worth covering. Running a program over the web allows you to
collect or display data remotely. It allows you to make use of HTML for
graphical interfaces and allows you to draw on – or present your data to – a
virtually limitless mass of people.

The basic idea is that when a web client makes a request of a web server,
that server runs a Perl program, rather than sending back some specific fixed
bit of information.

9.1 CGI Access

So far, we have been writing programs that you can run on your own per-
sonal computer, or on a mainframe computer on which you have an account.
CGI scripting requires that you have access to a web server.

It’s important to note that putting CGI scripts on the web is not as simple
as putting HTML on the web. CGI scripts are quite powerful and present
serious security concerns for a computer system administrator. If you have a
web site, you should check with your system administrator to see if you are
allowed to put CGI scripts on the web.

If you do, there are two principal ways to do this. One possibility is that
you are required to place your CGI scripts in a special directory, typically
cgi-bin. Another possibility is that while you can put your CGIs in the same
place as your HTML files, you must suffix your CGIs with a special suffix,

CGI 141

typically .cgi. In either case, there are three central steps to putting CGI
scripts on the web. First, you must determine if you have permission to do so.
Second, you must determine the particular configuration of your web server
and how it manages CGI scripts. Third, you must write your script so that
the web server invokes it with Perl, rather than some other programming
language. All three issues should be resolved with your computer system
administrator.1

In this chapter, I will assume that you have what appears to be the most
frequent setup. CGI scripts can be stored under any name, but must be stored
in a special directory cgi-bin. To force them to be invoked with Perl, the first
line of the program must be #!/usr/local/perl, where this expression includes
the path of your Perl interpreter.2

9.2 Simple CGI

Here is a maximally simple CGI program. All it does is print out a simple
page announcing its existence:

cgi1.pl

#!perl

print("Content-type: text/html\n\n");

print("<html><head><title>First CGI!</title></head><body> \n");
print("You've reached my first ");
print("CGI program.</body></html>");

On my own system, this program would be invoked with this URL:

http://hammond.ling.arizona.edu/cgi-bin/cgi1.pl

There are several important things to notice about this program. First, as
indicated in the preceding section, it begins with the statement #!perl, which
is necessary for some web servers. Second, the first thing the program does is
print out a statement that is not displayed by the browser. This statement is
something that is sent covertly by the web server when it displays an HTML
page. If your CGI program is displaying HTML content, then it must send
this line first exactly as is, including the two final returns. Here is how this
document looks:

142 CGI

HTML involves lots of extra formatting and using Perl print() statements to
print it all out can result in ungainly line lengths or many prints. A convenient
alternative is to use here-document syntax.3 Any number of lines can be grouped
into a string with the << operator. First, you define a string-terminating string. In
the example below, I use HTML. Then you decide whether you want to double-
quote or single-quote the whole expression. If you want to double-quote the
whole expression, then the multi-line string begins with <<"HTML", and the final
line must be HTML. If you want to single-quote the whole expression, then the
multi-line string beings instead with <<'HTML'. Note that there should be no
space between << and HTML, and the final HTML must appear on a line all by
itself. (Single- and double-quoting here works the same way as with other strings.)

The following program uses here-document syntax to produce the same
output as the preceding program:

cgi2.pl

#!perl

print(<<'HTML');
Content-type: text/html

<html>
<head>

CGI 143

<title>First CGI!</title>
</head>
<body>
You've reached my first CGI program.
</body>
</html>
HTML

The here-document syntax can be used in all other sorts of Perl programming
as well.

So far, CGI programs are not any more useful than HTML. The following
HTML page will of course display the same thing as the preceding two CGI
programs:

fakecgi.html

<html>
<head>
<title>First CGI!</title>
</head>
<body>
You've reached my first CGI program.
</body>
</html>

Where CGI programs have a real use is when dynamic content is called for.
A very simple example of this is a program that displays the current time.

To do this, we make use of the localtime() command. The command is
actually quite powerful and has several options. If it is given no argument, it
automatically takes the output of time() as its argument. (Recall that time()
returns the number of seconds since January 1, 1970.) If it occurs in a
context where it should only return a single value, then it returns a string
displaying the current date and time. If, on the other hand, it occurs in a list
context, then it returns a nine-member list holding all the specifics of the
current time. The following table shows these nine values:

0 seconds
1 minutes
2 hours (24-hour clock)
3 day of the month
4 month (0–11)
5 year (four digits)
6 day of the week (0–6)
7 day of the year (1–366)
8 daylight savings (0 or 1)

144 CGI

This is a very useful set of information, but for our purposes, it suffices to
simply return the simple string.

The following CGI program displays the local time and date in response to
an HTTP query:

cgi3.pl

#!perl

$date = localtime();

print(<<"HERE");
Content-type: text/html

<html>
<head>
<title>What time is it?</title>
</head>
<body>
The time here is: $date.
</body>
</html>
HERE

The program begins by assigning the current time to a variable $date. Then it
uses here-document syntax to construct the HTML and print it. Since we
want to interpolate the variable, we put double quotes around the first HERE.
Here’s how the CGI displays:

CGI 145

Try this yourself. Make sure to hit your browser’s reload button several
times and note how the time is updated each time the program is run. This is,
of course, what we would expect of a program running on the server. More-
over, this kind of behavior is impossible in a static HTML document.

9.3 Finding CGI Errors

Working with CGI programs can be quite difficult, because when there is an
error in your program the web server does not display the error at the com-
mand line. Typically, if your CGI program has some sort of error, the web
server will add that error to its general “error log”. Finding the error log and
finding your own program’s error in that log can be quite difficult.

It is therefore useful, during development, to have errors displayed in your
web browser. This can be done by adding the following line near the begin-
ning of your CGI program:

use CGI::Carp('fatalsToBrowser');

This command instructs Perl to display any CGI errors in the web browser by
making use of the CGI::Carp module (standardly included in all Perl imple-
mentations). If you use this, don’t forget to remove this line once your pro-
gram is running properly.

9.4 HTTP Requests

Any information available to a program running on the server is available to
your CGI program. However, it also can obtain information about the client,
the machine making the request. All of this information is automatically
available to your program through the %ENV hash. In fact, this hash structure
is available to normally running programs as well. Here is a program that will
display the elements of %ENV along with their values for a normal program:

env1.pl

foreach $key (keys(%ENV)) {
print("$key\t$ENV{$key}\n");

}

These values include all the environment variables set for you in your operat-
ing system. They typically include the type of prompt, your working path,
and other similar information.

146 CGI

The following CGI program displays %ENV on a web page:

env2.pl

#!perl

print("Content-type: text/html\n\n");

print("<html><head><title>ENV information</title><head><body>\n");

foreach $key (keys(%ENV)) {
print("$key\t$ENV{$key}\n");

}

print("</body></html> \n");

The keys that show up when %ENV is accessed by a CGI program are some-
what different, including various information about the HTTP connection.
For our purposes, the most important keys are these: PATH_INFO,
QUERY_STRING, and REQUEST_METHOD. Let’s go through these.

The REQUEST_METHOD key should have the value GET. This is the kind
of HTTP request being responded to. All normal HTTP requests are GET
requests. We will see below that there are also POST requests, and that these
are also quite useful.

The PATH_INFO key may not actually show up when you invoke env2.pl
as you would expect. If, however, you suffix the CGI name in the URL with
any further hypothetical path information – for example, /linguists – then that
information will show up as the value for PATH_INFO. For example:

http://hammond.ling.arizona.edu/cgi-bin/env2.pl/linguists

Try this with env2.pl with different choices (substituting the correct server
name for your CGI programs). Notice that this additional path structure
must follow env2.pl in the URL. If it precedes it, then the server will not be
able to find your CGI program.

Finally, the QUERY_STRING key displays any information that follows the
CGI name separated by a question mark. For example:

http://hammond.ling.arizona.edu/cgi-bin/env2.pl?linguists

Again, try this yourself with different values after the question mark. As
with PATH_INFO, this information must follow the CGI program name.
Otherwise, the server will not be able to find the CGI program.

CGI 147

The difference between PATH_INFO and QUERY_STRING is immaterial at
this stage, but is significant when we treat forms below.

9.5 Using Links to Interact

Let’s now show how you can use PATH_INFO4 to handle more substantive
information transfer over the web. Here’s a rather silly example of how we
can use PATH_INFO to run our Pig Latin program (page 89) as a CGI pro-
gram. Here is the code:

piglatincgi.pl

#!perl

print(<<'HEAD');
Content-type: text/html

<html>
<head>
<title>Pig Latin CGI</title>
</head>
<body>
HEAD

if (exists($ENV{PATH_INFO})) {
$word = $ENV{PATH_INFO};
$word =˜ s/ ˆ\///;
print("You entered $word.<p> \n");
print("The Pig Latin form is: ");
$c = "[bcdfghjklmnpqrstvwxzBCDFGHJKLMNPQRSTVWXZ]";
$v = "[aeiouyAEIOUY]";
if ($word =˜ / ˆ[yY]?($v.*)$/) {

print("$1-yay");
}elsif ($word =˜ / ˆ($c+)(.*)$/) {

print("$2-$1ay");
}
print(".<p>\n");

}else {
print("You didn't enter a word in the URL!<p> \n");

}

print(<<'TAIL');
</body>

148 CGI

</html>
TAIL

As usual, the program begins with #!perl. It then uses here-document syntax
to print out the HTML header. It then checks if %ENV has a PATH_INFO
key. If it does, then it assigns the value to a variable $word. The leading slash
is stripped off and the program prints out the word entered. The central logic
of the program is lifted straight from piglatin1.pl. If there is no PATH_INFO
key, if no word was entered after the program name in the URL, the program
informs the user of that. Finally, the remaining HTML is printed.

Here is an example of how the program is invoked (on my own server):

http://hammond.ling.arizona.edu/cgi-bin/piglatincgi.pl/saguaro

And here is the output:

This program is somewhat awkward, since the word to be converted has
to be entered as part of the URL. Let’s give another program where the
information in the URL is provided in another way. The following program
is a first attempt at running experiments over the web.

For demonstration purposes, the experiment is a very simple one. The user
is presented a series of words and asked to judge the number of syllables in
each word. The user will be presented with a web page, with appropriate
instructions and a series of links to indicate their choice. Here’s an example
of what this display looks like:

CGI 149

Each response is a hyperlink where the particular response triggers the next
item and records the user’s response to the current item.

The key to making this system work is to keep in mind that the web server
and CGI program may be interacting with many users at the same time.
Thus, we must have a system in place that keeps track of what items a user
has already seen and what their responses to those items were.

The program below does this by updating the PATH_INFO value every time
a response is made. When a user makes their response and selects a hyperlink,
that hyperlink will include in the PATH_INFO part of the URL what the
current response is and what the preceding responses have been. In this way,
the CGI program will be able to send back an item that that user hasn’t seen
yet, or end the experiment when the user has responded to all items.

What we need then is a way of encoding what items a user has seen and
what their responses have been. To do this, the following program encodes
each item as a two-digit number and each response as a single-digit number.
The PATH_INFO part of the URL is then a series of numbers; for example,
/032051003, where every three digits encodes an item–response pair. In the
current example, we can break the string up as follows: (03-2)(05-1)(00-3).
This subject has seen items 3, 5, and 0, and has given the responses 2, 1, and
3, respectively.

Let’s now look at the code. There are a number of interesting bits, so we’ll
go through this one slowly. The program begins with the usual #!perl declara-
tion required for CGI programs. It then sets several variables. The @words
array is for the experimental items. Each time we check the PATH_INFO key
for which items the current user has already seen, we will do so by stripping

150 CGI

out items from the @words array. Later, we will still need access to the
original order of items, so we make an immediate copy in @wordssave. The
third variable is just to keep track of the address of the current CGI:

expcgi1.pl

#!perl

@words = ("hat", "towel", "cowl", "flour", "flower", "happy", "charity");
@wordssave = @words;
$mycgiurl = "http://www.bananas.org/cgi-bin/expcgi1.pl";
. . .

Next comes a rather large nested if-structure. At the outermost level, it
tests if the current request has a value specified for the PATH_INFO key. If it
does, then the experiment has already begun. If it has not, then there is an
else-clause to begin the experiment.

