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Application of the Array Scanning Method in
Periodic Structures with Large Periods

AHMAD BAKHTAFROUZ1 and AMIR BORJI2

1Department of Electrical and Computer Engineering, Isfahan University of
Technology, Isfahan, Iran

2Department of Electrical Engineering, Sharif University of Technology, Tehran,
Iran

Abstract The problem of aperiodic excitation of periodic structures with periods
larger than a half-wavelength is revisited. A large number of antennas and other
electromagnetic wave propagation problems fall within this category. Because of
overlapping branch cuts, the conventional path deformation techniques employed in
application of the array scanning method for this type of problem fail when the period
is larger than a half-wavelength. A new method based on the subdivision of the
integration path and using the double exponential quadrature formula is introduced
to alleviate this problem and apply the array scanning method to structures with an
arbitrary spatial period. To demonstrate the application of the new method and to
validate the results, reflection and transmission coefficients of a frequency selective
surface excited by a single electric dipole are calculated. Near fields of the frequency
selective surface with aperiodic excitation are obtained and compared with those of a
commercial electromagnetic simulator. The proposed method, similar to the path
deformation technique, which is applicable to small periods, shows considerable
advantage in terms of computational time and memory requirement.

Keywords aperiodic sources, array scanning method, double exponential quadrature
rule, frequency selective surface, periodic structures

1. Introduction

Periodic structures have been used in a wide variety of optical, microwave, and antenna
applications (Llombart et al., 2005; Lee et al., 2005; Zhao et al., 2005). Planar or 2D
periodic structures can be divided into several main categories, including electromagnetic
bandgap (EBG) structures, photonic crystals (PCs), artificial magnetic conductors
(AMCs), and frequency selective surfaces (FSSs). EBGs and PCs are usually employed
to suppress or slow down the propagation of electromagnetic waves in a certain range of
frequencies (Llombart et al., 2005), while FSSs are usually used for spatial filtering (Lee
et al., 2005). Periodic structures also form the basis of many leaky wave antennas (Zhao
et al., 2005).
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In analysis of periodic structures with planewave excitation, the Floquet periodicity of
planewaves helps to reduce the problem to a unit cell and solve the resulting equations
with a numerical method, such as the method of moments (MoM), finite element method
(FEM), or finite difference time domain (FDTD), after applying the periodic boundary
conditions (Yang & Rahmat-Samii, 2009). However, in many practical cases, the excita-
tion is aperiodic, such as a single dipole; thus, the scattering problem is not a periodic one,
and the above-mentioned analysis is not applicable anymore (Araneo et al., 2011; Lovat
et al., 2011; Capolino et al., 2005a, 2005b; Rodriguez-Berral et al., 2009; Yang, 1999,
2001, 2004). For these cases, two methods have been employed: the planewave expansion
method (PWM) and the array scanning method (ASM). In Capolino et al. (2007), both
methods were thoroughly explained, and it was shown that the ASM had a superior
performance because of the finite interval of spectral integration involved.

The ASM was used in the analysis of phased array antennas in Munk and Burrell
(1979). Recently, the ASM has been applied to analyze a number of periodic structures
excited with a finite aperiodic source. Analysis of periodic microstrip lines excited by a
delta-gap source (Rodriguez-Berral et al., 2009), antenna radiation from photonic
bandgap materials (Yang, 1999), analysis of PC slabs excited by a microstrip dipole
or a line source (Yang, 2004), mode excitation of EBG waveguides (Capolino et al.,
2005b), shielding effectiveness of periodic screens (Araneo et al., 2011), and dipole
excitation of periodic screens (Lovat et al., 2011) are just a few examples of using
ASM.

