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I. THE CMB POWER SPECTRUM

The Cosmic Microwave Background (CMB) radiation has an anisotropy of the order of
O(10−5) in temperature. The statistics of this anisotropy is so wealthy in information that
they were, are and will be many observations to detect this anisotropy originated on the last
scattering surface of photons. The temperature anisotropy is a function of position x, time
t and the direction of the photons n̂ reaching us:

δT

T
=

δT

T
(x, t, n̂) (1)

where T is the average density of CMB. We set x = x0 and t = t0 as in the present time and
we mainly suppress this space and time dependence. On the other hand as the direction of
the photons is defined in a 2D sphere n̂ϵS2, where we can expand the temperature anisotropy
in terms of spherical harmonics Yℓm.

δT

T
(x0, t0, n̂) =

∑
ℓm

aℓm(x0)Yℓm(n̂) (2)

where the physics is imprinted in aℓms and the Yℓm are the basis of space where we expand
the temperature anisotropy. In the case of statistical homogeneity, instead of computing the
ensemble of realizations (where we can not calculate the ensemble average because we have
only one observable Universe) we have an expectation value for the coefficients of Yℓms by
changing the direction we are looking to photons.

⟨aℓm.a∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ (3)

where Cℓ is the CMB anisotropy power spectrum, where now is just a function of moment
ℓ. This moments is related to the angle ( θ), between the two directions of observed photons
as ℓ = π/θ Now we can find the two-point function of the temperature anisotropy as:

⟨δT
T

(n̂)
δT

T
(n̂′)⟩n̂.n̂′≡µ =

∑
ℓℓ′mm′

⟨aℓm.a∗ℓ′m′⟩Yℓm(n̂)Y ∗
ℓ′m′(n̂′) (4)

Now by substituting Eq.(3) in equation above, we will have:

⟨δT
T

(n̂)
δT

T
(n̂′)⟩n̂.n̂′≡µ =

∑
ℓ

Cℓ

m=+ℓ∑
m=−ℓ

Yℓm(n̂)Y
∗
ℓ′m′(n̂′) (5)

Now we can use the theorem of spherical harmonics to convert their multiplication to Leg-
endre function:

m=+ℓ∑
m=−ℓ

Yℓm(n̂)Y
∗
ℓ′m′(n̂′) =

2ℓ+ 1

4π
Pℓ(n̂.n̂

′) (6)
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where Pℓ is the Legendre function. Consequently the two point correlation function of
temperature anisotropy is related to CMB power spectrum as:

⟨δT
T

(n̂)
δT

T
(n̂′)⟩n̂.n̂′≡µ =

1

4π

∑
ℓ

(2ℓ+ 1)CℓPl(µ) (7)

The most dominant effect in CMB temperature anisotropy is the Sachs-Wolfe effect, where:

∆T

T
(x0, n̂, t0) ≃

1

3
Ψ(xdec, tdec), (8)

Ψ is the gravitational potential in time of decoupling. (The definition of gravitational poten-
tial and its gauge invariant version is discussed in perturbation theory) and the decoupling
comoving distance is:

xdec = x0 + n̂(t0 − tdec) (9)

Now the Fourier transform of temperature anisotropy in terms of Fourier mode of gravita-
tional potential is:

∆T

T
(k, n̂, t0) ≃

1

3
Ψ(k, tdec)e

ikn(t0−tdec) (10)

Now we are going to compute the the two point function of temperature anisotropy and
translate it in Fourier space.

⟨ δT

T
(x0, n̂, t0)

δT

T
(x0, n̂

′, t0)⟩n̂.n̂′≡µ =
1

(2π)6

∫
d3kd3k′eix0(k−k′)⟨δT

T
(k, n̂, t0)

δT

T

∗
(k, n̂′, t0)⟩(11)

=
1

9(2π)6

∫
d3kd3k′eix0(k−k′)⟨Ψ(k)Ψ∗(k′)⟩eikn(t0−tdec)e−ik′n′(t0−tdec)

=
1

9(2π)6

∫
d3kd3k′eix0(k−k′)⟨Ψ(k)Ψ∗(k′)⟩

∞∑
ℓℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)

× iℓ−ℓ
′
jℓ(k(t0 − tdec))jl′(k

′(t0 − tdec))Pℓ(k̂.n̂)Pℓ′(k̂
′.n̂′)

where we have used the relation of plane wave with Legendre polynomial as:

eikn(t0−tdec) =
∞∑
ℓ=0

(2ℓ+ 1)iℓjℓ(k(t0 − tdec))Pℓ(k̂.n̂) (12)

where k ≡ |k| and k̂ ≡ k
k
Now we know that the gravitational potential two point function

in Fourier space is related to the matter power spectrum. as:

⟨Ψ(k)Ψ∗(k′)⟩ ≡ (2π)3δ3D(k− k′)PΨ(k) (13)

By the Dirac delta function appeared in the definition of power spectrum the integral in Eq.
(11), can be calculated as:

⟨δT
T

(x0, n̂, t0)
δT

T
(x0, n̂

′, t0)⟩ =
1

9(2π)3

∫
d3kPΨ(k)

∞∑
ℓℓ′=0

(2ℓ+ 1)(2ℓ′ + 1)iℓ−ℓ
′

(14)

× jℓ(k(t0 − tdec))jl′(k(t0 − tdec))Pℓ(k̂.n̂)Pℓ′(k̂.n̂
′)
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Now we can expand the Legendre polynomials in terms of spherical harmonics:

Pℓ(k̂.n̂) =
4π

2ℓ+ 1

∑
m

Y ∗
ℓm(k̂)Yℓm(n̂) (15)

Pℓ′(k̂.n̂
′) =

4π

2ℓ′ + 1

∑
m′

Y ∗
ℓ′m′(k̂)Yℓ′m′(n̂′)

Now as the integral over momentum is
∫
d3k ≡

∫
k2dkdΩk̂ and the orthogonality condition:∫

dΩk̂Y
∗
ℓm(k̂)Yℓ′m′(k̂′) = δℓℓ′δmm′ (16)

and also the relation between the spherical harmonics and Legendre function is:∑
m

Y ∗
ℓm(n̂)Yℓ′m′(n̂′) =

2ℓ+ 1

4π
Pℓ(µ) (17)

where µ = n̂.n̂′. Finally using the orthogonality relation and the exchange between the spher-
ical harmonics with Legendre polynomials the two point function of temperature anisotropy
becomes:

⟨δT
T

(x0, n̂, t0)
δT

T
(x0, n̂

′, t0)⟩n̂.n̂′≡µ (18)

≃
∑
ℓ

2ℓ+ 1

4π
Pℓ(µ)

2

π

∫
dk

k

1

9
Pψ(k)k

3j2ℓ (k(t0 − tdec))

Now by combing the Eqs.(3,18) we will find the CMB anisotropy power spectrum as:

Cℓ ≃
2

9π

∫ ∞

0

dk

k
PΨ(k)k

3j2ℓ (k(t0 − tdec)) (19)

The equation above shows that how we can relate the CMB anisotropy power spectrum
to the gravitational potential power spectrum. On the other hand the oscillatory behavior
of CMB power spectrum is induced via the square of the bessel function.


