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a b s t r a c t

A new method which is a combination of the harmonic balance and finite difference techniques (HBFD)
is proposed for complete time-harmonic solution of the nonlinear wave equation. All interactions be-
tween different harmonics up to an arbitrary order can be incorporated. The effect of higher order
harmonics on two important nonlinear optical phenomena, namely, the second harmonic generation
(SHG) and frequency mixing is investigated by this method and the results are compared with well-
known analytical solutions. The method is quite general and can be used to study wave propagation in all
nonlinear media.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Since the invention of laser, propagation of high intensity op-
tical waves which is substantially affected by the nonlinear prop-
erties of the medium has been a topic of high interest. Non-
linearities of the medium lead to optical phenomena such as
second harmonic generation, frequency mixing, self-refraction,
self-phase modulation and soliton which have all found interest-
ing applications in optoelectronics and optical communications.

In order to study these phenomena, the wave equation must be
solved in nonlinear (NL) media. Approximate and simplified
closed-form solutions of the NL wave equation for some of these
phenomena already exist. These solutions are usually obtained by
neglecting higher order harmonics and employing other simpli-
fying assumptions such as slowly varying envelope approximation
(SVEA) [1,2] which are only applicable when the nonlinear effects
are very weak [3].

Nonlinear Schrödinger equation (NLSE) has been widely used
for Soliton propagation and SHG [4–6]. Existence of a slowly
varying envelope is the fundamental assumption behind the de-
rivation of NLSE. On the other hand, purely numerical techniques
such as finite difference time domain (FDTD) and beam
l and Computer Engineering,
on, Hoboken, NJ 07030, USA.
erdi),

mputer Engineering, Isfahan
propagation method (BPM) have also been used to study a number
of nonlinear problems such as SHG, self-focusing, and Soliton
propagation [7–19]. In conventional BPM such as FFT-BPM [15] or
FD-BPM [16] the linear and nonlinear parts of the paraxial scalar
wave equation are treated separately. In Bidirectional BPM an
iterative procedure is employed which is started by solving an
independent linear problem to calculate the input/output com-
ponents of the electric field. Then, energetic exchanges between
the two harmonics, which are due to the NL characteristic of the
medium, are computed by using these components. Finally, the
input/output field components are calculated by considering the
energetic exchanges. This iteration stops when the difference be-
tween new and old components becomes less than a predefined
tolerance [20,21]. Increasing the number of harmonics in this
method quickly increases the complexity in calculation of the total
energetic exchanges. FDTD can yield more accurate results than
those of conventional BPM because it does not use the paraxial
approximation. On the other hand, in order to minimize the effects
of numerical dispersion while maintaining stability, FDTD requires
fine temporal and spatial discretizations which leads to high
computational cost of this method [7,8].

In this paper, a new time-harmonic solution for the nonlinear
wave equation is presented in which the effects of higher order
harmonics up to an arbitrary order are included. The proposed
method is inspired by the Harmonic Balance Technique (HBT)
which is a well-known method for the analysis of lumped and
distributed nonlinear circuits [22]. In this method, all interactions
among different harmonics are taken into account while the
number of harmonics involved is limited by the user. HBT has also
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been applied to the analysis of nonlinear transmission lines with
periodic excitation and formation of shockwaves and solitons in
such structures have been reported [23]. The common practice is
that the nonlinear transmission line is divided into small segments
and each segment is replaced by a lumped element equivalent
circuit with nonlinear capacitors. The resulting lumped element
circuit is then solved by HBT. The number of nonlinear elements
depends on the electrical length of the transmission line, conse-
quently, analyzing a long nonlinear transmission line can become
very time consuming by this approach. To overcome this problem,
our proposed technique uses finite difference method to solve the
nonlinear differential equation in frequency domain. First, the
solution is expanded in terms of multiple temporal harmonics
with spatially varying coefficients. After balancing the harmonics,
a system of nonlinear differential equations for the coefficients is
obtained which is solved by the finite difference method. Finally,
the Manley–Rowe relations are used to check the balance of power
in the medium [24]. The proposed method is called HB-FD tech-
nique. It will be used to simulate SHG and frequency mixing in
one-dimensional lossless nonlinear media by considering the ef-
fects of higher order harmonics. It will be shown that the presence
of a higher order harmonic will strongly influence both nonlinear
phenomena. It should be stressed that simplifying assumptions
such as paraxial approximation and SVEA are not used in the
proposed formulation, therefore, not only strong nonlinearity can
be considered but the true phase mismatch is also calculated
based on the actual dispersion characteristics of the medium. Here
the linear and NL parts are not separated and any number of
harmonics or combination of waves at different frequencies can be
easily incorporated into the solution procedure. These character-
istics result in lower complexity, faster solution, and more versa-
tility compared to Bidirectional BPM [20]. Unlike FDTD which can
be used to simulate the propagation of narrow pulses of light, the
proposed method in its current form can only handle a super-
position of finite number of monochromatic waves with different
frequencies. Compared to similar methods that employ HBT for
modeling wave propagation in nonlinear transmission lines [25],
HB-FD technique is faster and can be easily adapted for lossy,
dispersive, or inhomogeneous media.
2. Formulation

