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A basic theory of slots in rectangular wave-guides is given. The analogy with a transmission
line is developed and established, and detailed formulae for the reflection and transmission
coefficients and for the “voliage amplitude” in the slot generated by a given incident wave
are given, While the complete expressions for these quantities are quite complicated and
involve the summation of infinite series, certain parts of the expressions are comparatively
simple, In particular, the ‘resistance’” or “conductance” of slots which are equivalent to
series or shunt elements in a transmission line are given by fairly simple closed expressions.
Guide-to-guide coupling by slots and slot arrays arealso considered. A more detailed summary
of the main results of the paper is given in Section 1.

1L.INTRODUCTION.FUNDAMENTAL ASSUMPTIONS
AND SUMMARY OF MAIN RESULTS

HE use of slots in wave-guides has proved a
promising means of launching high fre-
quency radiation. The subject has been exten-
sively investigated by Watson.! In this paper, a
fundamental theory of slots in wave-guides,
based on the field equations, is attempted.
Attention is confined, for the most part, to
rectangular guides, but the principle of the
method is general, and other shapes of guide
could be considered if necessary.
The fundamental assumptions on which the
theory is based are the following:

(1) The walls of the guide are perfectly conducting and
of negligible thickness.

(2) The slot is narrow; to be more precise, we assume
that

2 log(length of slot/width of slot)>>1.

(3) In considering the field outside the guide, the
penetration of the field into the region behind the face
containing the slot is neglected. In other words, we treat
the problem as if the guide-face containing the slot had an
infinite perfectly conducting flange on it.

(4) The guide transmits only the Hg-wave, and the
length of the slot is near that of the first ‘“‘resonance”
(i.e., near \/2).

Of these assumptions, the third is probably the
one most seriously at fault.!* Experiment indi-

* This paper is based on Radio Reports Nos. 12 and 13
of the Special Committee on Applied Mathematics of the
National Research Council of Canada.

1'W. H. Watson, The Physical Principles of Wave Guide
Transmission (Oxford University Press, London, 1947).
The writer’s work is there referred to, but the notation is
different.

12 The referee has suggested that the finite conductivity
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cates that, in some cases, the penetration of the
field behind the face is by no means negligible.
In the case of an array of slots, however, the
assumption is probably a good one. The fourth
assumption is not in any way essential to the
development of the theory, but is made because
it is probably satisfied in cases of practical im-
portance. Much of the work is independent of
this assumption.

In Section 2, as a preliminary, the problem of
determining the field generated in a guide of ar-
bitrary section by an assigned tangential electric
field in the wall of the guide is solved. In Sec-
tion 3, some general considerations relating to
the slot problem are given, and the analogy of a
slot to an antenna is pointed out. The contents
of this section are probably not essentially new,
but are given here for subsequent convenience.

In Section 4 the problem of a slot in a rectan-
gular guide which transmits only the Hp-wave
is considered. A quantity called the ‘‘voltage”
at any point in the slot is introduced, which is
the analog of the current in an antenna. This
voltage varies approximately sinusoidally along
the slot, as does the current in a half-wave
antenna. Expressions for the amplitudes of the
Hy,-waves scattered in either direction, in terms
of the voltage amplitude, are given, with par-
ticular cases, in Egs. (25-31). It is then shown
that, in a certain sense, the slot is equivalent to
a network in a transmission line and can be
characterized by the reflection and transmission

of the walls might lead to large errors. A rough calculation
made in the appendix indicates that this is not so, however.
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coefficients for waves incident from either direc-
tion. These coefficients satisfy two identical
relations (Eq. (34)), one of which is required for
the transmission line analogy to be complete
and the other of which imposes a restriction on
the type of network to which the slot is
equivalent,

In Section 5 it is shown that the transmission
coefficients can in part be calculated quite simply
from energy considerations, and that this fact
suffices to give expressions for the ‘‘conductance”
or “resistance’’ of a slot when it is equivalent to
a series or shunt element in a transmission line.
Detailed formulae for the various relevant cases
are given in Eqs. (45-48).

In Section 6, the complete solution of the
problem of determining the voltage amplitude in
a slot in terms of the amplitude of the incident
wave is given (Egs. (63-68)). This completes
the discussion of the problem of a single slot in
an infinite guide coupled to free space.

In Section 7, the question of guide-to-guide
coupling is considered briefly, and it is shown
that this is easily solved when once the solutions
for each guide treated separately have been
found.

In Section 8, an array of slots is considered,
and a set of linear equations is developed for
the determination of the voltage amplitudes in
the various slots (Egs. (71-73)). The coefficients
in these equations are not hard to calculate when
once the calculations for a single slot have been
made. In Section 9, the case of a terminated
guide is briefly considered.

Not much comparison of the theory with
experiment seems to be possible at the present
time and in the present state of the calculations.
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However, some of the formulae of Section 5 agree
fairly well with experiment according to Watson
(Chapter 6 of reference 1). Detailed calculations
for a slot in the broad face of the guide have
been in progress for some time, and it is hoped
that these will be published soon.

I am greatly indebted to Professor W. H.
Watson for many interesting and helpful dis-
cussions of the problems involved. I also wish
to thank Mr. J. R. Pounder for assistance in the
preparation of this paper.