If the PATH_INFO key exists, then the subject has already completed some
items. In that case, we need to determine which items they have completed
and if there are any remaining items. If there are remaining items, then a new
item must be selected and presented. The first few lines then use pattern-
matching to figure out which items have already been presented. They do this
by creating a new array of indices from the item numbers recovered from the
PATH_INFO string. It then pops off items that have already occurred from
the original @words array. If any items remain, then the next item is chosen
from this set. If no items remain, then a final message is displayed and the
data is stored in a file on the server:

. . .
if (exists($ENV{PATH_INFO})) {

#get results up to this point
$res = $ENV{PATH_INFO};
$res =˜ s/ ˆ\///;
$ressave = $res;
while (length($res) > 0) {

$res =˜ s/ ˆ(\d\d)\d//;
$already = $1;
push(@nums, $already);

}
@nums = sort(@nums);
while ($#nums > -1) {

$already = pop(@nums);
splice(@words, $already, 1);

CGI 151

}
#are there still items to run?
if ($#words > -1) {

$thisword = getrandom();
displayItem($thisword);

#if there are no more items; end of experiment
} else {

#save results to file
open(F, ">>cgi-res.txt") or die("Can't open results file!\n");
my($date) = localtime();
print(F "$ressave\t$date\n");
close(F);
thankyou();

}
} else {

#begin experiment
$thisword = getrandom();
displayItem($thisword);

}
. . .

Notice how file IO is as you would expect. You should be careful here,
though. There are occasionally different limits put on what and where a CGI
script can write to. You should make sure that your CGI program uses
explicit path information for each file it needs, and you should test your CGI
program to make sure it can actually read and write where you want it to.5

There are three subroutines invoked by the program. The getrandom()
subroutine selects a random item from the (remaining) items in @words:

. . .
sub getrandom {

my($ind) = rand($#words + 1);
return($words[$ind]);

}
. . .

The displayItem() subroutine first recovers the original index of the current
item from the @wordssave array. It then corrects this index if necessary, so
that all item numbers in PATH_INFO are two digits long. Finally, it prints out
the HTML code. This code includes hyperlinks that are tailor-made to where
this particular subject is in the experiment. Each hyperlink includes the items
and responses up to now and then adds on the current item number and the
appropriate response code:

152 CGI

. . .
sub displayItem {

my($item) = shift();
for ($k = 0; $k <= $#wordssave; $k++) {

last if ($wordssave[$k] eq $item);
}
$k = '0' . $k if (length($k) == 1);
print(<<"HTMLEND");

Content-type: text/html

<html>
<head>
<title>Syllabification Experiment</title>
</head>
<body>
How many syllables does this word have?: $item

one
two
three
four

</body>
</html>
HTMLEND
}

Notice the curly braces in the hyperlinks surrounding the $k variable. This is
so that Perl doesn’t try to interpret that variable as $k1, and so on. Notice
too that variables are possible in the here-document print statement because
the initializing terminator HTMLEND is given in double-quotes.

Finally, there is a subroutine thankyou() that prints out an appropriate
message at the end of the experiment:

. . .
sub thankyou {

print(<<"THANK");
Content-type: text/html

<html>
<head>
<title>Syllabification Experiment</title>
</head>
<body>

CGI 153

Thank you!
</body>
</html>
THANK
}

This is a reasonable approach to providing specific information to a CGI
without having to enter it in the URL overtly. Here, the hyperlinks add this
information to the URL covertly.

However, this approach doesn’t generalize to all cases. We also want to be
able to handle cases where the set of possible user responses is unbounded,
where the user can enter anything in response to a CGI query.

9.6 HTML Forms

A form is an HTML structure that includes various sorts of GUI (“graphical
user interface”) objects such as buttons, checkboxes, and textfields.6 A user
can respond to these objects and this information is then sent back to the
web server for some program there to respond to. In this section, we explain
how to construct these forms.

A form is an arrangement of GUI elements along with other HTML code,
grouped together with at least one GUI object to submit the data collected by
the form. The form tag itself <form> . . . </form> surrounds the form. The
leading tag requires two attributes be specified in the tag. The first required
attribute is action which specifies what CGI program is to run on the data
submitted; this information is given as a URL. The other required attribute is
method which must be set to either GET or POST. The method attribute
specifies how the data is transmitted to the program. Data submitted via GET
are put in the QUERY_STRING key of %ENV. Data submitted via POST are
read from STDIN. We will give examples of both of these techniques.

Here is an example of the form tag:

<form action="http://www.bananas.org/myprog.cgi" method=GET>
. . .
</form>

The action attribute here indicates that when the enclosed form data is sub-
mitted, it is submitted to a program called myprog.cgi which is located on the
www.bananas.org web server. The method attribute indicates that the data
will be submitted via the GET method.

Let’s consider the very simplest kind of form. There is a single GUI object
for entering a string of text, and a button to submit the data to the CGI
program. Here is the HTML:

154 CGI

Within the form, there are two GUI objects: a text box and a submit
button. The former is simply a box in which the user can insert some text. It
takes two attributes here. The size attribute says how many characters wide

form1.html

<html>
<head>
<title>Simple form</title>
</head>
<body>
<form action="http://www.mysite.org/myprog.cgi" method=GET>
Enter your name in the box:<p>
<input type="text" size=30 name="mytext1">
<hr>
<input type="submit" value="Tell us your name">
</form>
</body>
</html>

There are the usual tags for <html>, <head>, <title>, and <body>. Then there
are the form tags indicating what the program is and where it is, and also
that the GET method is used. Here’s what the form looks like:

CGI 155

the box is. The name attribute gives the name of the variable that the con-
tents of the text box are associated with.

It is quite easy to write a CGI program that responds to the form1.html
form. The following program simply displays the value of QUERY_STRING
taken from %ENV in response to form1.html:

f1cgi.pl

#!perl

print(<<"THEHTML");
Content-type: text/html

<html>
<head>
<title>Responding to a form</title>
</head>
<body>
Here is the query string:

$ENV{QUERY_STRING}
</body>
</html>
THEHTML

If I enter my own name in the form1.html text field (remembering to first
change the action parameter so that it references this CGI program), f1cgi.pl
displays the following window:

156 CGI

The information entered in the text field is returned in the QUERY_STRING
key. The variable name we assigned to the text field in form1.html precedes
the equals sign and the information entered follows it. Note how the space
between my first name and my last name is encoded in the QUERY_STRING
as +. All sorts of special characters, spaces, and whatnot have to be encoded
specially by a form so that they can be sent as part of the URL. While a space
is encoded as +, most other special characters are encoded as a unique hexa-
decimal (base 16) number preceded by %.7 For example, & is encoded as
%26. Any special processing you have to do of the information entered in the
form should take account of this encoding.

Some webservers put a limit on the amount of information that can be
included as part of a URL, typically something on the order of 256 charac-
ters. If your form is to return that much information or more, you should use
the POST method instead. Here is a slight revision of form1.html that makes
use of the POST method:

form2.html

<html>
<head>
<title>Simple form using POST</title>
</head>
<body>
<form action="http://www.mysite.org/myprog.cgi" method=POST>
Enter your name in the box:<p>
<input type="text" size=30 name="mytext1">
<hr>
<input type="submit" value="Tell us your name">
</form>
</body>
</html>

The only change here is that the method parameter is specified instead as
POST.

Responding to the POST method involves slightly more work. As I indi-
cated above, input from a form with the POST method comes to the CGI
program via STDIN, so you might quite reasonably expect to be able to
collect that input with <STDIN>. This will not work though. The problem is
that the input from the POST method is not terminated by a return, so
<STDIN> won’t get it. To read this input in, we must use the read() function.
This function reads in a specified amount of information from some file
handle. In the case at hand, the CONTENT_LENGTH key of the %ENV hash

CGI 157

holds the length of the input. The read() function takes three arguments: the
file handle, a variable to put the input, and the number of characters to read.
The following CGI program exemplifies:

f2cgi.pl

#!perl

read(STDIN, $stuff, $ENV{CONTENT_LENGTH});

print(<<"THEHTML");
Content-type: text/html

<html>
<head>
<title>Responding to the POST method</title>
</head>
<body>
Here is the input :

$stuff
</body>
</html>
THEHTML

The output of this program is (essentially) identical to that of the preceding
one. The only substantive difference is that this latter program makes use of
POST, and far more information can be sent via a form.

So far, we have only included a single text field, and so very little informa-
tion has been sent. However, there are a number of other GUI objects avail-
able in a form and we now go through some of these.8

Forms allow for checkboxes and radiobuttons. These are useful when
the user is to respond “yes” or “no” to some set of items. Use checkboxes
if the choices are not mutually incompatible and radioboxes if the choices
are mutually incompatible. Here is a form that presents a set of three
checkboxes:

form3.html

<html>
<head>
<title>Checkboxes</title>
</head>

158 CGI

<body>
<form action="http://www.mysite.org/myprog.cgi" method=GET>
What languages do you speak?

Basque<input type="checkbox" name="Basque">
Navajo<input type="checkbox" name="Navajo">
Something else<input type="checkbox" name="Else">

<input type="submit">
</form>
</body>
</html>

Here is what the form looks like when several of the checkboxes have been
checked:

CGI 159

If we pass the form request to f1cgi.pl above, it displays the following
information:

Notice how checked checkboxes are included in the query string as checkbox-
name=on. Notice too how if there are multiple GUI objects in a form, the
different values are separated by &.

Radiobuttons are quite similar and are used when the choices are mutually
exclusive. Here is a form that exemplifies this:

form4.html

<html>
<head>
<title>Radiobuttons</title>
</head>
<body>
<form action="http://www.mysite.org/myprog.cgi" method=GET>
What language do you speak best?

Basque<input type="radio" name="lang" value="Basque">
Navajo<input type="radio" name="lang" value="Navajo">

160 CGI

Something else<input type="radio" name="lang" value="Else">

<input type="submit">
</form>
</body>
</html>

Notice that the input type here is radio. Notice also that the name and value
attributes are used differently here. The name attribute defines what variable
will hold the resulting choice. Since these three radioboxes form a mutually
exclusive set, they all share the same name. The value attribute holds the
value that is reported if that checkbox is selected. Here is what the form
looks like if “Navajo” has been selected:

If, once again, we feed this through f1cgi.pl, we get this display:

CGI 161

Another extremely useful GUI object is a text area, which allows the user
to enter a larger block of text. Text areas get their own symmetric tags,
including several attributes. The rows and cols attributes allow one to specify
the number of rows and columns (in characters), and the name attribute
supplies a variable name for the input returned. In addition, any text between
the tags is placed as default text in the text area. Here is a simple example:

form5.html

<html>
<head>
<title>A text area</title>
</head>
<body>
<form action="http://www.mysite.org/myprog.cgi" method=GET>
Describe the language situation in your home.<p>
<textarea rows=5 cols=30 name="sit">
Put your description here!
</textarea>
<hr>
<input type="submit">
</form>

162 CGI

</body>
</html>

This displays as follows:

Here is what the form looks like when we’ve entered some (unfortunately!)
fictitious language information:

CGI 163

If this is fed through f1cgi.pl, we get the following results:

Note how most of the punctuation is encoded using special character se-
quences (as described above).

Other GUI objects and many other attributes are available, but the ones
above should suffice to exemplify how Perl can be used with forms to collect
language data over the web. Here is a table summarizing all the GUI objects
and attributes we have gone over:

Objects Attributes

Submit input type="submit" Submit input
value Text on button

Text input type="text" Single line of text
size Width in characters
name Variable name

Checkbox input type="checkbox" Mutually compatible
name Variable name

Radiobutton input type="radio" Mutually incompatible
name Variable name and radio set
value Value returned for name

Text area Symmetric tags Multiple lines of text
rows Height
cols Width in characters
name Variable name

164 CGI

9.7 Running an Experiment Over the Web

To see forms in action, let’s now revise the expcgi1.pl program using forms.
We actually need three programs here. The first is a CGI program to randomize
items and display a form interface for the subject to enter his or her response
in. The second is another CGI program, this time to save the results to a file.
Finally, we give a third program for parsing the results file.

Here is the first program, the one for randomizing and displaying a form
interface for indicating a subject’s syllabification choices. The program has
four main bits, separated into distinct subroutines:

expcgi2.pl

#!perl

@words = ("hat", "towel", "cowl", "flour", "flower", "happy", "charity");

randomizeWords();
doHeader();
doItems();
doEnd();
. . .