2.1. Nonlinear wave equation

The wave equation in a NL, homogeneous, and anisotropic
medium is derived simply from Maxwell's equations [26]:
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in which c 1/ 0 0μ= ϵ is the speed of light in vacuum. The polar-
ization vector P can be separated into linear and NL parts:
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where (1)χ is the linear first order susceptibility, and (2)χ , ,(3)χ …
are NL higher order susceptibilities [1,4]. When the NL response of
the medium is not instantaneous, the successive terms in the
above equation should be replaced by convolutions in time
domain [26].

2.2. Solution of NL wave equation by HB technique

In this section harmonic balance technique is used to obtain a
steady state time-harmonic solution for the NL wave equation. The
electric field and polarization are expanded in terms of multiple
temporal harmonics with spatially varying coefficients:
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where nω stands for various frequencies which include funda-
mental frequencies, their integer harmonics, and linear combina-
tions of them. En and Pn are complex vector coefficients of the
electric field and polarization at frequency ωn which, in general,
are functions of spatial coordinates. Substituting (3) and (4) into
(1) yields
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After substituting frequency domain descriptions of linear and NL
polarizations into (5) and only considering NL susceptibilities of
the second and third order (higher order NL susceptibilities are
usually insignificant and neglected) we obtain [4]
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In order for (6) to hold at all times, coefficients of j texp( )nω must
be zero. Hence, a NL system of equations is derived which is the
time-harmonic equivalent of the NL wave equation:
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To demonstrate the basic steps of the proposed method, in this
paper, we only consider plane-wave propagation in an unbounded
isotropic NL medium. It is assumed that the plane-wave propa-
gates along the z-axis and the electric field has a linear polariza-
tion along the x-axis. The medium is homogeneous in transverse
plane but its constitutive parameters may vary along the direction
of propagation. Therefore, (7) is reduced to a scalar equation:
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in which En(z) is the electric field component of the nth harmonic
and i( )χ may be function of z if the medium is inhomogeneous. The
system of second order NL differential equations in (8) must be
solved numerically.

2.3. Finite difference method

The finite difference method can be used to solve the system of
NL differential equations in (7) or (8) in space domain [27]. To
solve (8), the z-axis between z¼0 and z¼L (L is arbitrary) is



Fig. 1. Effect of zΔ on envelope variations of the fundamental frequency.
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divided into M equal segments of length z L M/Δ = . At each point
z i z i M, 1, 2, 3, , 1i = Δ = … − the central difference approximation
is used to discretize the second order derivatives in (8). Conse-
quently, a set of nonlinear algebraic equations is obtained which
must be solved after the initial and/or boundary conditions are
imposed. Although this solution produces the forward and back-
ward waves in the medium, the number of harmonics used in the
solution and also the number of discrete points along the medium
might lead to a very large system of nonlinear equations. In order
to overcome this problem, the medium is assumed to be semi-
infinite and any reflection from z¼L is ignored as in [28]. This
assumption enables us to use the following equation to update the
electric field at each point using its values at previous points:
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where the superscript (subscript) i means that the quantity is
computed at z i z= Δ . En0 and En

1 are initial values of the electric
field of nth harmonic at z z0,= Δ when the electromagnetic wave
enters the NL medium. Note that the recursive finite difference
method does not require any boundary condition at z M z L= Δ = ,
in other words, there is no reflection at this point because the
medium is semi-infinite. In the following sections after computing
the electric field of each harmonic, in order to plot the envelope
variations of the field we will separate the envelope and phase
variations of En defined by

E z A z e B z e( ) ( ) ( ) (10)n n
jk z

n
jk zn n= +−

in which An(z) and Bn(z) represent the forward and backward
electric field envelope variation, respectively. kn is the phase
constant at frequency ωn, in a non-dispersive medium kn equals

nω μϵ . Here, Bn(z) is assumed to be zero as there is no reflection in
a homogeneous semi-infinite medium.
Fig. 2. Normalized intensities of the first and second harmonics in a nonlinear
medium based on the HB-FD technique and analytic solution.
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3. Numerical results