2. THE FIELD GENERATED IN A WAVE-GUIDE OF
ARBITRARY SECTION BY AN ASSIGNED
TANGENTIAL ELECTRIC FIELD IN
THE WALL OF THE GUIDE

As a preliminary, we consider the problem of
finding the field generated in an infinite wave-
guide by any assigned tangential electric field
in the wall of the guide. In this section, we shall
suppose that the cross section of the guide is
arbitrary, since there is here no point in special-
izing for a rectangular guide. This problem has
been solved by Bethe? by quite a different
method. The method used here, however, offers
certain advantages for the slot problem.

Take a system of right-handed axes with the
2z axis along the guide (Fig, 1), and let 4 denote
the cross section of the guide and C the boundary
of 4 (Fig. 2). Also let » denote the outward
normal to C and s the direction of the tangent,
a rotation from » to s being in the same sense as
a rotation from x to y. A suffix » or s will be
used to denote the components of a vector in
these directions.

The field within the guide can be expressed in
terms of two functions ¢, ¥, by means of the

2 H. A. Bethe (not vet published).
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formulae:
o v
E,=——+1h—,
Jdzox dy
9% ov
E,= —tk—,
0z0y ox
B =—+k%,
9z
(1)
2R
I]Z = - /Lk.-.. + ]
dy 0dzdx
oy o
Hy,=1k—+
dx 9z0y
62
H,=—-1Fk2Y,
dz?

where, in the usual notation, k=w/c=2mr/\
(A=vacuum wave-length), and ¢, ¥ satisfy the
wave equations

(V2+EkHy =0, (V2+k?)¥=0. (2)
We may conveniently refer- to ¢, ¥, as the
generating functions for E- and H-waves, re-
spectively.

It is assumed that all complex field quantities
vary with the time according to the factor e~
this factor being omitted, and that the actual
physical field quantities are the real parts of
the corresponding complex expressions.

Let S denote the surface of the guide. Then
we regard E,, E; as being assigned functions of
position on S, it being assumed in the first
place that these functions are continuous and
possess continuous derivatives. We also assume
that E,, E, tend to zero sufficiently rapidly as
z— =4 «. The boundary conditions of the problem
are then that E,, E, are assigned on S, and that
at 2= o only outgoing and damped waves are
present.

Now, inside the guide, E, satisfies a wave
equation similar to (2). Hence, by a well-known
formula in the theory of Green’s functions

E.(P)= f

where P(x, v, 2) denotes the point at which E, is

E (PNdS", 3)
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estimated and P’(x’, ¥/, 2) a point in the domain
of integration S. The Green's function G, for
any two points P, P’ within S, may be defined
as follows:

(1) Gy, regarded as a function of P, satisfies
the wave equation (V2+k?)G=0 everywhere
inside S except at P’.

(2) Gy=0 when Pison S.

(3) As P—P’, (G, becomes infinite like 1/4xr
where r denotes the distance from P to P’.

Further, from the Maxwell equations, we

easily find that, on S,

o, 1if s 9* 9*E,
()

dv  kL\ogz? 920s

Hence, similarly to (3),

2

(P == [ G, P’)[(—,+k‘~’)ES(P’)
ks 0z

62

E.(P' )]dS’ 4

azs

where the Green’s function G satisfies conditions
which are the same as for G, except that condi-
tion (2) is replaced by dGz/8v=0 on S, and that,
in condition (3), 1/4nr is to be replaced by
—1/4xr.

By repeated integration by parts with respect
to z’ or ', and by using the conditions that E,, E,
vanish at z=4- «, we can replace (4) by

H,(P) =% j; [(%—}—k?)Gz(P, P')-E.(P')

32G(P, P')
——————E,(P')]ds'. (5)
dz'as’

Equations (3) and (5) now give the field com-
ponents E., H, everywhere in the guide if G;, G,
can be found. Further, the rates of change of
E,, E, on S can now be made as large as desired,
and (3) and (5) will also apply to the case of an
aperture in a perfectly conducting guide, when
there will, in general, be discontinuities in E,, E,
at the edge of the aperture.

We shall now outline a method for finding the
Green's function G, as follows: consider the
problem of finding a function f(x, v, z) which
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satisfies the equation

(V+E)f=0(x, v, 2), (6)

with the boundary conditions that f=0 on S,
and that f gives outgoing or damped waves at
z= . It can then be seen without difficulty
that by making

o(x, ¥, 5)—=>—dlx—x)o(y—y"8(z—2), (7)

where & denotes Dirac’s ‘‘delta-function,” we
obtain the required function G,.

We suppose f expanded in terms of the func-
tions for E-waves,

=2 a.(&)¢alx, ¥), (8

where ¢¥,, g (=1, 2, ---) are the normalized
eigenfunctions and eigenvalues of the problem :

ag\pn .
+—tp M. =01in 4,
ax?  dgy?

Y.=0onC, ¢ (9)

f Yaldxdy=1.
A J

Substituting (8) in (6), using (9) and the ortho-
gonality relations of the y,, we find

(d2a,/dz*)+u’a,

:f d)(xr ) Z)\#n(x, y)dxdy, (10)

where
Up= (k2 _#nz) %»

(11)

the positive square root being taken in (11) if #,
is real and the positive-imaginary root if %, is
pure imaginary. We now solve (10) by the
method of variation of constants, using the
boundary conditions that a,(z) ~e*r* as z— -+
and @,(z)~e i as g—— o to determine the
arbitrary constants. Applying (7), we then finally
obtain

G(P, P")

1
== —u(x, Yulx’, y)einl = (12)

n TU
The function G. is found in a similar manner
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to be?
Gq(P, P)

2U,

=2 Vo (x, y)Wal(x’, y ezl (13)
where, analogously to (9), (11), we define
V., M, U, the corresponding quantities for
H-waves, by:

MV, Y,
+M,2¥,=0in AJ
Ix2  oy?
v,
=0onC,} (14)
dv
f\I/,,dedy=l,
A )
Un,=(k?— M.}, (15)

the same convention as to the sign of the square
root in (15) being used as in (11).