Experimental items are randomized, and then a form is constructed to
collect the user’s responses. Here is the randomizeWords() subroutine:

. . .
sub randomizeWords {

my($word, @temp, $ind);
while ($#words > -1) {

$ind = rand($#words + 1);
$word = splice(@words, $ind, 1);
push(@temp, $word);

}
@words = @temp;

}
. . .

That method makes use of familiar bits.
Next is the doHeader() subroutine. This method prints out the beginning

of the HTML page and the beginning of the form. Notice how we use a
POST method here:

CGI 165

. . .
sub doHeader {

print(<<'HEADER');
Content-type: text/html

<html>
<head>
<title>Syllabification experiment</title>
</head>
<body>
<h4>For each of the items below, indicate the number of syllables:</h4>
<form action="http://www.mysite.org/cgi-bin/saverescgi.pl" method=POST>

HEADER
}
. . .

The doItems() subroutine creates a set of radiobuttons for each randomized
item:

. . .
sub doItems {

foreach $item (@words) {
print(<<"ITEM");

$item

1<input type="radio" name=$item value=1>
2<input type="radio" name=$item value=2>
3<input type="radio" name=$item value=3>
4<input type="radio" name=$item value=4>
ITEM

}
}
. . .

Finally, the doEnd() subroutine prints out the end of the form and the
HTML:

. . .
sub doEnd {

print(<<'MYEND');

<input type="submit" value="submit responses">
</form>

166 CGI

</body>
</html>
MYEND
}

Here’s what all this looks like:

Note that the order of items is random, and each invocation of the CGI
program results in a different ordering.

CGI 167

The expcgi2.pl program creates a form that sends its input to yet another
CGI program savecresgi.pl. This program saves the results to a file expres.txt,
and displays an appropriate message in the subject’s browser:

saverescgi.pl

#!perl

read(STDIN, $results, $ENV{CONTENT_LENGTH});

$date = localtime();

open(F, '>>expres.txt') or die("oops!\n");
print(F "$date\t$results\n");
close(F);

print(<<'MYHTML');
Content-type: text/html

<html>
<head>
<title>Thank you!</title>
</head>
<body>
Thank you for participating in our experiment!
</body>
</html>
MYHTML

The results are saved each to a separate line with the time and date indicated
first on each line. Here is what the file looks like after four (fictional)
subjects:

Sun Jul 1 12:03:35 2001 flour=1&happy=2&hat=3&cowl=4&charity=3&towel=2&flower=1
Sun Jul 1 12:34:41 2001 hat=1&cowl=1&flour=1&charity=3&flower=2&towel=2&happy=2
Sun Jul 1 12:34:57 2001 charity=3&happy=3&towel=2&flour=1&hat=1&flower=1&cowl=1
Sun Jul 1 12:36:16 2001 flour=1&cowl=1&charity=3&happy=2&towel=1&flower=2&hat=1

As usual, the results are encoded. If we want to make use of them, we need
to write some code to parse the different values from the string. I give such a
program now. In the real world, we would want to massage our results into
a form suitable for statistical analysis. However, in this case, for simplicity,
the program simply calculates the average for each item.

168 CGI

parsecgires.pl

open(F, 'expres.txt') or die("oops!\n");

$subject = 0;

while ($line = <F>) {
chomp($line);
($date, $string) = split(/\t/, $line);
@items = split(/&/, $string);
$subject++;
foreach $item (@items) {

($word, $syllables) = split(/=/, $item);
$results{$word} += $syllables;

}
}

close(F);

foreach $key (sort(keys(%results))) {
$avg = $results{$key} / $subject;
print("$key\t$avg\n");

}

The code here is rather straightforward, but demonstrates the kind of parsing
necessary to make sense of input to a CGI program. We use the split() func-
tion on & to find items, and then again on = to separate variables from
values.

For a more detailed statistical analysis, we would want to massage our
results into a form that can be submitted to some statistical analysis pro-
gram. Delimiting data points with tabs is a very common form accepted by
many software packages; for example, Excel, SPSS, and so on. The following
program exemplifies:

parsecgires2.pl

open(F, 'expres.txt') or die("oops!\n");

$subject = 0;

while ($line = <F>) {
chomp($line);
($date, $string) = split(/\t/, $line);

CGI 169

@items = split(/&/, $string);
$subject++;
foreach $item (@items) {

($word, $syllables) = split(/=/, $item);
$results{$word}= $syllables;

}
print($subject);
foreach $key (sort(keys(%results))) {

print("\t$results{$key}");
}
print("\n");

}

close(F);

Notice how by using sort(), each column represents a distinct item.

9.8 A Glitch

There is actually a technical problem with some of the CGI programs
we have written so far. The problem specifically has to do with those CGI
programs that write to some file. The problem arises because, when respond-
ing to requests, a web server generates any number of “copies” of a single
CGI running in memory at the same time. The problem occurs when several
different programs, or instances of the same program, attempt to write to
the same file at the same time.9 Unpredictable data loss can obtain if this
occurs.

It is possible in Perl to “lock” a file in use so that other programs, or
program instances, must wait until the file is unlocked. The relevant com-
mand is flock() and it takes a filehandle and an integer constant as arguments;
for example, flock(F, LOCK_EX). When you close the file later in the pro-
gram, the lock is released and the file becomes available to other programs.

There are two further complications, however. First, the flock() command
provided by Perl is not guaranteed to do this. The flock() command in the
Fcntl package, however, is guaranteed to do this. Therefore you must specify
at the beginning of your program that you will be invoking the flock() com-
mand of the Fcntl package; for example, use Fcntl ':flock';.

The second complication is that since flock() takes a filehandle as an argu-
ment, the file must be opened before it can be locked. It is possible for
conflicts to occur in that interval. To avoid this, you should use a dummy
semaphor file to lock out other programs or program instances. The follow-
ing revision of saverescgi.pl exemplifies:

170 CGI

saverescgi2.pl

#!perl

use Fcntl ':flock';

read(STDIN, $results, $ENV{CONTENT_LENGTH});

$date = localtime();

open(MYLOCK, '>mylock.sem') or die("Can't make lock\n");
flock(MYLOCK,LOCK EX);
open(F, '>>expres.txt') or die("oops!\n");
print(F "$date\t$results\n");
close(F);

close(MYLOCK);

print(<<'MYHTML');
Content-type: text/html

<html>
<head>
<title>Thank you!</title>
</head>
<body>
Thank you for participating in our experiment!
</body>
</html>
MYHTML

This is just like the original program except for the addition of four lines.
First, we add the use statement so that we invoke the correct version of
flock(). Second, we open a new filehandle MYLOCK linked to a dummy
semaphor file mysem.sem. Running the program will actually create this file,
but it will have no contents. We then lock the semaphor’s filehandle before
manipulating the file we are actually inteested in: expres.txt. After we close
that file, we then close MYLOCK, releasing the lock.

9.9 Summary

This chapter has introduced the topic of CGI programming. Exactly how you
write and deploy a CGI program depends a great deal on the kind of web

CGI 171

server and computer architecture you are using. We introduced the basic
logic and essential bits of CGI programming under any assumptions.

We went over how to use a CGI program to generate dynamic web con-
tent, and we introduced here-document syntax to print out multi-line HTML.

We then went on to cover forms. We introduced a number of GUI objects
for collecting input from a user, and we showed how that input could be
treated either via the POST or GET methods. In addition, we showed how to
generate forms themselves dynamically with our final expcgi2.pl program.

Before concluding this chapter, we should touch briefly on security. CGI
programs are potentially quite dangerous. They run by remote control in
response to user input that you may not anticipate. This means that you
should exercise caution in what your CGI programs do, and that you should
spend some time thinking about the most wild sorts of information your user
might enter into the forms you write. The kinds of programs we’ve been
developing here are all perfectly safe, but there are some very unsafe things
that you can do as well. It is an unfortunate fact that there are people out
there who try to break into computer systems. Be careful that your CGI
programs are not their entry into your system.

Here is a very obvious case of an egregious security lapse. Imagine you
have a CGI program that responds to a form interface taking text entered
into a text area and assigning it to a variable $mystring. The program then
executes the command system($mystring). The problem is that your CGI
program thus allows any web surfer the rights to execute any command on
your system: a very bad idea.

9.10 Exercises

1. Write a CGI program that makes use of all the GUI objects we have
discussed.

2. Write a CGI program that takes HTML code as input (in a text area)
and strips out the HTML.

3. The expcgi2.pl program presents stimuli all in one pass. Rewrite the
program so that it presents experimental items one by one, in random
order, using a form interface.

4. Write a new kind of experiment that will run as a CGI program, using a
form interface.

Notes

1 It is not possible to try out CGI programming without a web server. However, it is
possible to run a web server on your own personal computer. This won’t put your

172 CGI

HTML or CGI programs on the web, but it will allow you to test out and play with
CGI programming.

2 On my own computer, my own path is available to the web server, so this expres-
sion can be kept maximally simple: #!perl.

3 This mysterious term comes from Unix shell script usage.
4 Or ‘equivalently’ QUERY_STRING.
5 For example, under Unix, you may need to run the chmod command with the flags

a+rw so that you have complete access to your file.
6 These are treated in a non-CGI context in appendix B.
7 Hexadecimal numbers use the following digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,

D, E, F.
8 All of these can be used with either GET or POST methods.
9 This problem and the solution that I discuss below were drawn to my attention by

Sean Burke. For more discussion, see Sean Burke, “Resource locking with semaphor
files”, SysAdmin/The Perl Journal, 2002.

Objects 173

Appendix A

Objects

This appendix treats the topic of objects and object-oriented programming
(OOP) in Perl. This is a huge and complex topic, and we can only scratch the
surface here. OOP is not really essential to make use of most of the power of
Perl. Thus, none of the preceding chapters have required objects. We have
therefore relegated this topic to an appendix.

There are several important reasons to treat the topic, though. First, OOP
offers several conceptual attractions as compared to traditional “procedural”
programming of the sort we have covered up to now.

In addition, there are a number of extremely useful publicly available Perl
modules that require familiarity with OOP to make use of them. For example,
appendix B introduces the Tk module which allows for graphical user inter-
faces in Perl. It is impossible to build graphical user interfaces in Perl without
a basic understanding of OOP.

A.1 Object-Oriented Programming

To understand object-oriented programming, it helps to compare it with
orthodox procedural programming. Procedural programming means organ-
izing your programs in terms of tasks, in terms of a series of function calls
and subroutine invocations.

OOP involves a radically different approach. The basic idea is that pro-
grams are organized in terms of “things”. There are still function calls and
subroutine invocations, but they are now simply the “glue” that ties the
objects together.

Let’s consider an example. Let’s take the case of a program that reads
textual data from a file, tokenizes it into words, builds a concordance, and
prints the concordance to the screen. There are a number of ways to imple-
ment this procedurally. Here’s one:

174 Objects

procex1.pl

open(F, $ARGV[0]) or die("Oops!\n");

while ($line = <F>) {
@words = split(/\b/, $line);
while ($#words > -1) {

$word = pop(@words);
$conc{$word}++;

}
}

close(F);

foreach $key (sort(keys(%conc))) {
print("$key\t$conc{$key}\n");

}

There are, of course, lots of other ways this can be done, but this will suffice
for present purposes.

Let’s now consider how this might be recast in OOP terms. Here, we lay
out how to do this in general, leaving the details for later in the appendix.
Again, there are a number of ways to do this. We’ll choose a relatively simple
one to just illustrate the general OOP idea.

First, we would define an object File. The File object will handle opening
a file and provide methods for reading data. These tasks would be accom-
plished inside the File object, and would not be visible to other objects in our
program. We’ll also define an object Line which we build from the File object.
We can do this using the methods, or subroutines, of these two objects.
The call to split() would be put in a method of the Line object. Finally, the
Concordance object would hold the final concordance of the document. It
would provide methods or subroutines for constructing the concordance
and for returning or printing out its contents.

The key idea here is data encapsulation. Each object we have proposed is
responsible for manipulating its own particular set of data. For example, the
File object would handle the string which gives the name of the file to be read
from and the filehandle that the file is associated with. Likewise, the Line
object would handle the strings associated with each line from the file. Pre-
sumably, it would also provide for splitting each line into individual words.

What data encapsulation does is provide a programming model that forces
the programmer to separate conceptual components of the program appro-
priately. It allows one to “hide” data. Thus the data manipulated internally
by each object are hidden from other objects, the data are encapsulated.

Objects 175

This discussion has been rather abstract, and the purported advantage of
OOP somewhat mysterious. Once we have explained the machinery of Perl
objects, we can really understand their virtues.