Evaluation of near fields for a dipole excited periodic structure after solving the
integral equation (IE) and using the ASM can only be found in Lovat et al. (2011).
However, in this work, all examples have spatial periods less than a half-wavelength, and
the path deformation technique has been successfully used. As noted in Lovat et al. (2011)
and Capolino et al. (2007), in periodic structures with periods larger than a half-wave-
length, the path deformation technique fails because of overlapping branch cuts in com-
plex kx and ky planes. Even in periodic structures with period less than a half-wavelength,
if a distributed source with a size of more than a half-wavelength is used for excitation,
then the spatial period that is considered for the ASM must be a multiple of the structure’s
actual period to include the entire distributed source. Consequently, the same problem of
overlapping branch cuts occurs again, and the path deformation technique cannot be used.
All ASM applications reported so far usually use small sources, such as dipole (in 2D
periodic structures) or line source (in 1D periodic structures), which always lie only in one
unit cell, and the above issue has not before been addressed.

Thus, to compute the scattered field, the path deformation technique is limited only to
periodic structures with periods less than a free-space half-wavelength that have been
excited with a small source that occupies only one unit cell. It must be mentioned that in
Capolino et al. (2007) an example has been given with a period of 0.7λ, but only the
currents on strip dipoles have been calculated. It is very important to note that the current,
unlike the electric field, has no infinite singularity at branch points; i.e., it does not blow
up at branch points, and therefore, as mentioned in Capolino et al. (2007), by careful
integration on the real axis, with usual numerical integration rules, the current can be
obtained. However, no near electric field result was given therein.

In this article, a new method is introduced that is based on subdividing the original
real-axis ASM integration path into segments between the branch points and using the
double exponential (DE) quadrature rule for each segment. The DE quadrature rule that
was first recommended in Takahasi and Mori (1973) is a powerful numerical quadrature
method that can handle integrands with blow-up singularities at end points. It has been
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shown by Takahasi and Mori (1973) and Bailey et al. (2005) that the DE quadrature has
the best performance among other quadrature rules with the same sampling points.

Another key advantage of this method is its uniform behavior whether the periodic
structure contains surface wave poles or not. Because the integration path is subdivided
such that SW poles as well as branch points lie at the end points of subintervals, no
additional treatment is needed for surface wave (SW) poles.

The remainder of this article is organized as follows. Section 2 describes the ASM
briefly and the method of solving the unit cell problem using the IE with the MoM
(IE+MoM). The fast evaluation of the periodic Green function (PGF) via the Ewald
method is also covered in Section 2.4. In Section 3, the problem of implementation of
ASM integration in the presence of overlapping branch cuts is studied, and a new method
to extend the ASM for such cases is introduced. This method is based on the DE
quadrature rule, which is explained in Section 3.3. In Section 4, the analysis of aperiodic
excitation of a free-standing FSS is studied using the suggested method, and some
numerical results are given. Finally, Section 5 concludes this work.

2. Statement of the Electromagnetic Problem

In this article, the problem of interest is the interaction between a dipole (aperiodic source)
and a 2D periodic structure, as shown in Figure 1. The periodic structure is on a
rectangular lattice along x and y with periods of px and py, respectively. Each unit cell
consists of some perfect electric conducting (PEC) objects with arbitrary shapes. The

excitation dipole is placed at~r0 and directed along an arbitrary direction denoted by Ĵ. The
time-harmonic dependence ejωt is assumed and suppressed throughout. Currently, no
commercial electromagnetic software is able to solve the described problem because it
has infinite volume and is not periodic.

Figure 1. Excitation of FSS by aperiodic dipole source.
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2.1. ASM

The ASM is an analytical tool to synthesize the field of an aperiodic source (single source)
from a spectral integration of an infinite periodic source (Munk & Burrell, 1979). The
basic mathematical relation of the ASM is:

δ ~r �~r0ð Þ¼ px py

2πð Þ2
ðπ=px
�π=px

ðπ=py
�π=py

X1
m¼�1

X1
n¼�1

δ ~r �~rmnð Þe�jmkxpxe�jnkypydkxdky; (1)

where~r is the observation point,~r0 is the location of point source in the (0, 0) unit cell,
and~rmn ¼~r0 þ mpxx̂þ npyŷ is the location of the (m, n) source of the phased array. kx and
ky are impressed phases of the phased array in the x and y directions, respectively. When
the integration is performed over the irreducible Brillouin zone �π=px; π=px½ ��ð
�π=py; π=py
� �Þ in Eq. (1), all terms integrate to zero except for ðm; nÞ ¼ ð0; 0Þ. Using
the above identity, the current of a single dipole can be expressed by currents of a 2D
periodic phased array of dipoles:

~J i¼ px py

2πð Þ2
ðπ=px
�π=px

ðπ=py
�π=py

~J
i;PA

kx; ky
� �

dkxdky; (2)

where ~J i;PAðkx; kyÞ is the current distribution of the infinite phased array of dipoles.
Due to the linearity of source-field relations obtained from Maxwell’s equations, the

electric field produced by a single dipole ~E ~r;~r0ð Þ can be expressed by spectral integration

of the electric field of the infinite phased array of dipoles ~EPA ~r;~r0; kx; ky
� �

over the
irreducible Brillouin zone:

~E ~r;~r0ð Þ¼ px py

2πð Þ2
ðπ=px
�π=px

ðπ=py
�π=py

~E
PA

~r;~r0; kx; ky
� �

dkxdky: (3)

Based on Floquet theorem in periodic structures, the electric field of the infinite phase
array of dipoles has the following property:

~EPA ~r þ mpxx̂þ npyŷ;~r0; kx; ky
� � ¼ ~EPA ~r;~r0; kx; ky

� �
e�jmkxpx e�jnkypy : (4)

Hence, the electric field of the original problem in the ðm; nÞ cell can be calculated from
the electric field of the infinite phase array in (0, 0) cell:

~E ~r þ mpxx̂þ npyŷ;~r0
� � ¼ px py

2πð Þ2
ðπ=px

�π=px

ðπ=py

�π=py

~E
PA

~r;~r0; kx; ky
� �

e�jmkxpx�jnkypydkxdky: (5)

The ASM only involves integration over finite intervals of spectral variables ðkx; kyÞ and
becomes more efficient than the PWM, which requires infinite integrations. More details
about the comparison of the two methods can be found in Capolino et al. (2007).
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2.2. IE of Periodic Problem

As explained above, the ASM helps to replace the original problem (aperiodic excita-
tion of a periodic structure) with a spectral integration on the solution of a completely
Floquet periodic problem. So the first step to find the solution is to solve the
Floquet periodic problem of an infinite phased array radiating next to the periodic
structure.

Because of the periodicity, only one unit cell is sufficient to be considered. The
solution of the periodic problem is carried out using an electric field IE
(EFIE). Usually, by introducing the magnetic vector potential ~A and electric scalar
potential V , the EFIE is recast in a mixed potential form, which is preferred because of
the lower singularity of its kernel. Let S designate the surface of PEC objects
within the unit cell. The following mixed potential integral equation (MPIE) must be
solved:

� n̂�~Einc ¼ n̂� �jωG
$
A �~J þ 1

jω
� GV � �:~J� �� �

; (6)

where ~Einc is the incident electric field produced by the infinite phased array, n̂ is the
outside normal to S, ~J is the unknown current density on S, and G

$
A and GV are the PGFs

for the vector and scalar potentials, respectively. Finally � is a shorthand notation of the
spatial convolution. The same equations can be written for a magnetic source by defining

electric vector potential ~F and magnetic scalar potential W.