Substituting (12), (13), in (3), (5), we have
E,, H, at any point in the guide. If we now use
(2), and the third and sixth of (1), we obtain
(no additive functions evidently being neces-
sary):

1

Y(P)=-2 —

n 20U ppin

21#,,(96, ¥)

alx', ")
Xf_________eiu,,lz~z’lEz(P’)(iS', (16)
S v’

¥(P) =T

n n

W, (x, )

Xf \I,n(x’y y’)eiU"[z‘zliEs(P,)dS’
s

1 1
£ — Wy, y)
ko 2M,*

AV, (x', v)
Xf O%n il L B (PIYS,
M as’

(17

the + or — sign being taken in (17) according
as z>3 or 3<2'.
3 We omit a term in G, which is proportional to e#*!z=#'l,

since it is evident from (5) that this does not contribute to
the field.
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Equations (16), (17) are our final results and
give the generating functions for E- and H-waves
in terms of the assigned values of E,, E, on the
wall of the guide and the functions defining
the free propagation of E- and H-waves in the
guide. In the case of a perfectly conducting guide
with an aperture, the integrations need, of
course, only be extended over the aperture.

3. THE SLOT PROBLEM IN GENERAL AND THE
ANTENNA ANALOGY

To solve the slot problem, it is necessary to
find fields inside and outside the guide such that
the tangential components of E and H are con-
tinuous as we cross the slot, there being a given
incident wave in the guide. ’

Consider for a minute the case where, instead
of the wave-guide, we have an infinite perfectly
conducting plane with a narrow slot in. it and a
wave incident on it from one side. From the
symmetry (or near-symmetry) of Maxwell’s
equations in E and H, it is evident that this
problem is essentially the same as that of an
antenna in the form of a narrow strip of metal
scattering an incident wave, only with the E- and
H-vectors interchanged.* Using this analogy, we
can see that in the slot problem the only tan-
gential components of E and H in the slot which
are of importance are the component of H along
the slot and the component of E across the slot.
Further, near resonance (length of slot approxi-
mately equal to an odd number of half-wave-
lengths), the ‘‘voltage,” or integral of E across

x

Fic. 3.

4 See Babinet's Principle as formulated by H. G. Booker
(not yet published) and E, T. Copson, Proc. Roy. Soc.
A186, 100 (1946).
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the slot, which corresponds to the current in
the antenna problem, is approximately sinusoidal
with the free-space wave-length, vanishing at the
ends of the slot. The complex amplitude of the
voltage will depend on the exact length and
width of the slot and the data for the incident
wave. Off resonance, the voltage is comparatively
small.

A consideration of the way in which this
result is obtained will now show that it will still
hold approximately for a slot in a wdve-guide
coupled to free space, or for a slot in guide-to-
guide coupling: near resonance the voltage is
approximately sinusoidal and vanishes at the
ends of the slot, the only exceptions being in
the immediate neighborhood of a sharp bend,
as when a slot extends around an edge in a
rectangular guide. In accordance with the fourth
of our fundamental assumptions (Section 1), we
shall consider only the case where we are near
the first resonance (length of slot ~\/2).

It follows from what has been said above and
from the third of our fundamental assumptions
that the radiation pattern outside the guide in
front of the face containing the slot should be
the same as for a half-wave dipole, with the E-
and H-vectors interchanged. Experiments of
Watson and collaborators' indicate that this
conclusion is not well satisfied in some cases.
The explanation is that the third assumption
referred to above is at fault.

4. A SLOT IN A RECTANGULAR GUIDE AND THE
TRANSMISSION LINE ANALOGY

We shall now consider the special case of a
rectangular guide which transmits only the Ho;-
wave, one of whose faces contains a slot of length
2] and width 2¢ (Fig. 3). We shall now specify
our axes of Section 2 more precisely by taking
either direction along one of the edges of the
guide lying in the face containing the slot as
the z axis, with the x axis through the center of
the slot and the y axis along the normal to the
guide-face drawn into the guide, so that Fig. 3
views the guide-face containing the slot from the
outside. We shall then specify the position of
the slot by x, the distance of its center from the
z axis, and the angle 8 which the direction of
the slot makes with the z axis, 6 being positive
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if measured in the same sense as a rotation from
Oz to Ox (Fig. 3).

We also take axes (£, 1) through the center of
the slot as shown, the £ axis being along the slot,
and a rotation from the £ axis to the 5 axis being
in the same sense as a rotation from Oz to Ox.
We then define the ‘‘voltage’ as

V= [ Eue min (18)
taken across the slot.