Let’s understand the machinery of Perl objects a little more concretely.
You, as programmer, will write separate blocks of code for each of the
objects you define. Each object will include data structures and subroutines
of two types: public and private. Public data structures and subroutines are
created for the object to interact with other objects. Private data structures
and subroutines are meant for the private and “hidden” use of the object.

In addition, your object should provide a constructor subroutine, the steps
taken when your object is first created.

A.2 References

To understand objects and constructors, we must first understand references.
We go over references briefly in this section.

References are a different kind of variable. They provide a mechanism for
referring indirectly to the contents of a variable.

Let’s look at a simple example. Let’s take a variable $myVar and assign it
the value “hat”. We can convert this variable to a reference with the indirec-
tion operator \; that is, \$myVar. If we assign \$myVar to another variable –
say, $myRef – then $myRef is now a reference. We can retrieve the value of
the reference by prefixing it with a second $: $$myRef. Here is a small
program showing how this works:

ref1.pl

$myVar = $ARGV[0];
$myRef = \$myVar;
print("$$myRef\n");

The value of $myVar is taken from the command line. Using the backslash,
$myRef becomes a reference to that variable. Using a second $, the value of
the reference is printed, the value originally entered on the command line.

This “dereferencing” with $ is general. We can also create references to
hashes and arrays, and they are dereferenced with @ and % as we would
expect. Here is a small program that shows how this works with an array:

ref2.pl

$arr[0] = $ARGV[0];
$arr[1] = $ARGV[1];

176 Objects

$myRef = \@arr;
print("$$myRef[0]\n");
print("$$myRef[1]\n");

@arr2 = @$myRef;
print("$arr2[0]\n");
print("$arr2[1]\n");

First, the contents of @arr are initialized from the command line. A reference
to this array $myRef is created by backslashing @arr. The individual array
elements are retrieved with $. Next, the entire array is dereferenced with @,
and assigned to @arr2. Individual elements of that array can be accessed
normally. The program shows how a reference to an array can be created,
and how dereferencing can take place at different levels.

Here’s a program showing the same thing for hashes:

ref3.pl

$myHash{$ARGV[0]} = 1;
$myHash{$ARGV[1]} = 2;

$myRef = \%myHash;
print("$ARGV[0]\t$$myRef{$ARGV[0]}\n");
print("$ARGV[1]\t$$myRef{$ARGV[1]}\n");

%hash2 = %$myRef;
print("$ARGV[0]\t$hash2{$ARGV[0]}\n");
print("$ARGV[1]\t$hash2{$ARGV[1]}\n");

First, the keys for a hash %myHash are taken from the command line and
assigned simple values. A reference to that hash is created with backslash.
Then the individual hash key–value pairs are retrieved using $. The entire
hash can also be dereferenced with %, and then its key–value pairs are accessed
normally.

Using array and hash references actually comes up quite often, so there is
another way to get access to the array or hash elements of a reference: ->.
This operator is placed in between the reference name and the array index or
hash key to return the value of that element. Here is an example:

arrow1.pl

@myArray = ('Catalan', 'German', 'Quechua', 'English');
$myRef = \@myArray;

Objects 177

for ($i = 0; $i <= $#{$myRef}; $i++) {
print("$i\t$myRef->[$i]\n");

}

$myHash{Catalan} = 'Spain';
$myHash{German} = 'Germany';
$myHash{Quechua} = 'Peru';
$myHash{English} = 'USA';
$myOtherRef = \%myHash;
foreach $key (sort(keys(%$myOtherRef))) {

print("$key\t$myOtherRef->{$key}\n");
}

This program creates an array and a hash of language names (and countries).
It then assigns a reference to both. The array reference is stepped through
using the -> operator, rather than using @ or $. Likewise, the hash reference
is also stepped through using the -> operator. We will use this operator
extensively when we turn to objects in the next section.

So far, references seem to have little utility. However, for complex pro-
gramming, they are extremely useful. The key aspect to a reference is that it
stores a variable, not a value. Hence, if a reference is created to some vari-
able, and the value of that variable changes, then the value of the reference
also changes. Here is a deliberately tricky program showing how this works:

ref4.pl

$hat = $ARGV[0];

print("\$hat = $hat\n");

$chair = \$hat;
$couch = $hat;

print("\$\$chair = $$chair\n");
print("\$couch = $couch\n");

$hat = $ARGV[1];

print("The new value of \$hat = $hat\n");
print("\$\$chair = $$chair\n");
print("\$couch = $couch\n");

This is an especially confusing program to make sense of. The thing to keep
in mind is that backslash has two uses here. When used in a string, backslash

178 Objects

escapes following special character. Thus, in a string, \$ simply prints $.
Outside of a string, backslash is used for indirection, as in the previous
examples in this section.

This program shows how a reference holds onto the variable it has been
assigned to even when the value of that variable changes. In this program, we
take two values from the command line and assign them both to $hat. Let’s
imagine that the first command-line argument is “apple”. The program first
assigns that value to $hat and then prints it out. It then creates a reference to
$hat: $chair. It also assigns the value of $hat directly to $couch. Both of these
are then printed out, and each of course has the value “apple”.

Next, the value of $hat is changed to the second command-line argument,
say “orange”, and printed out. The reference to $hat is printed out next and
it too has the value “orange”, since it is a reference to $hat. On the other hand,
when $couch is printed out, it retains the original value of “apple”, since it
was simply assigned the value of $hat, and was not a reference to $hat.

This, of course, can be very confusing, but it can also be quite useful for
advanced programming tasks.

Another central aspect of references is that they allow hashes and arrays to
be treated as simple variables. This is quite useful as well. For example, using
references, you can put hashes into arrays or arrays into hashes. Imagine, for
example, that you want to create a data structure to store what country
different languages are spoken in, and you want to allow for the case that
some language is spoken in more than one country. You have the following
sort of information:

Language Countries

French France, Canada, and so on
English USA, Canada, England, and so on
Tohono O’odham USA, Mexico
Spanish Spain, USA, Mexico, and so on

For language names, you really want a hash, but for each list of countries,
you want an array. This can be done readily with references. The basic idea is
that each list of countries will be put into an array. We then create a hash with
language names as keys and references to arrays (of country names) as values:

ref5.pl

@frCountries = ('France', 'Canada');
$myData{French} = \@frCountries;
@enCountries = ('USA', 'Canada', 'England');
$myData{English} = \@enCountries;

Objects 179

@toCountries = ('USA', 'Mexico');
$myData{'Tohono O\'odham'} = \@toCountries;

foreach $key (sort(keys(%myData))) {
print("$key:\t@{$myData{$key}}\n");

}

This program simply initializes the data structure and then prints out its
contents. Notice first how quotes are required around Tohono O’odham
because the language name includes a quote character which must be es-
caped.1 Second, note how curly braces are required when dereferencing the
array here so that the scope of the dereferencing is clear.

Notice how each array must be given its own name. This is fine for a simple
case like this where the language names are known in advance, but would
break down in a larger program where the language names are not given in
advance. This situation is common enough that Perl provides a mechanism
for creating an anonymous array reference [] or an anonymous hash refer-
ence {}. Here is the same program revised to use anonymous array references:

ref6.pl

$myData{French} = ['France', 'Canada'];
$myData{English} = ['USA', 'Canada', 'England'];
$myData{'Tohono O\'odham'} = ['USA', 'Mexico'];

foreach $key (sort(keys(%myData))) {
print("$key:\t@{$myData{$key}}\n");

}

Here, the square brackets convert a list of items into an anonymous array
reference.

In fact, we can also initialize the hash with a list, which simplifies the
assignment even more. In the following, we use the => operator. This does
exactly the same thing as a comma, but shows the paired structure of the
hash more clearly:

ref7.pl

%myData = (French => ['France', 'Canada'],
English => ['USA', 'Canada', 'England'],
'Tohono O\'odham' => ['USA', 'Mexico']);

foreach $key (sort(keys(%myData))) {
print("$key:\t@{$myData{$key}}\n");

}

180 Objects

Here the hash is initialized with a list, where each pair of items in the list is
taken as a key–value pair. Those pairs are (unnecessarily) separated with =>,
rather than comma. The value for each pair is an anonymous array reference
in square brackets.

We have seen that references provide another way to store values. Using
references allows us to refer to specific variables, rather than simply to the
content of those variables. We’ve seen that references allow us to create some
powerful new data structures.

References are quite powerful and we can do lots more with them. They
are, however, a complex topic and we have only introduced them so that we
can make sense of objects. We therefore leave the topic here, and turn to
objects directly.

A.3 Basic Syntax

Once we have references, objects in Perl are actually quite simple to con-
struct. An object is simply a set of subroutines and data structures grouped
together into a package which includes a subroutine whereby variables can
be blessed into objects. Perl includes a special function bless() that returns a
reference to a specific object.

Let us try to understand this with a very simple example:

obj1.pl

package MyObj;

sub new {
my($self) = {};
my($class) = shift();
bless($self, $class);
return($self);

}

sub doSomething {
print("Success!\n");

}

This program defines an object type – or class – called MyObj. The class
includes two subroutines. The first is a constructor for the class and is called
when an instance of the class is first created. The second is simply a test
subroutine – or method – of the class.

Objects 181

Let’s go through the new method. All object definitions should include such
a method, and the parts here are fairly standard. First, the new() method defines
a reference of some type, here a reference to a hash. Second, the class name
(also the package name) is obtained from the anonymous array that subroutine
arguments come from. Third, the bless() function is used to turn the hash
reference into an object of the type MyObj. Finally, that object is returned.

The second subroutine simply prints out a message.
In and of itself, this class definition doesn’t do anything. An object must

be defined as being of the MyObj type, and then it can do something. Here
is a minimally revised version of the preceding program that actually does
something:

obj2.pl

$hat = MyObj->new();
$hat->doSomething();

package MyObj;

sub new {
my($self) = {};
my($class) = shift();
bless($self, $class);
return($self);

}

sub doSomething {
print("Success!\n");

}

The class definition is the same, but here it is preceded by code that instanti-
ates the class and then invokes its substantive method. First, the $hat variable
is instantiated as a reference to an object of type MyObj by invoking its
new() method. Notice how -> is used to retrieve the new() method of the
MyObj class. That method returns a reference which is then assigned to $hat.
The doSomething() method is also accessed through the -> operator, and it
prints out the message.

So far, objects don’t really do anything special. We could have done just
the same thing if the first two lines of the program above were simply re-
placed with MyObj::doSomething(). However, objects are things that have
an existence over the duration of your program. The following program
exemplifies this:

182 Objects

obj3.pl

$hat = MyObj->new();
$time = time();
do {

$timediff = time() - $time;
} while ($timediff < 3);
$hat->doSomething();

package MyObj;

sub new {
my($date) = localtime();
my($self) = {myData => $date};
my($class) = shift();
bless($self, $class);
return($self);

}

sub doSomething {
my($self) = shift();
my($date) = localtime();
print("This object was created:\t$self->{myData}\n");
print("The time now is:\t$date\n");

}

This program differs from the preceding one in several ways. First, it initial-
izes $hat, and then uses a while-structure to wait for three seconds. Then it
invokes the doSomething() method of the $hat object.

The new() method now includes some extra code so that the anonymous
hash reference now contains a key myData which contains the date and time
the method was run.

The doSomething() method now collects a reference to the current object
from the anonymous array. (The current object is always the first element of
that array.) It then collects the current time. It uses the reference to the
current object to retrieve the time the object was created and compares that
with the current time just retrieved.

This program shows several things. First, it shows that the anonymous
hash blessed into the object can actually contain useful key–value pairs that
can be accessed by subroutines/methods of the class. Second, it shows how
the object has some autonomous “existence”. It can contain its own data and
manipulate that data.

Objects 183

A.4 Using Objects

Let’s now use objects to revise the concordance program (see page 174). We
have already gone through the logic of this program above. The basic idea is
to make a simple concordance of a file. First, we create a File object to store
the file being concordanced. Next, we use that object to initialize a Concord-
ance object. The Concordance object opens the file, and creates Line objects
of each line. It then uses the methods of the Line class and its own to con-
struct a concordance, which it prints out.

Let’s now go through the details:

concObj.pl

$file = File->new($ARGV[0]);
$myConc = Concordance->new($file);
$myConc->printIt();
. . .