3.1. Second harmonic generation

Wave propagation in NL media with asymmetric constructive
crystals, in which (2)χ is nonzero and dominant, leads to the gen-
eration of second harmonic (SH) frequency component [1]. This
phenomenon is known as the second harmonic generation (SHG).
In such media, the NL polarization in (2) is well approximated by

E0
(2) 2χϵ . Consequently, Eq. (9) is further simplified when only the

fundamental frequency (FF) and its second harmonic, 2ω0, are
considered to be propagating through the medium:
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where z z/ 0λΔ ′ = Δ , c/ 2 /0 0ω π λ= , and En
i¯ is the complex conjugate of
Ein and E En
i

n
i= ¯

− . Assuming that a single plane-wave at frequency
ω0 enters a lossless and non-dispersive NL medium at z¼0, Eqs.
(11) and (12) are solved simultaneously to obtain the electric field
at FF and SH. As in any other finite difference scheme, the choice of

zΔ strongly affects the accuracy and stability of the method. Fig. 1
shows envelope variations of the FF component for different
values of zΔ . For larger values of z/λΔ the method is unstable
and the envelope is not predicted correctly when compared to the
available analytic solution in Fig. 2. However, as the step size is
decreased, after some point the envelope remains almost un-
changed which indicates the convergence of the method. For the
set of parameters used in this paper, the results converge for

z 0.0005λΔ < and it was chosen to be z 0.0001λΔ = in all
simulations.

As the first example we apply the method to a non-dispersive
weakly nonlinear medium in order to validate the numerical re-
sults by comparing them with those of the analytic solution.
The medium susceptibilities are ( ) (2 ) 3.48(1)

0
(1)

0χ ω χ ω= = and
( ) (2 ) 85 10 V/m(2)

0
(2)

0
12χ ω χ ω= = × − . The initial conditions are

expressed by E E 1.1 10 V/m0 1 8
0 0= = ×ω ω and E E 02

0
2
1

0 0= =ω ω which
ensure the second harmonic does not enter the medium. The
normalized field intensities are shown in Fig. 2. As the wave pro-
pagates in the medium, the SH is excited and its intensity in-
creases while the intensity of the FF decreases. This behavior is
also predicted by the analytical solution, which is shown in Fig. 2
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by dashed lines [1,3,4], and also by other numerical solutions such
as FDTD and BPM [28]. Evidently, the HB-FD results are in good
agreement with the analytical solution up to z 1000 m≈ μ . Eqs. (11)
and (12) imply that the sub-harmonic frequency at ω0 cannot be
generated if a single plane-wave at frequency 2ω0 enters the
medium [3,29].Consequently, if the intensity of FF reduces to zero
at some point in the medium, it is expected to remain zero and the
total input power to be transferred to the SH. However, as seen in
Fig. 2, the intensity of FF does not diminish completely and starts
to increase again while the intensity of SH starts to decay. There-
fore, the input power is periodically exchanged between the FF
and SH. Although this regeneration has also been predicted in [3] in
a general solution of second harmonic generation, its period be-
comes infinite in the simplified analytical solution for phase
matched condition. Extensive simulations reveal that the period of
this exchange of power decreases if /(2) (1)χ χ or the input power is
increased and vice versa. In other words, this behavior is more
pronounced when the nonlinearity is stronger. Fig. 3(a) and
(b) demonstrates the above statement. In fact the input power is
never totally transferred to the SH and complete disappearance of
the FF predicted by the analytical solution is only the result of SVE
approximation for weak nonlinearity. In fact, it can be shown that
the second order derivative, which is neglected in SVE approx-
imation, mathematically has an effect similar to phase mismatch
in the analytical solution which leads to periodic envelope varia-
tion of FF and SH.

Based on Manley–Rowe relations the total power along the
Fig. 3. Regeneration of the first harmonic for (a) different values of (2)χ and
(b) different values of input power. (2 ) ( ) 3.84(1) 0 (1) 0χ ω χ ω= = , E E 02 0

0
2 0
1= =ω ω ,

1.7776 m0λ = μ and z 0.0001′Δ = .