Let a, b(a>b) be the dimensions of the guide
(Fig. 4). Suppose now that we have an incident
Hy-wave traveling in the positive z-direction in
an infinite guide. If the slot is in the broad face
of the guide, then, with the axes of Fig. 3, the
generating function for the incident wave is

v =4 cos(wx/a)e’s,

U=(k*— 7,-2/02) L 27r/)\guil|07

(19)
(20)

where

and 4 is an arbitrary constant, which we shall
term the amplitude of the wave (at the center of
the slot). The slot will scatter Hy-waves (as
well as damped waves) backwards (2<0) and
forwards (2>0). Let these waves have amplitudes
B, C, respectively, at the center of the slot, so
that they are given by generating functions

W =B cos(mx/a)e Uz,

21
C cos(mx/a)eiVz, @1)

\Il(+) =

We shall then define the reflection and trans-
mission coefficients «, 8 by

a=B/4, B=1+C/A.

Similarly, if we have an incident Hp-wave of
amplitude A’ traveling in the negative z-direction,
and waves scattered backwards (z>0) and for-
wards (2<0) of amplitudes B’, C’, respectively,
we define the reflection and transmission coeffi-
cients o/, 8’ by

o =B/4"

(22)

B=1+C'/A".

[f the slot is in the narrow face of the guide,
and we keep the axes of Fig. 2, we must write y
in place of x in (19) and (21) ; otherwise the same
definitions (22), (23) hold for the reflection and
transmission coefficients.

According to the previous section (and as

(23)
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will be verified in detail in Section 6), the voltage
in the slot, defined by (18), will be approximately
sinusoidal, and vanishing at the ends of the slot,
for the case under consideration. Suppose, then,
that for an incident Hy;-wave of amplitude 4
traveling in the positive direction the voltage is®

V=P coské, (24)

where the constant P may be termed the voltage
amplitude. Similarly, let the voltage amplitude
be P’ when an incident wave of amplitude 4’ is
traveling in the negative z-direction.

Formula (17) now gives the amplitudes B, C,
of the scattered waves, as defined by (21), which
are generated by the voltage (24) in the slot
(or the corresponding amplitudes B’, C’ when the
voltage amplitude is P’). Only a single term of
the infinite series in (17) is, of course, needed
for this, the other terms giving damped waves.
In making the calculation we can neglect the
width of the slot when once the voltage has been
introduced by (18). Using the eigenfunction and
eigenvalue for the Hj-wave, and making use
of (1), it is found that the amplitudes of the
scattered waves are, in all cases, given by:

B/P=C'/P'=¢/x%Ub,

C/P=B'/P'=¢*/nkUb, (25)

where the star denotes the conjugate complex,
and ¢ is a dimensionless quantity given by
A4

§= J(&) cosktd,

—\/4

(26)

where f(£)/a denotes the component of H along
the slot at the point ¢ in an Hy-wave of unit
amplitude traveling in the positive z-direction.®

5 This voltage does not vanish at the ends unless the
length of the slot is exactly M/2. It is permissible to suppose
this, however, as far as this part of the calculation is con-
cerned (see Section 6).

6§ That ¢ must be expressible in this manner becomes
clear when the problem is treated by Bethe's method
(reference 2).
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With this interpretation of f(£) the results (25),
(26) hold whether the slot is in the broad or the
narrow face of the guide. Explicitly, we have, for
the slot in the broad face,

2

f(§) =eilt °°“"[7r~ cosf cosf(xl—}—g sinf)
a a

w
—iw U sinf sin—(x;+¢ sine)],
a

and for the slot in the narrow face,
f(&) = (w2/a) cosfeiUt cost,
We thus find, for the slot in the broad face:

w2 Xy
{=— COSB[COS*I

. . Txl]
” (6) —1 sin— (0)]

a - a

rU Xy X1
+—;~ siil()[(‘()s-—](@) ~1 sin— 1(0)], (27)
a

a
where
16) =cos(177r/2) cos(gmr/2)
1—p? 1—-¢*
J(0) = cos(pm/2) B cos(q‘;r/Z)y
1—p? 1—g

p=(U/k) cost—(mw/ka) sind,
g=(U/k) cosf+(r/ka) siné.

As particular cases of this,” we have for the
centered inclined slot (x1=a/2):

¢=(n/k)[ U sinfI(8)+(r/a) cosbJ(6)]; (28)
for the longitudinal slot (6=0):
¢=2ka cos(rU/2k) cos(rx1/a); (29)
and for the transverse slot (0=x/2):
¢=—Q2mik/U) cos(r?/2ka) sin(rxi/a). (30)
For the slot in the narrow face we find
27k
cosf cos(Ul cosf), (31)

(=
a(k*— U? cos®9)
the result being in this case independent of xi.

7 The terminology here used is that of Watson (refer-
ence 1).
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Formula (25) thus gives the amplitudes of the
scattered waves in terms of the voltage ampli-
tudes P or P’. To find the reflection and trans-
mission coefficients (22), (23), we must find the
voltage amplitude in terms of the amplitude of
the incident wave, i.e., we must find P/4, P'/A’.
This is a complicated problem which will be
taken up in Section 6. We shall, however,
anticipate the results of that section by quoting
the formulae for the voltage amplitudes:

P/A=¢/Ka, P'/A’=¢*/Ka,  (32)

where { denotes the same quantity as defined in
(26) above, and K is another (complex) dimen-
sionless constant whose complete expression is
given in Section 6. These formulae hold whether
the slot is in the broad or the narrow face.