The program begins by creating a new File object, and assigning it to $file.
Next, the File object is used to create a Concordance object. Finally, the
concordance is printed using its own printIt() method. Note that both the File
and Concordance constructors take arguments, given in parentheses after new.

Let’s now go through the different class definitions required to make this
work. First, there is the File class, a minimalist class designed to show the
basic architecture. It has two subroutines. The new() method first takes two
arguments from @_: the name of the class, and the $filename argument. It
then defines $self as an anonymous hash reference with one key–value pair.
That one pair designates the filename. Next, it blesses $self into the File class,
and returns a reference.

The File class includes a second method that simply returns the name of the
file. It does this by first obtaining a reference to the current class, and then
using that reference to access the anonymous hash that the object is built on.
This may seem fairly silly. After all, the filename information is available
directly from the anonymous hash reference. However, to enforce data en-
capsulation, one doesn’t usually allow external access to that hash structure.
Instead, one should write explicit accessor methods like this one to make
internal data available in a controlled fashion:

. . .
package File;

sub new {
my($class) = shift();

184 Objects

my($filename) = shift();
my($self) = {filename => $filename};
bless($self, $class);
return($self);

}

sub getFile {
my($self) = shift();
return($self->{filename});

}
. . .

The next class is the Line class, which provides methods for breaking up a
line of text into word tokens. The constructor for this class takes a string of
text as an argument, and provides a method to tokenize that string. The
constructor first finds two arguments in @_: its class name and the text string
it’s given as an argument. The final return of that text string is stripped off by
chomp(), and then $self is defined as a hash reference containing a single key
text with the text string as its value. The method then blesses $self as a Line,
and then returns the reference.

The other method of the Line class is getTokens(), which returns an array
of words from the text string. The method first determines the invoking
object from @_, and then uses that reference to find the text string that the
object was created with. It then uses split() to tokenize the string and returns
the tokens as an array:

. . .
package Line;

sub new {
my($class) = shift();
my($text) = shift();
chomp($text);
my($self) = {text => $text};
bless($self, $class);
return($self);

}

sub getTokens {
my($self) = shift();
my($text) = $self->{text};
my(@words) = split(/\b/, $text);

Objects 185

return(@words);
}
. . .

The final and most important class of the program is the Concordance class,
which holds the concordance and has methods for creating and accessing it.

The first method is new() which first finds its class, and then finds its single
File argument. It then blesses $self into a Concordance object and calls its
makeIt() method. That method takes a single string argument designating the
file. That string is supplied by the getFile() accessor method of the File class.
Finally, the constructor returns the reference to the created object:

. . .
package Concordance;

sub new {
my($class) = shift();
my($file) = shift();
my($self) = {};
bless($self, $class);
$self->makeIt($file->getFile);
return($self);

}
. . .

The makeIt() method takes two arguments from @_: a reference to the
invoking object, and the string argument. It then opens the file and reads
through it line by line. Each line is used as a string argument to a new Line
object. Then those Line objects are taken as arguments to the Concordance
class’s addWords() method:

. . .
sub makeIt {

my($self) = shift();
my($file) = shift();
open(F, $file) or die("Can't open file");
while (<F>) {

my($line) = Line->new($_);
$self->addWords($line);

}
close(F);

}
. . .

186 Objects

The addWords() method takes two arguments: the object reference and the
reference to the Line object. It uses the getTokens() method of the Line object
to retrieve the words of the line, and then it adds those words to the hash
representing the concordance, adding new keys or augmenting existing values
as appropriate:

. . .
sub addWords {

my($self) = shift();
my($line) = shift();
my(@words) = $line->getTokens();
foreach $word (@words) {

$self->{$word}++;
}

}
. . .

Finally, the printIt() method of the Concordance class allows the concord-
ance to be printed out:

. . .
sub printIt {

my($self) = shift();
foreach $key (sort(keys(%$self))) {

print("$key\t$self->{$key}\n");
}

}

This program may seem fairly complex. Recasting it in OOP style has
resulted in a much larger program with a lot more code than the original
procedural program (page 174). On the other hand, the object-oriented ver-
sion of the program has a very clear structure.2

A.5 Summary

This appendix has introduced the complex notion of object-oriented pro-
gramming (OOP). Objects are not strictly necessary to accomplish most any-
thing you’d want to accomplish with Perl, but we introduce this topic for two
reasons. First, there are some conceptual advantages to OOP. If you are
already familiar with another object-oriented language, for example Java™,
you may prefer OOP. Second, there are some very standard Perl modules
that use OOP. You need to understand OOP to make use of those modules.

Objects 187

For example, as noted at the beginning of this chapter, you cannot create
graphical user interfaces in Perl without OOP.

We began with an introduction to the notion of references, variables that
refer not directly to values, but to the variables that contain those values. We
then went on to show how the bless() function, in conjunction with the
package declaration, allows for OOP in Perl.

Use objects with care. While they are conceptually appealing, they entail a
lot more coding in most cases. In addition, in Perl, there are huge time
efficiency losses when programming with objects; whatever the virtues of
OOP, object-oriented Perl programs run more slowly.

Notes

1 A glottal stop. In point of fact, in the official orthography of the language, the word
is ’O’odham, “people”, with two glottal stops.

2 One of the main virtues of OOP is inheritance. We do not treat this very advanced
topic here.

188 Tk

Appendix B

Tk

Perl was not originally designed as a “graphical language”, but most modern
computer programs now include some sort of graphical user interface, or
GUI. The Tk module was developed as a mechanism for providing GUIs for
Perl. We have already seen that HTML can be used as a GUI for Perl, when run
over the web. There is another way, as well, to provide a GUI for your Perl
programs: the Perl Tk module. The Tk module is a set of objects and methods
that provide windows, buttons, text entry fields, and so on for a Perl program.
It is extremely powerful and, in its most basic form, rather easy to use.1

To make use of Tk, you really need to know how to use objects in Perl. So
if you skipped over appendix A, you need to go back and read it now!

B.1 Installing Tk

The Tk module does not come automatically with every Perl installation. It
needs to be installed separately. If you are using ActiveState™ Perl on a
Windows machine, it is extremely easy to install. In other cases, it can be a
major undertaking.

First, you should check if it is already installed on you machine. You
should use the use statement to invoke the Tk module. If Perl does not com-
plain, the module is already installed. If Perl complains that it cannot find Tk
in @INC, then you need to install it. The simplest way to check is to enter the
following at your command line perl -e "use Tk" (for Windows) or perl -e
'use Tk' (for Unix). The -e flag causes Perl to run the following command-
line argument as a one-line program.

Windows. If you are using ActiveState Perl on a Windows machine with
fast internet access, installing Tk is quite easy. This version of Perl provides a

Tk 189

command-line program for adding optional modules to your Perl installa-
tion. Simply type ppm at the command line. This starts the “perl package
manager” program. When you get the ppm prompt, type install Tk. This will
then connect your machine to the internet to install the Tk module. This is a
very big download and will take some time over a slow connection. When
the installation is complete, simply type exit.

Unix/Linux. To install Tk on a Unix-type machine is a hugely complex
enterprise. If you are working on a multi-user machine with a professional
system administrator, ask that person to install it for you. If you are on a
single-user machine, it can be as simple as finding a pre-built binary for your
specific architecture, or it can involve compiling a very large number of files
from scratch. Finally, note that to make use of Tk under Unix, you need
access to X-windows, or a similar windowing environment.

Macintosh. The Tk module is not currently available for MacPerl. There
are some similar MacPerl windowing functions, but nowhere near what Tk
provides. Up to MacOS 9, Tk is not available yet.2

The Tk module usually comes with an impressive demo program called
widget, which exemplifies virtually all of the Tk GUI elements. To see it, type
widget at your command line after Tk is installed.

B.2 Building a GUI

There are several steps to creating a GUI using the Tk module. First, you
must define a set of GUI objects: buttons, windows, text fields, and so on.
Second, you must lay those objects out in your program window using Tk’s
geometry management functions. Third, you must assign functions to the
relevant user interface devices. That is, you must write the code for what
happens when you click your button, and so on.

Let’s look at a very simple example to see how this is done:

gui1.pl

use Tk;

$mywin = MainWindow- > new();
$mybutton = $mywin- > Button(-text => "Done", -command => sub { exit() });
$mybutton-> pack();

MainLoop();

190 Tk

First, there is a use statement warning Perl that you will be using the Tk
module. Next, there is a line declaring that $mywin is an object of the
MainWindow type. As you were warned above, the Tk module makes liberal
use of Perl OOP. The MainWindow class provides routines for constructing
other GUI objects of various types. The next statement in the program de-
fines $mybutton as an object of the Button type, associated with $mywin.
The constructor takes a list of arguments, which are passed in “hash-style”.
These arguments are used to set basic properties of the Button object. The
first pair sets the text that appears on the button. The second pair sets the
subroutine that is executed when the button is pressed. The next statement
places the button in the window. Finally, the MainLoop() statement instructs
the program to wait for a GUI event and respond accordingly. In this case,
the program will simply display a small window with a button, which will
close when the button is pressed. Here is what the program looks like:

The basic idea, then, is that we use object style to create a set of GUI
objects. These are then positioned in a window. In the next sections, I will go
over how to position these objects, some of the objects available, and how to
write subroutines that respond to these objects. In the final section of this
appendix, I give a graphical version of the syllable-counting experiment using
Tk GUI elements.

B.3 Geometry Management

Tk GUI elements, or widgets, can be placed in a window by a variety of
“geometry management” functions. These enable one to place widgets in
incredibly precise and intricate ways. Unfortunately, geometry management
with Tk is a complex topic and so in this section I outline only the simplest
GUI placement function: pack().

We have already seen the pack() function in action in the gui1.pl program
above. What it does is place a widget along the top edge of the enclosing
window, sizing the window so that the natural size of the widget can be
displayed. Multiple widgets are placed successively below preceding ones in
the order their pack() statements are executed. The following program shows
three buttons all placed with pack():

Tk 191

gui2.pl

use Tk;

$mw = MainWindow->new();
$mw->Button(

-text => 'Button 1',
-command => sub { exit() })->pack();

$mw->Button(
-text => 'Button 2',
-command => sub { exit() })->pack();

$mw->Button(
-text => 'Button 3',
-command => sub { exit() })->pack();

MainLoop();

As with the preceding program, this one begins with a use statement warning
Perl that we will be using the Tk module. Then we create a new MainWindow
and assign a reference to it to $mw. We then invoke the Button method of
MainWindow to create a Button widget associated with $mw. This button
displays the text string specified and is packed in the default manner. Two
more buttons are added in the same way and then the MainLoop() eventloop
command is given, causing Perl to wait for a GUI event.

Notice here that the buttons are created and packed with a single state-
ment each, unlike the previous program where the button is created, a refer-
ence is assigned, and then the reference is used to pack the button.

Here’s what the display looks like:

We can actually add arguments to pack() that specify what side a widget is
packed up against: left, right, top, or bottom. Here is a program showing
four buttons packed up against the four different sides:

192 Tk

gui3.pl

use Tk;

$mw = MainWindow->new();
$mw->Button(

-text => 'top',
-command => sub { exit() })->pack(-side => 'top');

$mw->Button(
-text => 'bottom',
-command => sub { exit() })->pack(-side => 'bottom');

$mw->Button(
-text => 'left',
-command => sub { exit() })->pack(-side => 'left');

$mw->Button(
-text => 'right',
-command => sub { exit() })->pack(-side => 'right');

MainLoop();

The only difference here is that pack() takes a pair of arguments, the first of
which specifies that the -side parameter is being set, and the second of which
is its value. Here’s what the display looks like:

Here, the order in which elements are packed makes a difference. For
example, if elements are packed clockwise from the top, we get this display:

Tk 193

Here’s the code:

gui4.pl

use Tk;

$mw = MainWindow->new();
$mw->Button(

-text => 'top',
-command => sub { exit() })->pack(-side => 'top');

$mw->Button(
-text => 'left',
-command => sub { exit() })->pack(-side => 'left');

$mw->Button(
-text => 'bottom',
-command => sub { exit() })->pack(-side => 'bottom');

$mw->Button(
-text => 'right',
-command => sub { exit() })->pack(-side => 'right');

MainLoop();

You might try different orders with these to see the different effects. You
can also pack multiple items up against the same side and achieve yet
other effects. I leave working through all these to the exceptionally careful
reader.