2.3. Solution of IE via MoM

Equation (6) can be solved by the MoM. For this purpose, the unknown current density ~J
is expanded using well-known first-order Rao-Wilton-Glisson (RWG) basis functions:

~J ~r 0ð Þ ¼
XN
n¼1

In~f n ~r
0ð Þ; (7)

where In denotes the unknown coefficients, and ~fn denotes the RWG basis functions that
are defined on pairs of triangular subdomains. By substituting Eq. (7) into Eq. (6) and
testing the IE by the Galerkin procedure, the following system of linear equations is
obtained:

A½ �N�N I½ �N ¼ E½ �N ; (8)

Amn ¼ jωμ0

ð
Sm

ð
Sn

~f m ~rð Þ � G$A ~r;~r
0ð Þ �~f n ~r 0ð ÞdS0dS

þ 1

jωε0

ð
Sm

�:~f m ~rð Þ
ð
Sn

GV ~r;~r 0ð Þ�0:~f n ~r
0ð ÞdS0dS;

Em ¼
ð
Sm

~f m ~rð Þ �~Einc
tan ~rð ÞdS

(9)
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in which Sm is the domain of the mth testing function, and Sn is the domain of the nth basis
function. The above integrals for m� n are regular and can be integrated numerically. For
m ¼ n, the kernel of the MPIE has 1=R singularity, which can be extracted and analytically
integrated using the formulas in Yla-Oijala and Taskinen (2003) and then added back to
the remaining regular part.

2.4. Evaluation of 2D PGF

Before solving the MPIE formulation, an accurate and efficient scheme to compute
the 2D PGFs G

$
A and GV is required. For a periodic structure in free space, the

dyadic magnetic vector potential is diagonal G
$
A ¼ μ0G

pI
$
, where I

$
is the identity 3 ×

3 dyad, while the scalar electric potential is GV ¼ Gp=ε0, where Gp is the periodic 2D
potential Green function in free space. It is well known that the spatial PGF has a
very slow convergence and that some form of acceleration is required (Valerio et al.,
2007). The Ewald method, which computes the PGF by splitting it into two fast
series with a Gaussian convergent, is proved to be a very powerful method (Valerio
et al., 2007). In particular, the Ewald spatial and spectral series for the free-space
PGF is

Gp ~r;~r 0ð Þ ¼ Gp
spatial ~r;~r

0ð Þ þ Gp
spectral ~r;~r

0ð Þ;

Gp
spec ~r;~r

0ð Þ ¼ 1

4jpx py

X1
p¼�1

X1
q¼�1

e�j kxp x�x0ð Þþkyq y�y0ð Þð Þ
kz;pq

:

X
�

e� jkz;pqðz�z0Þerfc
jkz;pq
2E

� z� z0ð ÞE
� �

;

Gp
spat ~r;~r

0ð Þ ¼ 1

4π

X1
m¼�1

X1
n¼�1

e�jðmkxpxþnkypyÞ

Rmn
:
X
�

e� jk0Rmnerfc
jk0
2E

� RmnE

� �
;

(10)

in the above equations, Rmn ¼ ~r �~r 0 � mpxx̂� npyŷ
�� �� is the distance between observation

point~r and the source in the ðm; nÞ unit cell. k0 is the free-space wavenumber, and

kxp ¼ kx þ 2πp
px

; kyq ¼ ky þ 2πq
py

; kz;pq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k2xp � k2yq

q
; (11)

where erfcðwÞ is the complementary error function, which can be evaluated
through different methods (Weideman, 1994). The splitting parameter E has a
major influence in convergence of the two series. The details of choosing the best
value for E was studied in Celepcikay et al. (2008). It must be noted that in the IE
solution or field computation, the gradient or curl of 2D PGFs may be needed. Because
of the uniform convergence of the Ewald spatial and spectral series, the curl and
gradient of 2D PGFs can be obtained from direct term-by-term differentiation of
Eq. (10).

3. Implementation Problems

In numerical implementation of the above-mentioned procedure to solve the described
electromagnetic problem, the most important and sensitive step is the ASM spectral

298 A. Bakhtafrouz and A. Borji

D
ow

nl
oa

de
d 

by
 [

A
hm

ad
 B

ak
ht

af
ro

uz
] 

at
 1

5:
41

 2
2 

Ju
ne

 2
01

5 



integration in Eq. (3). The integration path lies on the real axes of complex kx and ky
planes on which the integrand ~EPA ~r;~r0; kx; ky