From Egs. (22), (23), (25), and (32), we now
have for the reflection and transmission coeffi-
clents:

a=v{*/K, o=v{*"/K,
B=p"=1+7|¢|*/K, (33)
where
vy=1/n2kUab. (33)

We thus see that the four coefficients ¢, 8, o', 8’
are not independent. They are subject to the two
relations:

=8, ad'=(1-8) (34)

The first of the relations (34) shows that, as
far as Hy-waves are concerned, the slot is com-
pletely analogous to a network connecting two
portions of an infinite transmission line, if we
define the reflection and transmission coefficients
by means (say) of the voltage waves. The
equality of the transmission coefficients for waves
incident from either direction in a transmission
line is, in fact, easily shown to hold under all
circumstances by means of ordinary line theory.?
The second of the relations (34) shows, however,
that the equivalent network for a slot is not of
the most general type: there is an identical
relation connecting the three quantities which
characterize the network.

It is now clear that the two coefficients «, 8

8 This was pointed out to the writer by J. R. Pounder.
‘That some identical relation must exist between the four
coefficients «, o, 8, 8’ for a transmission line follows from
the fact that a network can be characterized by only three
independent constants.
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(and the associated coefficients o, 8/ deduced
from them by (34)) characterize the slot com-
pletely as far as standing-wave-ratio measure-
ments are concerned; and that such quantities
as the impedance presented by a slot with a
given termination (the terminal impedance being
defined by means of a reflection coefficient at
the termination), or the equivalent network of a
slot, can be worked out in terms of these two
coefficients by using ordinary transmission line
theory. The only proviso is that the place at
which the measurements are made, and the
termination, must be at a sufficient distance
from the slot for the damped waves to be
negligible.

5. CALCULATION OF THE REAL PART OF XK. RESIST-
ANCE OR CONDUCTANCE OF SERIES AND
SHUNT SLOTS

Although the complete calculation of the con-
stant K in (32) is a complicated matter, which
will be considered in the next section, the real
part of K can be calculated quite simply from
energy considerations, as follows.®* Using the
notation of the previous section, and considering
the case where the incident wave is traveling
in the positive z-direction, the mean flow of
energy down the guide (in the z-direction) at
z=— o is easily calculated to be (in Gaussian
units)

(rwbU/16a)(| 4|2~ | B|2). (35)

Similarly, the mean flow of energy down the
guide at 2=+ « is found to be

(rwbU/16a)[ |4 |24 | C|*+2R(AC*)], (36)

where ® means ‘“‘real part of.”” The difference
between (35) and (36) must be equal to the mean
flow of energy out of the slot. Using our third
fundamental assumption (Section 1), this can
be calculated in the same way as the flux of
energy from a half-wave dipole :* it is equal to

(73/4807%)c | P|2. 37
Equating (37) to the difference between (35) and
(36), and dividing by |C|?, we obtain, on

®We could, of course, obtain the real part from the
complete expression for X to be given in Section 6; but
the present method is much simpler and forms a useful
check on the work.
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using (25),
1 73a |P|*
m(—~ PP ol
g—1 6O1r3kUblC]
Hence, from (33), (33/), and (25),
R(K)=—(73/607) —v[{]*, (38)
1 73
(H(——) - : (39)
-1 60wy | ¢]*

The results (38), (39) hold, of course, whether the
slot is in the broad or the narrow face.

If the equivalent network of the slot can be
replaced by simple series or shunt elements, the
result (39) suffices to calculate the resistance or
conductance of these elements. In terms of the
reflection and transmission coefficients, the con-
ditions for the network to be equivalent to a
series element are, from ordinary transmission
line theory,

(40)

a=a'=1-4,
and the admittance of the series element is then
Y=(1/2a)—}. (41)

The conditions for the network to be equivalent
to a shunt element are

(42)

a=ao'=8-—1,
and the impedance of the shunt element is then
=—(1/2a)-%. (43)

Reference to (33) then shows that the slot is
equivalent to a series element in a transmission
line if ¢ is a pure imaginary, and to a shunt
element if ¢ is real. From (27) and (31) we then
see that the transverse slot and the centered
inclined slot in the broad face are equivalent to
series elements, while the longitudinal slot in the
broad face and the slot in any position in the
narrow face are equivalent to shunt elements.

From (39)~(43) we now have for the ‘“‘con-
ductance”’ of the “series” slot or the ‘‘resistance”
of the “shunt’’ slot the same expression, namely,

Gseries =Rshunt = 73/12071")’ r ¢ P 2, (44)
From (28)—(31), we therefore have:
Transverse slot in broad face (series):
1 4807 vk? 2 ™™
— = — o’ sin*—. (45)
G 73 U? 2ka a
31
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Centered inclined slot in broad face (series):

1 12073 ~
—= —————-——[ Ua sin6I(6) 4+ cos6J(6) ]2 (46)
G 13 Rk
Longitudinal slot in broad face (shunt):
1 480« nU ™1 ,
—= -vk2a?-cos?>— . cos—. 47)
R 73 2k a
Slot in narrow face (shunt):
1 480x® ~ [cosf cos(Ulcost)]?
__=___._._.[ ] (48)
R 73 kWL 1-(U/l)?cos®

In the Eqgs. (45)-(48), the half-length of the
slot, I, can be put exactly equal to \/4, but they
should hold approximately for any length of slot
close to A\/2, since the real part of X does not vary
rapidly with /. If we define “resonance’” by the
condition : reactance=0, i.e., imaginary part of
K =0, then actually af resonance (i.e., length of
slot so that reactance=0), we can of course put
R=1/G. Off resonance, however, we cannot do
this, since the imaginary part of K, and hence the
reactance or susceptance, varies rapidly with /.