As I mentioned at the outset, there are many many more intricate details to
how widgets can be arranged in a window. We have only scratched the
surface here.

B.4 Widgets

The Tk module offers a number of GUI objects, and this section discusses
several of these: Button, Label, and Radiobutton.

B.4.1 Button

We’ve already seen several invocations of the Button widget. The -text para-
meter sets the text string that is displayed, and the -command parameter sets
the subroutine that is run when the button is pressed. There are several other
useful parameters as well.

194 Tk

An extremely useful parameter is the -textvariable parameter, which design-
ates a reference to a variable that holds the text displayed by the button.
Whenever that variable is changed, the text displayed by the corresponding
button is changed. Here is a program that shows how this works. This pro-
gram displays two buttons, the first of which toggles through two different
text strings:

gui5.pl

use Tk;

$b1text = "yes";

$mainw = MainWindow->new();
$b1 = $mainw->Button(

-textvariable => \$b1text,
-command => sub {

if ($b1text eq "yes") {
$b1text = "no";

} else {
$b1text = "yes";

}
});

$b1->pack();
$mainw->Button(-text => 'quit', -command => sub { exit() })->pack();

MainLoop();

Here, we invoke Tk as usual, and set the value of a variable $b1text to “yes”.
We then create a MainWindow as usual. We define a button $b1 setting the
-textvariable parameter to the reference \$b1text. We set the -command vari-
able to be a somewhat longer anonymous subroutine. This one checks if
$b1text equals “yes”, and sets its value accordingly. We add a second button
to quit the program.

Here’s what it looks like:

Tk 195

It’s also possible to set the color of Buttons, the MainWindow, and virtu-
ally every other widget. Most GUI elements have a parameter -background
for their basic background color. Buttons also have an -activebackground
parameter. A Button will change color when the mouse passes over it, and
this parameter controls that color.

A huge number of colors are available; if you want to see a full list, invoke
the widget Tk demo (by typing widget at the command line), where there is
a list of available colors on your system. Here’s a small revision of the gui1.pl
program where we’ve set the various color possibilities using the two para-
meters above:

gui6.pl

use Tk;

$mywin = MainWindow->new(-background => 'blue');
$mybutton = $mywin->Button(

-text => 'Done',
-command => sub { exit() },
-background => 'red',
-activebackground => 'green');

$mybutton->pack();

MainLoop();

Notice that the -background parameter is set both by the MainWindow con-
structor new() and by the Button() method. Since the images in this text are
given in grayscale, the display of this program would look just like that of
gui1.pl.

B.4.2 Label

Another very useful widget is the Label, which can be used to display text. Its
text can be set with -text or with -textvariable. Here is a simple example:

gui7.pl

use Tk;

$countmsg = $count++ . " presses";

$mwin = MainWindow->new();
$mwin->Label(-text => "Press the button")->pack();
$mwin->Button(

196 Tk

-text => "Press me",
-command => sub { $countmsg = $count++ . " presses"})->pack();

$mwin->Label(-textvariable => \$countmsg)->pack();
$mwin->Button(-text => "Quit", -command => sub { exit() })->pack();

MainLoop();

This program displays two buttons and two labels. The first label displays a
rather redundant static text message. The text of the second label is set with
-textvariable set to a reference to $countmsg. This variable keeps track of the
number of times the first button is pressed. The first button does this with its
-command parameter, which updates the $countmsg each time. Finally, there
is a second button to quit the program. Here’s what this one looks like after
the button has been pressed a few times:

As with a Button widget, the background color of a Label can be set with
-background.

Note that labels are widgets that can be placed anywhere in a window with
pack(). One can also display a single line of text with the MainWindow title()
method, which places a text message in the title bar of the window. Here is a
little program showing both a title and a Label (along with a button to quit
the program):

gui8.pl

use Tk;

$mw = MainWindow->new();
$mw->title("This is a title");
$mw->Label(-text => "This is only a label")->pack();
$mw->Button(-text => "Quit", -command => sub { exit() })->pack();

MainLoop();

Tk 197

Notice that the title() method does not create a widget, and therefore does
not take the usual parameters. It takes only a single string argument defining
the title, and does not need to be “packed”. A Label, on the other hand, is a
genuine widget, and therefore takes the usual parameters. Its own title is
given by the -text parameter, and it must be placed with pack(). Here is how
this program displays:

B.4.3 Radiobutton

Radiobuttons are a somewhat more complex widget. As with HTML
radiobuttons, this widget provides for a set of mutually disjunctive choices.
The user selects one by clicking on one of the set. In terms of Tk, a Radiobutton
is similar to a Button; its text can be set with -text or -textvariable, it has a
-command parameter, and its colors can be set with -background and
-activebackground. However, in addition, it takes a -variable parameter and
a -value parameter.

These latter two enable the distinct functionality of a Radiobutton. The
-variable parameter takes a reference to a variable as a value. This variable
both defines the set of Radiobuttons that are grouped together, and holds
the value of the Radiobutton selected. The -value parameter takes some num-
erical or string value as an argument. If the relevant Radiobutton is selected,
this value is assigned to the variable specified by -variable. Here is a simple
example:

gui9.pl

use Tk;

$mw = MainWindow->new();
$mw->Label(-text => 'Make a selection')->pack();
$mw->Radiobutton(

-text => 'German',
-variable => \$lang,
-value => 'g',
-command => sub {

if ($lang eq 'g') {
$msg = "Sprechen Sie Deutsch?";

198 Tk

} elsif ($lang eq 'f') {
$msg = "Parlez vous français?";

} else {
$msg = "Do you speak English?";

}
})->pack();
$mw->Radiobutton(

-text => 'French',
-variable => \$lang,
-value => 'f',
-command => sub {

if ($lang eq 'g') {
$msg = "Sprechen Sie Deutsch?";

} elsif ($lang eq 'f') {
$msg = "Parlez vous français?";

} else {
$msg = "Do you speak English?";

}
})->pack();
$mw->Radiobutton(

-text => 'English',
-variable => \$lang,
-value => 'e',
-command => sub {

if ($lang eq 'g') {
$msg = "Sprechen Sie Deutsch?";

} elsif ($lang eq 'f') {
$msg = "Parlez vous français?";

} else {
$msg = "Do you speak English?";

}
})->pack();

$mw->Label(-textvariable => \$msg)->pack();

MainLoop();

The program displays three Radiobuttons. Selecting one of the buttons sets
the text of the subsequent Label accordingly. The program is long, but only
because of repetition (which we address in the next program). The program
begins in the usual fashion. What’s new are the three Radiobuttons. Each one
uses -text to display a different language name, and each one sets -variable to
$lang, making them a mutually exclusive group of three. Each sets a different

Tk 199

-value as appropriate, and then each includes the same setting for -command.
The value of $lang is used to set the $msg variable. That, in turn, is used to
set the text of the last Label. Here’s what the display looks like if we select
“French”:

Note that the program is exceedingly redundant; the same -command value
is repeated three times. We can eliminate this repetition by setting -command
to a reference to a named subroutine, and then putting all the repeated code
in the subroutine. The following revision shows how this works:

gui10.pl

use Tk;

$mw = MainWindow->new();
$mw->Label(-text => 'Make a selection')->pack();
$mw->Radiobutton(

-text => 'German',
-variable => \$lang,
-value => 'g',
-command => sub { doLang() })->pack();

$mw->Radiobutton(
-text => 'French',
-variable => \$lang,
-value => 'f',
-command => sub { doLang() })->pack();

$mw->Radiobutton(
-text => 'English',
-variable => \$lang,
-value => 'e',
-command => sub { doLang() })->pack();

$mw->Label(-textvariable => \$msg)->pack();

200 Tk

MainLoop();

sub doLang {
if ($lang eq 'g') {

$msg = "Sprechen Sie Deutsch?";
} elsif ($lang eq 'f') {

$msg = "Parlez vous français?";
} else {

$msg = "Do you speak English?";
}

}

Here the value of -command is a reference to a named subroutine: doLang(),
which is given at the end of the program. The use of a named subroutine is
possible with any widget with a -command parameter.

Named subroutines can also take arguments. Here’s an example. This pro-
gram does the same thing as the preceding one, but with Buttons, rather than
Radiobuttons:

gui11.pl

use Tk;

$mw = MainWindow->new();
$mw->Label(-text => 'Make a selection')->pack();
$mw->Button(

-text => 'German',
-command => sub { doLang('g') })->pack();

$mw->Button(
-text => 'French',
-command => sub { doLang('f') })->pack();

$mw->Button(
-text => 'English',
-command => sub { doLang('e') })->pack();

$mw->Label(-textvariable => \$msg)->pack();

MainLoop();

sub doLang {
$myLang = shift();
if ($myLang eq 'g') {

$msg = "Sprechen Sie Deutsch?";
} elsif ($myLang eq 'f') {

Tk 201

$msg = "Parlez vous français?";
} else {

$msg = "Do you speak English?";
}

}

Here, the value for each button is stipulated in the subroutine call. Here’s
how the display looks when “German” has been selected:

B.4.4 Changing Things

One can manipulate the properties of widgets and how they are packed
during the course of the program. This section introduces some of the simpler
ways to do this.

To change a widget that has already been packed, one can use the configure()
method. This method takes any appropriate parameter–value pair as an argu-
ment and makes the appropriate change on the designated widget. Here is
a simple program that shows how this works. This program displays three
buttons and a label. Selecting each different button determines the text and
background color of the label:

gui12.pl

use Tk;

$color = 'red';
$text = 'This is red';

$mw = MainWindow->new();
$label = $mw->Label(-textvariable => \$text, -background => $color);
$label->pack(-side => 'bottom');

202 Tk

$b1 = $mw->Button(-text => 'red', -command => sub { doColor('red') });
$b1->pack(-side => 'left');
$b2 = $mw->Button(-text => 'yellow', -command => sub { doColor('yellow') });
$b2->pack(-side => 'left');
$b3 = $mw-> Button(-text => 'blue', -command => sub { doColor('blue') });
$b3->pack(-side => 'left');

MainLoop();

sub doColor {
$color = shift();
$text = "This is $color";
$label->configure(-background => $color);

}

Since the text of the Label is set with -textvariable, we need only change the
value of that variable to change the text. However, there is no analogous
“variable” option with the -background parameter, so we use the configure()
method to change the color. Here’s what the display looks like:

We can also change which widgets are displayed and what order they are
displayed in dynamically. The simplest way to remove a widget is with
packForget(). This doesn’t destroy it, but only stops displaying it. It can be
redisplayed by invoking pack() again. Here is a simple example. This pro-
gram displays a button that toggles the presence of a second button:

gui13.pl

use Tk;

$b1text = 'show';

$mw = MainWindow->new();
$b1 = $mw->Button(-textvariable => \$b1text, -command => sub { doit() });
$b1->pack();
$b2 = $mw->Button(-text => 'Quit', -command => sub { exit() });

Tk 203

MainLoop();

sub doit {
if ($b1text eq 'show') {

$b1text = 'hide';
$b2->pack();

} else {
$b1text = 'show';
$b2->packForget();

}
}

The text of the first button is set with -textvariable, enabling it to shift be-
tween “show” and “hide”. Notice how the first button is created and packed,
but the second button is created and not packed. The program begins with
only a single button displayed.

The first button invokes a subroutine unimaginatively called doit(), which
either shows the button (by packing it), or hides the button (with packForget()).
The text of the first button changes accordingly. Here is what the two dis-
plays look like:

B.5 Graphic Experiments

In this section, we create yet another version of our syllable-counting experi-
ment, this time making use of the Tk module. The experimental details are
kept simple, so we can focus on the GUI aspects that Tk provides.

The general logic is as follows. We will be presenting our subjects with a
list of items and soliciting their judgments about the number of syllables in
each item. The experiment program will have three phases. First, the instruc-
tions for the experiment will be given. The subject presses a button to move
to the next phase where the experimental items are presented. After giving
their response to each of the items, there is a final phase where the subject is
thanked.

204 Tk

In the first phase, we will need a large Label to hold the instructions, and a
Button which will move the subject to the second phase. In the second phase,
we will need a Label for the experimental items, and several Radiobuttons for
subject responses. Finally, in the third phase, we will need a Label for the
“thank you” message, and a Button to end the program. Moving between
these different phases, and showing and hiding the different widgets needed
will entail some careful higher-order logic. We go through the program step
by step, showing how that logic works:

tkexp.pl

use Tk;

@items = ("hat", "flour", "charity", "cowl", "flower", "towel", "syllable");
$b1text = 'Continue';
$introflag = 0;
$instruc = <<"MYEND";
This is an experiment testing your ability to count
the number of syllables in a word. For each of the
following items, you should indicate how many syllables
it has by clicking the appropriate button. There are
seven items in total.
MYEND
$date = localtime();
print("\nnew subject: $date\n");
. . .