� �
has an infinite number of branch points

that are the result of 1


kz;pq in Eq. (10). However, depending on the period-to-wavelength

ratio, only a limited number of these branch points lie inside the integration interval in
both planes. These branch points are obtained from k2xp þ k2yq ¼ k20 . For a fixed ky, the

branch points in the kx plane are

kp;qxb ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k2yq

q
þ 2πp

px
: (12)

Moreover, in Lovat et al. (2011), it was shown that the branch points in the ky
plane are

kqyb ¼ �k0 þ 2πq
py

: (13)

Therefore, the number of branch points lying in the interval � π=pi � ki � π=pi , ði ¼ x; yÞ
depends on the corresponding period to wavelength ratio. To compute the spectral integral in
Eq. (3) accurately, the position of branch points becomes important, and suitable schemes must
be considered.

3.1. Case 1: Short Periods (below Half-Wavelength)

If px; py < λ0=2 , exactly one pair of branch points lies within the integration intervals in
the kx and ky complex planes. Specifically, branch points in the kx and ky planes occur at

kx;b ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k2y

q
and ky;b ¼ �k0, respectively, which are inside intervals � π=px �

kx � π=px and � π=py � ky � π=py . In this case, as shown in Figure 2, a suitable path
deformation avoids crossing the branch points and branch cuts while staying on the top
Riemann sheet (the sheet in which the imaginary part of kz;pq is negative) in the ky plane.
Different path deformations can be selected (Lovat et al., 2011). The positions of the
branch points and their corresponding Sommerfeld branch cuts in the kx plane show that
the same deformed path can also be chosen in the kx plane.

3.2. Case 2: Long Periods (above Half-Wavelength)

In this case, depending on the ratio of period to wavelength, the branch cuts of adjacent
branch points overlap for both the kx and ky planes. Without loss of generality, it is
assumed that λ0=2 < px; py < λ0. For this assumption, exactly two pairs of branch cuts
overlap within the original integration path. As shown in Figure 3, because of long
periods, the branch cuts in the ky plane completely surround the beginning and end points
of the integration interval. The same problem occurs in the kx plane for each value of ky.
Hence, every deformation in the path of integration crosses the branch cuts, and the path
goes to an improper Riemann sheet, which causes the ASM integration to fail. Therefore,
path deformation is not applicable for structures with periods larger than a half-
wavelength.
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In particular, to compute the scattered field of the periodic structure excited by an
aperiodic source, one must compute the ASM integration of

~E
sca

kx; ky;~r
� � ¼ 1

jωε

XN
n¼1

In kx; ky
� �

: k2
ð
fn

G kx; ky;~r;~r
0� �
~f n ~r

0ð Þds0
0
B@

þ �
ð
fn

G kx; ky;~r;~r
0� �
�:~f n ~r

0ð Þds0
1
CA;

(14)

Figure 2. Original (solid gray line) and deformed (dashed gray line) integration paths in both
complex planes. Branch points are indicated with crosses, and the Sommerfeld branch cuts are
also shown. The movement of branch points in the kx plane while moving on the path of integration
in the ky plane is shown with a black dash–dot line.

Figure 3. Overlapping branch cuts surround parts of the integration intervals in the ky plane, and
every path deformation crosses the branch cut and goes to improper Riemann sheet.
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in which G is the PGF of the structure, and In;~fn are the same as in Eq. (7). Since In kx; ky
� �

is the solution of matrix equation (Eq. (8)) and every element of the impedance matrix has
all the above-mentioned overlapping branch cuts, every path deformation crosses the
branch cuts, and ASM integration will fail.