6. CALCULATION OF VOLTAGE AMPLITUDE

We proceed now to the more difficult problem
of calculating the voltage amplitude when the
incident Hyi-wave is given.

Referring to Fig. 3, our problem is, in ac-
cordance with what was said in Section 3, to find
the field component E, in the slot (or the voltage
V) in order that H; may be continuous as we go
from inside to outside the slot. We also impose the
conditions!?

E,=0 when &=/,
(49)

V(§)=0 when £===l.

From (1), (16), (17), we have for the com-
ponent H¢ in the slot of the field generated inside
the guide by the field E,:

10 These are special cases of the condition that in an
aperture in a perfectly conducting screen the component
of E parallel to the edge of the aperture tends to zero as
we tend to the edge from inside the aperture.
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H(&, n) = (H, cosb+H, sinb),_o

cos?  M,?
= \Ifﬂ

28 n U,

X [ ewtervw /B lag o
S

)
F—cosf sind ) ¥,
2k

n

v,/
xf eiUnlz—z’[ E
S ax’

I/
+ sin2 3 :
» unﬂn 33’

oY
Xf eiunlz—z’l
s 3y’

n 0x

ﬂldsldnl

’

Evldsldnl

v,

X f eVl \ ' E,/d¢ dy’
S

sin%f U, ¥,
2« M,? ox

xfern z~z’}

where S now denotes the area of the slot. In (50)
we have written for brevity

lpﬂ:‘l/"(x! y)!
v, =¥, (x', ¥,

E,'d¢'dy', (50)

\I/n=\1’n(x, y), ‘pn/:‘//"(x,r y'),
Ey=E{&, '),

and we are to put, after differentiation, y=vy'=0.

The functions ¢,, ¥, and constants u., M, are

the normalized eigenfunctions and eigenvalues

for the E- and H-waves in the rectangular guide,

as defined by (9) and (14). All these are, of

course, damped waves except the Ho-wave.
Now we have (Fig. 3),

a (i) i)
— =cosf—-sinf—,
a 9z ax
92 9? a2 92

—= cos20—+51n20——+2 cosf siné
9£? 032 dx? d20x
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so that we can rewrite (80) as follows: .

iget  y
Hi(g, ?7)*‘73(52;'{'& )

fo (&7 &, 0)E/dt'dy

‘»;m g f ( U, 3‘1',; é‘I’n’
Af W2 e '
1 8%y, )
\I/n[)e-i.l]n]Z*z’}E”fdsldnl

U, oxt?

k 1 3. oy,
+-sin‘*‘82f( ghuniz=2l
2 n Vs \unps? 3y 3y

1
~~£«if 27, e?&m*—*’*)g,,'dg’dﬁ’

v,

aw,
:F~—- cos#sinf Y. f (\I'nww—#\lfn -——)
2k s ox

XeUnl=—"1E 'dE'dy’,

(v

where G is the Green’s function given by (13). In
(51) we are to put y=y"=0 after differentiation,
and Gi(&, n; &, ') means that we are to do the
same with G,.

The integral occurring in the first term in (51)
tends to infinity as &0 on account of the
singularity in the Green’s function Gs, but the
remaining three terms remain finite as e—0.1
Making e¢—0 in the last three terms of (51),
therefore, and introducing the voltage V(&)
defined by (18), we can, with an error of the order
of ¢/, replace (51) by

7z 9°
s, n)=~(»——+k‘f)
r\ag

x f Golt, n; &, MVESE, n')dEdn’
8

!
+ f P&, &) Ve, (52)
-

% Each of the three terms actually consists of the sum
of two parts, the Infinities of which cancel. The considera-
tions of Section 3 show that the only singularity which
should occur in Hy as 0 is correctly given by the first
term of (51).
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where

Fe, £) sin?ﬁz ( U, 8%, ¥,
T ok T\ML2 ax ax

1 %,
e e \I/n’ eilf,,l:w:’]
I, ax?

1 ogy og

eiun}:-:'{

k
-+ 2 sin?f Z

a \uau,? 0y 0y

1 7
— W, ¥, e Unle2"] :F—-g cosf siné

n

av,’

><z(\xfn ¥, 'M—)ewnwwﬂ, (53)

and in (53) we are to put, after differentiation,

x=x;+Esind, g=fcosd, ' =ux;+¢ sind,

#=¢ cosf, y=y'=0. (54)

We now consider the field generated outside the
guide. With our third fundamental assumption
(Section 1), this is simply the field due to E,
across the slot regarded as being in an infinite
conducting plane. This problem can be solved by
introducing the “associate Hertz vector,” or it
can be inferred by analogy with the corresponding
problem of a thin antenna in the form of a flat
strip having a given current distribution.* We
omit the details and give only the final result:

Hit iy =——( 2 +k2)

P Py
eikr
MME*?{S‘! ’?,:){gzld??[:
& T

r={(E—¢P+(n—n")]%

Equations (52)-and (55) now give the com-
ponent [{; in the slot of the fields generated
inside and outside the guide, respectively, by E,.
According to the continuity condition mentioned
at the beginning of this section, the difference
between (55) and (52) must be equal to the com-
ponent H; of the incident field. We denote this
latter component by Af(£)/a, where A is the
amplitude of the incident wave at the center of
the slot, so that f(£) is identical with the function
introduced in (26). The continuity condition then

(35)

where
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gives

: ——+k2) f [Gz(fyn g, 1)

1 etk'r

27 r

]E,,(z', W)aEdy’

{

_ f F(&, &) V(E)dE — Af(E)/a. (56)

We have written an ordinary, instead of a
partial, derivative on the left-hand side of (56),
since the right-hand side is a function of £ only,
and the same must therefore be true of the left-
hand side. (This is consistent with the assumption
—see Section 3—that we can neglect the com-
ponent of H across the slot.)