The first bit of the program above initializes the nongraphical elements of
the program. The @items array holds the experimental items.3 The $b1text
variable is the -textvariable that the first button of the program uses. The
$introflag variable will be used to keep track of what phase of the program
we are in: 0 for the first phase, and 1 for the other two. The instructions
displayed in the first phase of the program are assigned to $instruc using
here-document syntax. Finally, each subject’s results are preceded by a date
stamp:4

. . .
$mw = MainWindow->new();
$mw->configure(-background => 'mistyrose');
$mw->title('Syllable-counting experiment');
$mw->Label(

-text => 'Syllable-counting experiment',
-background => 'mistyrose')->pack;

Tk 205

$b1 = $mw->Button(
-textvariable => \$b1text,
-command => sub { intro() })->pack(-side => 'bottom');

$ins = $mw->Label(
-text => $instruc,
-background => 'mistyrose')->pack(-side => 'bottom');

MainLoop();
. . .

This next batch of code initializes the GUI elements needed for the first
phase of the program. These widgets call various subroutines which are re-
sponsible for moving the subject to subsequent phases and for recording the
subject’s responses. There is, as usual, a MainWindow. Just for esthetic ap-
peal, we set the background color of relevant widgets to the color “mistyrose”.
We set the title of the window, and then position two labels and a button.
The first label simply displays the title of the experiment again. The second
label displays the instructions. The button invokes a subroutine intro(), which
moves the subject to the next phase of the experiment. The text of this button
will change over the experiment, and so it is given as a -textvariable:

. . .
sub intro {

if ($introflag == 0) {
$introflag = 1;
$ins->packForget();
$b1->packForget();
$mw->Label(-textvariable => \$wordtext,

-background => 'coral')->pack();
$wordtext = shift(@items);
$rb1 = $mw->Radiobutton(

-text => "one",
-value => 1,
-variable => \$response,
-background => 'mistyrose',
-activebackground => 'OrangeRed',
-command => sub { doResponse() })->pack();

$rb2 = $mw->Radiobutton(
-text => "two",
-value => 2,
-variable => \$response,
-background => 'mistyrose',
-activebackground => 'OrangeRed',

206 Tk

-command => sub { doResponse() })->pack();
$rb3 = $mw->Radiobutton(

-text => "three",
-value => 3,
-variable => \$response,
-background => 'mistyrose',
-activebackground => 'OrangeRed',
-command => sub { doResponse() })->pack();

} else {
exit();

}
}
. . .

The intro() subroutine is a complex one. It is invoked in the first or the
third phase of the experiment and its behavior is determined by the value of
the $introflag variable. In the first phase of the experiment, the intro() method
hides the button and instructions, displays the first item of the experiment,
and sets up three radiobuttons. In the final phase of the experiment, this
method simply quits the program:

. . .
sub doResponse {

print("$wordtext: $response\n");
if ($#items > -1) {

$wordtext = shift(@items);
$rb1->deselect();
$rb2->deselect();
$rb3->deselect();

} else {
$wordtext = 'Thank you!';
$rb1->packForget();
$rb2->packForget();
$rb3->packForget();
$b1text = 'Dismiss';
$b1->pack(-side => 'bottom');

}
}

Each of the radiobuttons calls the doResponse() subroutine, which also has
two functions. If there are subsequent experimental items, it displays the next
item, and deselects all the radiobuttons. If there are no more experimental
items, it removes the three radiobuttons, brings back the button, and moves

Tk 207

to the third phase of the experiment. The only thing new here is the deselect()
method, which deselects the radiobuttons.

Here’s what the first phase of the experiment looks like:

B.6 Summary

This appendix has introduced the very useful Tk module. While this is a
powerful tool, it requires that you understand object-oriented programming
and references. In addition, it can be difficult to install and is not available on
all architectures.

Here’s the second phase:

Here’s the final phase:

208 Tk

This section has only scratched the surface of what can be done with the
Tk module. There are a huge number of additional widgets and methods that
have not been covered here.

Notes

1 Under the hood, Tk is extremely complex. What it actually consists of is an entirely
separate programming language glued onto Perl. Fortunately, you don’t need to
know anything at all about the Tk programming language to make use of the Perl
Tk module.

2 With the release of MacOS 10, Tk should be available for Macs.
3 They should be randomized, but we leave this step out to focus on GUI details.
4 The results should be written to a specific results file, but this detail is also left

aside.

Special Variables 209

Appendix C

Special Variables

Here are some of the special variables that Perl provides. Many of them have
an alternative mnemonic name that can be accessed if you include the declara-
tion use English; at the beginning of the program. This list does not include
many special variables that pertain to topics not treated in this book.

$_ ($ARG) The default input and pattern-searching space.
$1, $2, $3, . . . The patterns from the corresponding set of parentheses

from the last pattern-match.
$& ($MATCH) The string matched by the last successful pattern-match.
$′′′′′ ($PREMATCH) The string preceding whatever was matched by the last

pattern-match.
$’ ($POSTMATCH) The string following whatever was matched last.
$+ ($LAST_PAREN_MATCH) The last bracket matched by the last pattern.
@+ (@LAST_MATCH_END) Holds the offsets of the last matches.
$/ ($INPUT_RECORD_SEPARATOR) The input record separator.
$, ($OUTPUT_FIELD_SEPARATOR) The output field separator.
$0 ($PROGRAM_NAME) Contains the name of the program being executed.
$[The index of the first element in an array, and of the first character in a

substring. Default is 0.
$] The version of the Perl interpreter.
$ˆO ($OSNAME) The name of the operating system.
$ˆT ($BASETIME) The time the program began running.
$ARGV The name of the current file when reading from <>.
@ARGV Contains the command-line arguments.
@INC Contains the list of places that require, or use look for their files.
@_ Within a subroutine, contains the parameters passed to that subroutine.
%INC Contains entries for each filename included by do, require, or use.
%ENV Contains the current environment.
$! ($ERRNO) The value of the current error.

'

'

210 Where to Find Out More

Appendix D

Where to Find Out More

We have really only scratched the surface of what there is to know about Perl
in this book. There is a lot more to learn and lots of ways to find out more.

D.1 Documentation

The documentation that comes with Perl is extensive. The most useful tool is
the perldoc command. With appropriate command-line flags and arguments,
this can be used to find out much. First, to find out about the command itself,
use perldoc perldoc. This will return all the ways the command can be used.

The most useful way to use the command is perldoc -f X, where X is some
Perl command. For example, perldoc -f split will tell you how to use the
split() command.

The perldoc command can also be used with a single argument without a
flag. In this case, the argument is the name of one of the sections of the Perl
manual, or the name of an installed module. The command perldoc perl gives
a list of these sections. For example, perldoc perlref presents the section of
the manual dealing with references.

Finally, another very useful function with perldoc is the -q flag, which
searches for a keyword in the FAQ. For example, perldoc -q reference will
return those questions in the FAQ dealing with references.1

D.2 The Web

There is a huge amount of information available about Perl on the internet.
There are a number of interesting sites, some of which I list below. One that
deserves special mention is www.cpan.org, the “Comprehensive Perl Archive

Where to Find Out More 211

Network”. This is where you can get all Perl modules. In addition, it is a
repository for all sorts of useful Perl documentation.

http://www.cpan.org “Comprehensive Perl Archive Network”, the reposit-
ory for all modules and lots of other info.

http://learn.perl.org A site for people learning Perl.
http://www.perl.org “Perl mongers”, a Perl advocacy group.
http://use.perl.org A Perl community news and discussion website.
http://www.perl.com A commercial site, but with lots of useful information.

D.3 The usenet

There are several usenet groups devoted to Perl. The most useful are the
comp.lang.perl and comp.lang.perl.misc groups. However, these are not rec-
ommended for the beginner. Discussion in these groups is occasionally quite
high level, but also occasionally rather silly. The web resources and documen-
tation are far more useful as places to get started.

D.4 Other Books

There are several other books that are of use to the Perl/linguist programmer.
Programming Perl by Larry Wall, Tom Christiansen, and Jon Orwant

(Cambridge, Mass.: O’Reilly Press, 2000) is the definitive reference on Perl. It
is an excellent compendium of information, but can be quite daunting to a
newbie.

Learning Perl by Randal L. Schwartz and Tom Phoenix (Cambridge, Mass.:
O’Reilly Press, 2001) is an excellent general introduction to Perl.

Programming for Linguists: Java™ Technology for Language Researchers
by Michael Hammond (Oxford: Blackwell, 2002) is an introduction to pro-
gramming in Java for linguists. This is a different programming language
from Perl, but you may find that it fits your needs better for some applica-
tions. The advantage of the Java programming language is that it provides
for much more elaborate GUIs. In addition, it allows for more elaborate
web-based programming. On the other hand, it is necessarily object-oriented
(for better or worse), and does not offer integrated regular expressions.

Note

1 The ActiveState™ version of Perl for Windows also puts all of these documents
into HTML so that you can view them in your web browser instead.

Allie

Index 213

Index

\s 81
\t 81
\w 81
\W 81
|| 29
* 9, 81
*= 38, 45
+ 9, 84, 88
++ 114
+= 38, 86
- 9
-> 176–7, 181
-= 38, 45, 86
-activebackground 195, 197
-background 195–7, 202
-command 193–4, 196–7, 199–200
-side 192
-text 193, 195, 197–8
-textvariable 194–7, 202–5
-value 197, 199
-variable 197–8
. 81
.. 42
.= 38, 45, 85
.cshrc 7
.login 7
.pm 71
/ 9
/= 38, 45
= 16, 81, 94, 99
=> 179–80

</center> 127
</p> 123
<a> 131
 126
<body> 124, 154

 124
<center> 127
 126
<form> 153
<h1> 125
<head> 124, 154
<hr> 124
<html> 123–4, 154
<i> 126
 128
 128
<p> 123–4
<pre> 127
 126
<title> 124, 154
 128
<< 142
<=> 106
\ 175, 178
\1, etc. 86
\b 81
\B 81
\D 81
\d 81
\n 81
\S 81

214 Index

== 16–17, 81, 94
=˜ 81, 94
? 84, 88
?: 29
@ 14, 175–6
@+ 209
@_ 57–60, 98, 183–5, 209
@ARGV 68, 209
@INC 188, 209
[^] 84
[] 84, 179
48
$ 11, 14, 50, 81, 107, 175–7
$! 45, 209
$’ 87, 89, 209
$+ 209
$, 209
$/ 209
$0 209
$1, etc. 86
$[209
$& 87–8, 96, 209
$^O 209
$^T 209
$_ 50–1, 57–8, 60, 104, 209
$] 209
$‘ 87, 209
$a 105, 120
$ARG 209
$ARGV 209
$b 105, 120
$BASETIME 209
$ERRNO 209
$INPUT_RECORD_SEPARATOR 209
$LAST_PAREN_MATCH 209
$MATCH 209
$OSNAME 209
$OUTPUT_FIELD_SEPARATOR 209
$POSTMATCH 209
$PREMATCH 209
$PROGRAM_NAME 209
% 9, 27–8, 107, 175–6
%ENV 145–6, 148, 153, 155–6, 209
%INC 209
&& 29
& 129
β 133
> 129

< 129
" 129
^ 81
{,} 88
{} 84, 179

accessor 183
action 153, 155
anchor 132
anchor1.html 133
and 16–17
anon1.pl 103
anon2.pl 104
anonex1.pl 50
anonex2.pl 51
anonex3.pl 51
anonex4.pl 52
anonymous variables 50
arr1.pl 14
arr2.pl 14
array 13
arrow1.pl 176
autoexec.bat 7

back1.pl 86
back2.pl 86
backreferences 86
basic1.html 123
basic2.html 124
basic3.html 124
basic4.html 125
basic5.html 127
basic6.html 128
basic7.html 129
bigrams 118
bigrams.pl 118
bless 180
bless() 180–1, 187
block 15
Button 190–1, 193, 195–7, 200, 204
Button() 195

cd 6
CGI 122, 140
cgi-bin 140–1
cgi1.pl 141
cgi2.pl 142

'