After an extensive review of literature, it seems that so far, every result based on the ASM
is given for structures with short periods (Araneo et al., 2011; Lovat et al., 2011; Capolino
et al., 2005a, 2005b; Rodriguez-Berral et al., 2009; Yang, 1999, 2001, 2004) except for
Capolino et al. (2007). However, Capolino et al. (2007) only obtained the current distribution
of an array of strip dipoles excited by an electric dipole with a period-to-wavelength ratio of
0.7. However, as mentioned before, the current, unlike the electric field, has no blow-up
singularity at branch points because when a branch point is approached in the complex kx (or
ky) plane, the matrix elements (Amn, Em) of Eq. (9) have the same singular behavior so that the
limit of Eq. (8) at a branch point gives finite values for currents. Consequently, currents can be
obtained by using a conventional numerical quadrature on real axis without any path deforma-
tion (Capolino et al., 2007). However, no near field was calculated in that study because the
PGF G, which appears in Eq. (14), introduces blow-up singularities at branch points.

In the proposed method, the original integration intervals in both the kx and ky planes
are divided into some subintervals such that the integrand has no singularity in each
subinterval except at the end points. Then the ASM integration is performed using the DE
quadrature rule, explained in the next section.

Let the reader focus on a particular case when λ0=2 < px; py < λ0. The method is general,
and it is easy to modify it for larger periods. When λ0=2 < py < λ0, exactly two singular
branch points lie in the main integration interval at � k0 þ 2π=py and k0 � 2π=py, as shown
in Figure 3. To perform the integration, the main interval �π=py; π=py

� �
is divided into three

subintervals as follows:

S1ky :
�π
py

; k0 � 2π
py

� �
; S2ky : k0 � 2π

py
;�k0 þ 2π

py

� �
; S3ky : �k0 þ 2π

py
;
π
py

� �
: (15)

The integrand of ASM integration in Eq. (3) is analytic on these subintervals except at one
or both end points. This is an important condition for the DE quadrature rule.

For the kx plane, the branch cuts are more sophisticated, because changing the value
of ky from Eq. (15) will result in a change of the position of branch points and branch cuts

in the kx plane. As an example, assume px ¼ py ¼ 0:75λ or, equivalently,k0 ¼ 1:5 π=py
:

.
The branch cuts in the kx plane for ky ¼ �0:55 π=py

:

are shown in Figure 4(a). Note that

four singular branch points lie inside the integration interval (k0;1xb ;�k0;1xb ; k
1;0
xb ;�k�1;0

xb ). The
first and second branch points are due to the term ðp; qÞ ¼ ð0; 1Þ in the Ewald spectral
summation in Eq. (10). The third and fourth branch points, respectively, are due to the
terms ðp; qÞ ¼ ð1; 0Þ and ðp; qÞ ¼ ð�1; 0Þ in Eq. (10). Hence, to perform DE integration
on the main interval of the kx plane for this value of ky, the interval ð�π=px; π=pxÞ must be
divided into the following five subintervals:

S1kx : �π=px; k
1;0
xb

� �
; S2kx : k1;0xb ;�k0;1xb

� �
; S3kx : �k0;1xb ; k

0;1
xb

� �
;

S4kx : k0;1xb ;�k�1;0
xb

� �
; S5kx : �k�1;0

xb ; π=px
� �

:
(16)

Now, if the value of ky changes to � 0:35 π=py , the branch points positions and the branch

cuts in the kx plane change, and the singular branch points k0;1xb ;�k0;1xb move from the
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integration interval onto the imaginary axis, as shown in Figure 4(b). Hence, for the value
of ky ¼ �0:35 π=py

:

, it is enough to divide the kx interval into three subintervals:

S1kx :
�π
px

; k1;0xb

� �
; S2kx : k1;0xb ;�k�1;0

xb

� �
; S3kx : �k�1;0

xb ;
π
px

� �
: (17)

The above example shows that in numerical implementation of the ASM using the DE
quadrature, the key point is to extract the singular branch points of the kx plane that lay
inside the original integration interval ð�π=px; π=pxÞ. This must be done repeatedly after
every change of ky value, which is assumed to be the first integration variable of the ASM.
After proper subdivision of the integration path, the DE quadrature rule can be employed
to evaluate the ASM integral in each segment.