Fig. 4. Amplitude variations of the first and second harmonics in (a) non-dispersive
and (b) dispersive media over one free-space wavelength.
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propagation path in a lossless NL medium must remain constant
[24,1]:

P A z( ) constant
(13)
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In our example, we expect to have A z A z A( ) ( ) (0)1
2
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2
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2| | + | | = | | +

A (0) 12
2| | = which is evident from Fig. 2.

In a non-dispersive NL medium, it is expected that the two
harmonics remain in-phase, i.e. k k22 1= . This behavior can be
confirmed by studying the sinusoidal amplitude variations of each
harmonic. Fig. 4(a) shows the sinusoidal amplitudes (not the en-
velopes) of the FF and SH within one free-space wavelength.
Comparing the zero crossings confirms that k k22 1= .

In a dispersive medium, however, (2 ) ( )(1)
0

(1)
0χ ω χ ω≠ and

k k2 1 2− is nonzero. Thus, a phase mismatch builds up between the
FF and SH [3]. An example of propagation in a dispersive medium
is shown in Fig. 4. Dispersion also affects the envelope variations
of each harmonic significantly. Fig. 5 shows envelope variations of
the FF and SH for different values of (2 )/ ( )(1)

0
(1)

0χ ω χ ω . Their be-
havior shows that the effect of nonlinearity can be partly com-
pensated by dispersion because as (2 )/ ( )(1)

0
(1)

0χ ω χ ω increases the
envelope of FF tends to remain almost constant throughout the
medium. The envelope of SH varies sinusoidally as expected [3]. Its
period of variations is commonly known as coherent length [30].

If the third harmonic (TH) is allowed to propagate in a NL



Fig. 5. Envelope variations of the (a) fundamental frequency (b) second harmonic
in a dispersive medium for different values of (2 )(1) 0χ ω . ( ) 2(1) 0χ ω = ,
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medium in which only (2)χ is present and dominant, behavior of
the FF and SH will also be affected significantly. No closed form
analytical solution for this case has been presented before. How-
ever, the TH can be easily included in HB-FD method and the
following equations are obtained from (9) after neglecting (3)χ and
keeping the harmonics up to third order:
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Numerical results for envelope variations are shown in Fig. 6
where it was assumed that a single plane-wave at frequency ω0

enters a lossless NL medium at z¼0. Note that both the SH and the
TH are generated as the FF propagates through the medium. Again
the Manley–Rowe relations are valid and the total power remains
constant and equal to the input power. It is interesting to note that
when the TH is allowed to propagate, a larger amount of the input
power is transferred to the TH rather than the SH. Moreover, the
envelope of FF does not completely vanish at any point. Fig. 7
shows the sinusoidal amplitude of the three waves over one per-
iod that reveals the phase matching between the FF and the higher
harmonics, i.e. k k33 1= and k k22 1= because the medium was as-
sumed to be dispersion-less.
Fig. 6. Envelope variations of the first, second, and third harmonics in a NL med-
ium. (3 ) (2 ) ( ) 2(1) 0 (1) 0 (1) 0χ ω χ ω χ ω= = = , (3 ) (2 ) ( )(2) 0 (2) 0 (2) 0χ ω χ ω χ ω= = =
50 10 V/m12× − , E E 10 10 V/m0

0
0

1 8= = ×ω ω , E E 02 0
0

2 0
1= =ω ω , E E 03 0

0
3 0
1= =ω ω and

z 0.0001′Δ = .
3.2. Frequency mixing

When an electromagnetic wave with two distinct frequency
components at ω1 and ω2 ( 2 1ω ω> ) enters a NL medium with
second order nonlinearity, new components at 2 1ω ω± are gen-
erated. This phenomenon is known as frequency mixing. In this
case, after neglecting higher order frequency components, Eq. (9)
is simplified to
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Fig. 7. Amplitude variations of the first, second, and third harmonics in a non-
dispersive NL medium within one free-space wavelength. (3 )(1) 0χ ω =

(2 ) ( ) 2(1) 0 (1) 0χ ω χ ω= = , (3 ) (2 ) ( ) 50 10 V/m(2) 0 (2) 0 (2) 0 12χ ω χ ω χ ω= = = × − ,
E E 10 10 V/m0

0
0

1 8= = ×ω ω , E E 02 0
0
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Fig. 8. The envelope variations of frequency components in sum frequency gen-
eration. 1.22 1ω ω= , ( ) ( ) 2(1) 2 (1) 1χ ω χ ω= = , ( ) ( ) 50 10 V/m(2) 2 (2) 1 12χ ω χ ω= = × − ,
E E 10 10 V/m1

0
1

1 8= = ×ω ω , E E 10 10 V/m2
0

2
1 8= = ×ω ω .