'

Index 215

cgi3.pl 144
CGI::Carp 145
chomp() 32–3, 118, 184
chop() 45
class 74, 180
clear 45
client 121
close() 37–8
cls 43, 45
cmd-. 20
cmdln1.pl 31
cmdln2.pl 32
cmdln3.pl 32
cmp 105
cols 161
comp.lang.perl 211
comp.lang.perl.misc 211
conc1.pl 114
conc2.pl 115
conc3.pl 116
concatenation 80
concObj.pl 183
concordances 114
configure() 201–2
console 45
constructor 175
CONTENT_LENGTH 156
control structures 15
ctrl-c 20

d 98
data encapsulation 174
delete() 109–10, 119
deselect() 207
die 37
die() 36, 45
do 21, 209
doit() 203
dynamic content 122

e 96
each() 113–14
edit 5
edit 6
else 18, 22, 54, 61, 117, 150
elsif 18, 117
env1.pl 145
env2.pl 146

eq 17
exists() 108, 119
Exp_init.pm 71
Exp_init2.pm 74
Exp_pres.pm 72
Exp_pres2.pm 76
Exp_pres3.pm 78
Exp_rand.pm 72
Exp_rand2.pm 75
Exp_read.pm 71
Exp_read2.pm 74
expcgi1.pl 150, 164
expcgi2.pl 164, 167, 171
expmat1.pl 25
expmat2.pl 25
expmat3.pl 26–7
expmat4.pl 27
Exporter 73–4, 76
expprog.pl 43, 45
expprog2.pl 61, 68
expprog3.pl 69
expprog4.pl 73
expprog5.pl 76
expprog6.pl 77, 79

f1cgi.pl 155, 159–60, 163
f2cgi.pl 157
fakecgi.html 143
Fcntl 169
file 30
fileex1.pl 37
fileex2.pl 38
fileex3.pl 38
fileex4.pl 39
flock() 169–70
for 23, 27–9, 42, 44, 55
foreach 23–8, 34, 36, 51–2, 60, 101, 105,

111, 113–14, 117–18
foreachex1.pl 24
foreachex2.pl 24
foreachex3.pl 24
foreachex4.pl 24
forex1.pl 23
form1.html 154–6
form2.html 156
form3.html 157
form4.html 159
form5.html 161

216 Index

g 94, 96–7
GET 146, 153–4, 157, 171–2
get() 136–7
getlogin() 13, 28
groups 6
GUI 153, 188–91, 193, 203, 205, 207–8,

211
gui1.pl 189–90, 195
gui2.pl 191
gui3.pl 192
gui4.pl 193
gui5.pl 194
gui6.pl 195
gui7.pl 195
gui8.pl 196
gui9.pl 197
gui10.pl 199
gui11.pl 200
gui12.pl 201
gui13.pl 202

handle 32
hash 94, 107, 119
hash1.pl 108
hash2.pl 109
hash3.pl 109–10
hash4.pl 110
hash5.pl 111
hash6.pl 112
hash7.pl 113
hash8.pl 113
hello2.pl 8
hello3.pl 9
hello4.pl 9
here-document 142
href 131
HTML 121–2, 139–40, 188
HTML 122
HTTP 121
HTTP 145
hyperlinks 131

if 15, 17–19, 22, 27–9, 54, 60–1, 86–7,
110, 117, 137, 150

if/elsif 15
ifex1.pl 15
ifex2.pl 15
ifex3.pl 16

ifex4.pl 16
ifex5.pl 16
ifex6.pl 17
ifex7.pl 17, 19
ifex8.pl 17
ifex9.pl 18
ifex10.pl 18
ifex11.pl 19
ifex12.pl 19
ifex13.pl 19
indirection 175
inheritance 187
input 30
IPA 139

japh 46
Java x, 186, 211
join() 94, 99, 102, 119

keys 107
keys() 110–13, 119
Kleene star 80

Label 193, 195–9, 202, 204
languagefamily.pl 67
LAST_MATCH_END 209
lc() 106
length() 34, 37
links 122
links1.html 131–2
links2.html 134
list 14
list context 59
localtime() 143
LWP::Simple 136–7

m// 81, 94, 96, 103–4
m//g 95
m//x 90
machine code 5
MacPerl 3
MainLoop() 190–1
MainWindow 190–1, 194–6, 205
method 174, 180
method 153, 156
modcallex1.pl 65
Modex1.pm 64
modules 64

Index 217

modulus 28
MS-DOS 3, 6
multidimensional array 65
my() 56–8, 61, 63

name 155, 160–1
new() 181–3, 185, 195
newline 9
numprint1.pl 9
numprint2.pl 10

obj1.pl 180
obj2.pl 181
obj3.pl 182
objects 173
Octal.pm 98
OOP 173–5, 186–7, 190
open() 36–8
or 16–17, 36–7
ord() 98
output 30

pack() 190–2, 196–7, 202
package 64, 71, 98, 180, 187
packForget() 202–3
parsecgires.pl 168
parsecgires2.pl 168
pat1.pl 80
pat2.pl 81
pat3.pl 83
pat4.pl 85
pat5.pl 87–8
pat6.pl 95
PATH_INFO 146–51
Perl 2
perl 5, 7
perldoc 79, 210
Pig Latin 88
piglatin1.pl 89, 93, 148
piglatincgi.pl 147
pop() 40–1
POST 146, 153, 156–7, 164, 171–2
ppm 189
primes.pl 26–7
print() 6, 9–11, 14, 17, 31, 33–5, 37, 39,

51–2, 106, 110, 142
private 175
procex1.pl 174

prompted input 30
promptex1.pl 33
promptex2.pl 33
promptex3.pl 33
promptex4.pl 35
promptex5.pl 35
promptex6.pl 36
public 175
push() 40, 42–3, 100
pushpopex.pl 40

QUERY_STRING 146–7, 153, 155–6, 172

radio 160
Radiobutton 193, 197–8, 200, 204
ran-commented.pl 48
rand() 41–3
ranex1.pl 42
ranex2.pl 42
ranwrong1.pl 47
ranwrong2.pl 48
ranwrong3.pl 49
ranwrong4.pl 49
read() 156–7
reading 32
recur1.pl 60
recursion 60
recursive 57
ref1.pl 175
ref2.pl 175
ref3.pl 176
ref4.pl 177
ref5.pl 178
ref6.pl 179
ref7.pl 179
references 175
replace1.pl 95, 119
replace2.pl 96
replace3.pl 96
replace4.pl 97
replace5.pl 97
replace6.pl 99, 119
replace7.pl 99
REQUEST_METHOD 146
require 209
return 9–11, 33–4, 51–4, 66, 68, 89, 100,

102, 110, 116, 118, 141, 184
return() 70

218 Index

rows 161
run 5

s/// 94, 96, 99, 103, 119
savecresgi.pl 167
saverescgi.pl 167, 169
saverescgi2.pl 170
scalar 28
scoped variables 56
semaphor 169
sentences.pl 90, 99
server 121
shift() 40–1, 58–60
shiftex.pl 41
size 154
slice 67
sort() 104–6, 111, 113, 119, 169
sort1.pl 104
sort2.pl 105
sort3.pl 106
specex1.pl 50
special variables 50
splice() 40–2
split() 94, 99–103, 107, 116–19, 168,

174, 184, 210
split1.pl 100
split2.pl 100
split3.pl 101–2, 120
split4.pl 103
sprintf() 98
statements 6
static content 122
STDERR 35–6, 137
STDIN 32–4, 153, 156
STDOUT 35–6
stringconcat.pl 10
stringprint.pl 10
sub 52
subex1.pl 52
subex2.pl 53
subex3.pl 53
subex4.pl 54
subex5.pl 54
subex6.pl 56
subex7.pl 57
subex8.pl 58
subex9.pl 58
subex10.pl 59

subex11.pl 59
substr() 118
subwrong1.pl 55
switch 29
system() 43

tags 122
text 5
time() 13, 143
title() 196–7
Tk 4, 173, 188–91, 193–5, 197, 203,

207–8
tkexp.pl 204
tr/// 94, 97–9, 103, 119
typeglobs 120

uc() 106
union 80
unless 23, 29
unshift() 40–1
until 23, 29
URL 121
use 64–5, 72, 74, 136, 170, 188, 190–1,

209
usenet 46

value 160
values 107
values() 112–13, 119
varex1.pl 11
varex2.pl 11
varex3.pl 12
varex4.pl 12
varex5.pl 12
varex6.pl 13
variables 11

websearch.pl 136
where 3
whereis 3
while 19–22, 28, 34, 37–9, 41–2, 51, 66,

77, 88–90, 95, 104, 110, 114, 116,
137, 182

whileex1.pl 20
whileex2.pl 20
whileex3.pl 20
whileex4.pl 21
whileex5.pl 21

Index 219

whileex6.pl 22
whileex7.pl 22
whileex8.pl 22
whileex9.pl 22
widget 190

widget 189, 195
www.cpan.org 136, 210

x 96
X-Windows 189

	Programming for Linguists: Perl for Language Researchers
	Contents
	Preface
	Acknowledgments
	1 Why Programming and Why Perl?
	1.1 Why programming?
	1.2 Why Perl?
	1.3 Download and install Perl
	1.4 How to read this book

	2 Getting Started
	2.1 Edit and run
	2.1.1 Edit
	2.1.2 Run

	2.2 Other platforms
	2.3 Summary
	2.4 Exercises

	3 Basics: Control Structures and Variables
	3.1 Statements
	3.2 Numbers and strings
	3.3 Variables
	3.4 Arrays
	3.5 Control structures
	3.5.1 if
	3.5.2 while
	3.5.3 for
	3.5.4 foreach

	3.6 Experimental materials
	3.7 Summary
	3.8 Exercises

	4 Input and Output
	4.1 Overview
	4.2 The command line
	4.3 Prompt input
	4.4 Prompt output
	4.5 File IO
	4.6 Array operations and randomizing
	4.6.1 Array operations
	4.6.2 Randomizing

	4.7 Collecting experimental data
	4.8 Summary
	4.9 Exercises

	5 Subroutines and Modules
	5.1 Japhs
	5.2 Style and comments
	5.3 The anonymous variables
	5.4 Subroutines
	5.5 Localizing information
	5.6 Arguments
	5.7 Collecting more experimental data
	5.8 Modules
	5.9 Multidimensional arrays
	5.10 Localizing variables
	5.11 Subroutines to modules
	5.12 Using Exporter
	5.13 Taking advantage of separate modules
	5.14 Summary
	5.15 Exercises

	6 Regular Expressions
	6.1 Basic syntax
	6.2 Special characters
	6.3 Commenting regular expressions
	6.4 Extra stuff
	6.5 Using variables in regular expressions
	6.6 Greediness
	6.7 Pig Latin
	6.8 Sentences
	6.9 Summary
	6.10 Exercises

	7 Text Manipulation
	7.1 s///
	7.2 tr///
	7.3 split() and join()
	7.4 The anonymous variable again
	7.5 sort()
	7.6 Hashes
	7.6.1 exists()
	7.6.2 delete()
	7.6.3 keys()
	7.6.4 values()
	7.6.5 each()
	7.7 Concordances
	7.8 Bigrams
	7.9 Summary
	7.10 Exercises

	8 HTML
	8.1 How the web works
	8.2 Basic HTML
	8.3 Mounting your pages
	8.4 Links
	8.5 Searching the web
	8.6 Summary
	8.7 Exercises

	9 CGI
	9.1 CGI access
	9.2 Simple CGI
	9.3 Finding CGI errors
	9.4 HTTP requests
	9.5 Using links to interact
	9.6 HTML forms
	9.7 Running an experiment over the web
	9.8 A glitch
	9.9 Summary
	9.10 Exercises

	Appendix A Objects
	A.1 Object-oriented programming
	A.2 References
	A.3 Basic syntax
	A.4 Using objects
	A.5 Summary

	Appendix B Tk
	B.1 Installing Tk
	B.2 Building a GUI
	B.3 Geometry management
	B.4 Widgets
	B.4.1 Button
	B.4.2 Label
	B.4.3 Radiobutton
	B.4.4 Changing things

	B.5 Graphic experiments
	B.6 Summary

	Appendix C Special Variables
	Appendix D Where to Find Out More
	D.1 Documentation
	D.2 The web
	D.3 The usenet
	D.4 Other books

	Index