Figure 4. Branch points and Sommerfeld branch cuts in the kx plane for: (a) ky ¼ �0:55 π=py and
(b) ky ¼ �0:35 π=py .
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3.3. DE Quadrature Rule

The DE quadrature rule (DE formula) was introduced by Takahasi and Mori (1973). The
DE formula is a general, robust, and very efficient numerical integration method. This
method, unlike standard quadrature rules, such as the midpoint or Gaussian methods, can
handle integrands with blow-up singularities at the end points of the integration interval.
Consider the following integral:

I ¼
ðþ1

�1

f xð Þ dx: (18)

With variable transformation of x ¼ φ tð Þ ¼ tanh π
2 sinh tð Þ� �

, the above integral changes to

I ¼
ðþ1

�1
f φ tð Þð Þφ0 tð Þdt; (19)

in which

φ0 tð Þ ¼
π
2 cosh tð Þ

cosh2 π
2 sinh tð Þ� � 	 O exp

�π
2

exp tj jð Þ
� �� �

; (20)

as tj j ! þ1. Discretization of the above integral using the trapezoidal rule gives

IN ¼ h
Xn
m¼�n

f φ mhð Þð Þφ0 mhð Þ; (21)

where N ¼ 2nþ 1 is the number of function samples. In Takahasi and Mori (1973), it was
proved that for numerical integration of an analytic function over ð�1;þ1Þ, the uniform
trapezoidal rule is optimal among formulas with the same sampling points. Takahasi and
Mori (1973) also showed that the above variable transformation, which is called tanh–sinh
transformation, is an optimal transformation from the error viewpoint. It means that Eq.
(21) with tanh–sinh transformation gives the best approximation for the integral of Eq.
(18) among different variable transformations. The DE quadrature rule is due to DE decay
of Eq. (20). It was shown in Takahasi and Mori (1973) that the DE quadrature has faster
decay than other quadrature rules.

The most important feature of the DE quadrature is its ability to handle the end-point
blow-up singularities. It can handle different types of singularities, such as branch points
and poles. DE formulation can approach the end-point singularity as closely as desired,
while its very fast decaying weights cancel the fast growing function samples. It must be
noted that in DE formulation, the integrand must be analytic everywhere except at the end
points. The comparison of DE quadrature rule with other powerful quadrature formulas
can be found in Takahasi and Mori (1973) and Bailey et al. (2005).

It is worth noticing that the DE formulation suffers from two problems that can occur
due to careless computer implementation (Bailey et al., 2005). First is the loss of
significant digits due to singularities of the 1� xð Þ�1þδ type, where δ is a small positive
constant. The second is the overflow due to the denominator of Eq. (20). The methods to
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overcome these problems and more details about DE quadrature can be found in Takahasi
and Mori (1973) and Bailey et al. (2005).

4. Numerical Results

In this section, some numerical results are presented to illustrate the application of the
proposed implementation of the ASM. Since, the near field of structures with periods
larger than a half-wavelength have not been studied in the literature, the focus here is only
on these structures.

4.1. Single Dipole in Free Space

As the first example, the electric field of a single dipole is obtained by using the ASM
integration of a phased array of dipoles with periods larger than a half-wavelength.
Because this example does not involve any PEC object, no IE and MoM are required.
This example serves to verify the method described in Section 3.2 using the analytic
expression of the electric field of a single dipole, which is given by

~Edipole ¼ �jωμ0
e�jk0R

4πR
I
$ � Ĵ � j

ωε0
��

e�jk0R

4πR

� �
� Ĵ : (22)

Figure 5 shows the electric field amplitude of the dipole obtained by the ASM at two
different frequencies (f = 1.7 GHz). For each frequency, the electric field is calculated
using two different values of period-to-wavelength ratio px;y=λ ¼ 0:6; 0:8

� �
. The dipole

is y-directed and placed at the origin while the observation point is at (3 cm, 2 cm, z
cm). Excellent agreement between the ASM values with exact values can be seen in
Figure 5.