Regarding (56) as a differential equation for
the left-hand side, and solving by the method of
variation of constants, the general solution can
be written

1 1 eikr
_f[GZ(E’ﬂ;E,r 77,) - ]Eﬂ(g’r ﬂ,)d‘fldﬂ,
kJg 2

T 7

: ; .
=£cosk£ f a f dg' -sinkEF(E, E)V(E)
-1 -1
i : L
—;sinkf f d& f dt' -coskEF (&, EYV(E)
-1 —1
A ¢
+— cossz sinkEf(£)dt
ka ~1

A 4
_ sinkff coskEf(E)dE
ka ~1

+ C\ cosktCy sink,  (57)

where C,, C, are arbitrary constants. Equation
(57) is now an integral equation for the determi-
nation of E,, or V(¢), the constants C;, Cz being
determined by the boundary conditions (49). We
shall adopt a method of solution analogous to one
used by Hallén® in connection with a similar
integral equation occurring in an antenna prob-
lem. We rewrite the integral on the left-hand side

( 12 E) Hallén, Nova Acta Reg. Soc. Upsaliensis 11, No. 4
1938

34

of (57) as

fs (62

E.(& n')dg'dn’

eikr
)
2t r

XLE(E, ') = Ey(§, n') Mg dn’.

The contribution to the first integral in (58) from
a strip of width dy’ parallel to the # axis and at a
distance 5’ from it is

Ey(& n)dn’ f (Gz :

Now from the definition of G: it follows that,
allowing for the “image effect” when the point
(x, v, 2) 1s near a wall of the guide, Go~ —1/27nr
when 7 is small. Hence, since the major contribu-
tion to the integral in (59) comes from points
where 7 is small, the value of the integral is ap-
proximately

(58)

p) ikr

)ds’. (59)

—-(1/47r)f at'r.
-1

This latter integral has, with an error of order ¢//,
the value 2 log(2l/|n—17|) except when £ is near
+1. But since E, vanishes when §= 4/, this ex-~
ception is unimportant. We may, therefore, with
an error of order ¢/l, replace the first integral in
(58) by

E, (&, n)dn'. (60)

The second integral in (58), on the other hand,
remains finite as e—0, and may (with an error of
order ¢/1) be replaced by

! 1 giklE-tl
[ [ (&, £)—— ][V<s'>~V(s>jde',
1 2 [£—¢|

where Gz(£, £') means that we are to make e—0 in
Gal&, ni €, o).

We now see that (with our approximations) the
integral in (60) must be independent of 4, which
shows that E, must vary across the slot in the
same way that the electrostatic charge density
varies across an infinite conducting strip of the
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same width. We can therefore write

f log—— B¢, )i’ —log—V(a, (61)

[n—"]

where the constant & defined by (61), can be
calculated from the known solution of the
electrostatic problem of the infinite conducting
strip. Obviously & is of the order of ¢ and it really
makes no difference, to the order to which we are
working, whether we take €= e or use the correct
value. As however, the calculation is easily made,
we shall use the correct value; it proves to be
é=¢/2. Collecting our results, we now see that the
integral equation (57) can be replaced by

7 41 A £
——— log—V(§) =—I; coskt | sinkif(£)dE
€ —

T

A §
= sinks f coskEf(£)dE

+ C; coské+Cs sinkE+A(E), (62)
where
i lG ? V 14 d 4
Mp=— f Gl V)= Vi g
7: elk|f £
— | ———[ V() - V(&) Ja¥
2rk o 15— ¢

+% (toskéf dgf d¥’ sink¢F (& E)V(E)
1 )

— smkgf dt dE coskEF(E, £)YV(E).

We can now solve (62) by successive approxi-
mations, regarding log4//e as being large, in ac-
cordance with our second fundamental assump-
tion. For a first approximation, we neglect A(¢) in
(62) ; for a second approximation, we substitute
the first approximation for V(¢) in A(£), and so
on. We then find V(§) as a series in the small
quantity (log4l/e)"*—or more accurately in
(2 log4l/€e)~1. The arbitrary constants Cy, C; are
then determined by using the boundary condi-
tions (49). We are here only concerned with the
case I~\/4, i.e. kl~w/2. We then find that we
must proceed to at least the second approximation
to find the constant C;, but that having found it
the term proportional to C; in the first approxi-
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mation is the major term. Confining ourselves to
this approximation, the solution is as follows:

V(g) =P coské,
where
P/A=¢/Ka, (63)
¢ being given by (26), and where
i 4
K = ——log— coskl
T €

14
— f [Gall, &) +Ga(—1, &')] coskE'dE’
~1

i 1 pik(I—E")
_{_,f - coskt'dg
4

xJ_ —_

_ f fﬁ‘(f, &) coskE coskEdEdE.  (64)

In all terms in K except the first, we are to put
I=\/4, kl=m/2.