Fig. 9. The envelope variations of frequency components in difference frequency
generation. 1.22 1ω ω= , ( ) ( ) 2(1) 2 (1) 1χ ω χ ω= = , ( )(2) 2χ ω = ( ) 50 10 V/m(2) 1 12χ ω = × −

, E E 10 10 V/m1
0

1
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Fig. 10. The envelope variations of frequency components when both the sum and
difference frequency generations are considered. 1.22 1ω ω= ,

( ) ( ) 2(2) 2 (2) 1χ ω χ ω= = , ( ) ( ) 50 10 V/m(2) 2 (2) 1 12χ ω χ ω= = × − , E E 101
0

1
1= = ×ω ω
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0

2
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where c2 /1 1ω π λ= , z z/ 1λΔ ′ = Δ , and E E E E, , ,1 2 3 4 are the electric
field components at , ,1 2 2 1ω ω ω ω+ , and 2 1ω ω− , respectively. For
numerical simulation, consider an electromagnetic wave with two
components at ω1 and 1.22 1ω ω= with the same amplitude and
phase entering a non-dispersive NL medium at z¼0. First, the
component at 2 1ω ω− is ignored and only the sum frequency
generation is simulated [1]. Envelope variations of the three
frequency components (ω1, ω2, 2 1ω ω+ ) are shown in Fig. 8. The
Manley–Rowe relations are satisfied which validates the numerical
results. The total power remains constant at all points:

P A z( ) 2
(16)

tot
n

n

n
1

3
2∑= | | =

=

=

Similarly, the difference frequency generation is simulated by
neglecting the sum frequency component [1]. Fig. 9 shows the
numerical results for the envelope variations. Note that the am-
plitude of the smaller fundamental frequency, ω1, rises above its
initial value, i.e. it is amplified, and then decreases to its initial
value before increasing again. This phenomenon is called optical
parametric amplification which is an important result of difference
frequency generation [1,29,30].

Furthermore, the sum and difference frequency generation
could be considered simultaneously if both frequency components
are allowed to propagate. The result, which is shown in Fig. 10,
reveals that the parametric amplification does not occur in this
case, i.e. in order to have parametric amplification we must stop
the sum frequency from propagating. This behavior is not pre-
dicted by analytical solutions [1,29,30].

Propagation of second order harmonics, 2ω1 and 2ω2, together
with the sum frequency component may be more practical than
simultaneous propagation of sum and difference frequency com-
ponents specially when ω1 and ω2 are very close to each other.
Numerical results for 1.022 1ω ω= are shown in Fig. 11 which is
obtained by considering , , 2 , 2 ,1 2 1 2 2 1ω ω ω ω ω ω+ in (9). Also, it
should be pointed out that the validity of Manley–Rowe relations
is obviously clear as P A z( ) 2tot n

n
n1

5 2= ∑ | | ==
= .
4. Conclusion

A novel method, called HB-FD, was presented for complete



Fig. 11. The envelope variations of frequency components when second
harmonics and sum frequency are considered simultaneously. 1.022 1ω ω= ,

( ) ( ) 2(2) 2 (2) 1χ ω χ ω= = , ( ) ( ) 50 10 V/m(2) 2 (2) 1 12χ ω χ ω= = × − , E E1
0

1
1= =ω ω

10 10 V/m8× , E E 10 10 V/m2
0

2
1 8= = ×ω ω .
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steady state time-harmonic solution of the nonlinear wave equa-
tion which combines the harmonic balance and finite difference
methods. All interactions between the fundamental and higher
order harmonics, up to an arbitrary order, can be explicitly in-
corporated into the solution. Considering plane-wave propagation
in a homogeneous nonlinear medium, several nonlinear phe-
nomena including SHG and frequency mixing were simulated with
the new technique to verify its accuracy and versatility. The results
are in good agreement with analytical solutions whenever they are
available. In more complex situations, where a larger number of
frequency components are involved, no analytical solution is
available and numerical results were verified by checking the
power conservation relation. Since susceptibilities can be complex
valued and inhomogeneous, many other phenomena such as
Backward SHG [31] can also be studied with HB-FD method. Major
advantages of the proposed method over the available numerical
and analytical techniques are: (i) capability of considering several
harmonics or several waves at different frequencies propagating
together, (ii) the envelope of the wave is not assumed to be slowly
varying, (iii) true dispersion characteristics of the medium are
correctly taken into account.
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