Figure 5. Electric field amplitude of single dipole in free space obtained via the ASM and the exact
analytic formula.
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4.2. Single Dipole in Front of a Free-Standing FSS

The second example consists of a free-standing FSS that is excited by a single electric
dipole. The FSS unit cell consists of a rectangular PEC patch that is centered at origin. The
width and length of each patch are w = 5.08 mm and l = 25.4 mm, as shown in Figure 6.
Spatial periods of the structure are px = 35.6 mm and py = 35.6 mm in the x and y
directions, respectively. The structure is on the z ¼ 0 plane, and a horizontal electric dipole
at 0; 0; zsð Þ excites the FSS. The parameters of interest are the reflection and transmission
coefficients, which are defined, respectively, by R rð Þ ¼ Esca

tot rð Þ�� ��= Einc
tot rð Þ�� �� and T rð Þ ¼

Etra
tot rð Þ�� ��= Einc

tot rð Þ�� �� .
This problem cannot be solved by commercial electromagnetic (EM) simulators

because of its infinite size and nonperiodic nature. However, for the sake of compar-
ison, a large but finite structure was simulated using FEKO (EM Software & Systems).
The simulated structure includes 31 × 31 FSS unit cells. This size was obtained
experimentally to have an acceptable truncation error in the results. Each PEC patch
is divided into 34 triangles, both in FEKO and in the proposed method. Reflection and
transmission coefficients of the FSS for three different values of electric dipole
positions are shown in Figures 7 and 8, respectively.

The observation point for reflection calculations is at (0, 0, 7 cm), while it is assumed
to be (0, 0, –7 cm) for transmission calculations. Such an analysis was performed by Lovat
et al. (2011) for a strip-mesh screen and an array of PEC spheres, but the ratio of period to
wavelength for these structures was 0.2 and 0.33, respectively. In this FSS for frequencies
above 4.21 GHz, the period is larger than a half-wavelength. As can be seen, the ASM
results are in excellent agreement with those of FEKO, while the ASM method is six times
faster than the simulation in FEKO for the same number of frequencies and the same
meshing. Figures 7 and 8 also show that the reflection and transmission coefficients in the

Figure 6. Free-standing FSS excited by a single electric dipole.
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planewave excitation of FSS are very different from the excitation of structure with a finite
source.

To demonstrate the ability of this method, the near field of the FSS has been
calculated at f = 6 GHz with the dipole positioned at zs = 25 cm. The total electric field
in three azimuthal planes for different values of ρ (radial distance from the z-axis) was
calculated, and the results are shown in Figure 9 with those obtained from FEKO. The
observation plane is at z = 7 cm. Finally, individual components of the total electric field
obtained from the ASM have been shown in Figure 10.

Figure 7. Reflection coefficient of free-standing FSS for different values of zs.

Figure 8. Transmission coefficient of free-standing FSS for different values of zs.
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5. Conclusion

Aperiodic excitation of periodic structures for different values of period-to-wavelength
ratio was thoroughly revisited. It has been shown that in the case of a small period, the
ASM can be applied with path deformation technique because the suitable path (the path
that is completely on the top Riemann sheet) can be found easily. This method has been
used in the literature, but it was shown that when the period is larger than a half-
wavelength, the branch cuts overlap, and path deformation is not applicable.

Figure 9. Magnitude of total electric field in z = 7 cm and φ = 0°, 45°, and 90° at f = 6 GHz. The
electric dipole source is zs = 25 cm. ASM results have been specified with marks on FEKO results.

Figure 10. Magnitude of components of electric fields (parameters are the same as in Figure 9). All
curves have been calculated with the ASM method.
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To alleviate this problem and apply the ASM to structures with large periods, a new
method was proposed. This method is based on proper subdivision of original integration
intervals and using the DE quadrature integration. DE formulation has been proved as the
most efficient rule for blow-up singularity of integrands at the end points of the interval.
The numerical results of the electric field and reflection and transmission coefficients of a
free-standing FSS excited by an electric dipole were compared to those obtained from
FEKO with perfect agreement.
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