If the incident wave is traveling in the nega-
tive z-direction, and is of amplitude 4’, we find
similarly that the corresponding voltage ampli-
tude P’ is given by

P'JA’=¢*/Ka. (65)

The results (63) and (65) are those which have
already been used in Section 4.
If we write

K=K,+:K,,

then K, is a comparatively simple expression
which has already been given in (38). For K; we
can write, to the order to which we are working,

Ka=(5L/N) log(2\/w) + K+, (66)

where w=2eis the width of the slot, sL=2]—\/2
is the excess of the length of the slot over a half-
wave-length, and K, denotes the imaginary part
of the expression for K in (64) omitting the first
term, so that K»' doces not depend (to our order
of approximation) on the length or width of the
slot. From (13) and (53), it will be seen that K’
is given by quite a complicated expression in the
form of a doubly-infinite series.

If the slot is in the broad face of the guide, we
have explicitly from (13) and (53), on using the

35

Downloaded 07 Nov 2005 to 129.97.120.223. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



eigenfunctions and eigenvalues for the rectangular

relative to the standard axes for guide 2 will be

guide 13 given by an exactly similar figure (with, of course,
different parameters x;, 0 in general). The only
Galt, &) .___2__ by ﬁﬁ cosﬁw—x difference is that, if we keep the direction of the
1ab nom Uy a ¢ axis the same in both guides and preserve the
r relative orientations of the (&, n) axes, then the
Xcosnm giumml =) cosd (67) 1 axes are in opposite directions for the two
a guides, so that the voltage is the negative of that
2 sin’6 w2 deﬁr.xed by (1.8) when considered from the point
F(g, &)= >3 5W(__) of view of guide 2. This is because the normal to
kab nm a . the guide-face drawn into the guide has opposite
’ directions for the two guides.

Unm  NTX  ATX . .
x[ sin—— sin We can then carry through an exactly similar
Mam® a a analysis to that used in Section 6, the only differ-
1 nex  nwx' ence being that instead of the solution outside the
+— cos—cos ]ei""mlf—f'l cosé guide there used, we must use the solution in

Unm a a

guide 2. Obviously the voltage is still approxi-
mately sinusoidal and we find for the amplitude

P, if theincident waveis of amplitude 4 and trav-

2k sin?0 (mw/b)?  nmx  nwx'
nm, Sin——Ssin———
n,om

ab Unmbbum® @ e eling in the positive z-direction,
v o™ Cosmx']emmﬁw o (68) P/A=¢/K (69)
fom ¢ ¢ where the subscripts 1 in ¢, @ refer to guide 1, and
where where
x=x+£ siné, x'=x1+¢ sind, i 4l
pam?=(nm/a)2+ (mn /)2  Upm=(k2— tnmd)}, Kig= —-;logi coskl

d.m=1, unless n or m=0, !

—i f [GaD(, &) +Ga®(—1, &) JcoskE'd¥’
l

=1 if n or m=0.

The summations in (67) and (68) are taken with
respect to # and m from 0 to o with the exception
of the values n=m=0. The positive, or positive-
imaginary, square root for #,, is to be taken.

If the slot is in the narrow face of the guide, we
need merely interchange ¢ and b in (67) and (68),
and, of course, use the appropriate expression for
¢ (i.e., (31) instead of (27)).

l
—i | [Go?(, E)+G®( =1, &) ]coskEdE
—1
4
—ffF“)(E, ¢’) coské coskg'deds’
—~1

I
7. GUIDE-TO-GUIDE COUPLING _ffF @& §) coskg coskg'dgdt’,  (70)
—1

Consider now the case where the slot couples
two infinite guides—guide 1, where we have an
incident (exciting) wave, and guide 2, where
waves are generated. Suppose that Fig. 3 gives
the orientation of the slot relative to the standard
axes for guide 1. Then the orientation of the slot

the superscripts 1, 2 in the functions Ge, F in (70)
referring to guides 1, 2, respectively. If the inci-
dent wave is traveling in the negative z-direction,
we must write {* in place of ¢ in (69).

Energy considerations similar to those used in
Section § show that

R(K12)= —v1| 12— 2| 2|3

1 The term proportional to cosf sind in (53) has been
omitted from F(§, '), since it can be seen that this vanishes
on integration.
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where v, v2 are the constants v defined by (33)
for the two guides.

Knowing the voltage amplitude, the reflection
and transmission coefficients for guide 1 and the
field generated in guide 2 are, of course, easily
calculated. It will be seen that if the calculations
have been made for the slot in each guide
separately, the calculations for the guide-to-guide
coupling are readily performed. In fact, reference
to (64) and (70) shows that most of the terms in
K, are simply the sum of the corresponding
terms for the K's of the two guides. It will also be
observed that our third fundamental assumption
(Section 1) is not used in this case, so that the
results should be more accurate.

8. SLOT ARRAYS

We now consider the case of an array of N slots
numbered 1, 2, ---, N in the same face of an
infinite guide, and coupled to empty space. It is
evident that if the lengths of all the slots are ap-
proximately A/2 the voltage in each slot is still
approximately sinusoidal and the problem is to
calculate the amplitudes Py, P,, - - -, Py in terms
of the amplitude of the incident wave. Having
done this, we can find the radiation pattern
outside the guide, and the reflection and trans-
mission coefficients, etc., inside the guide.

Considering, say, the jth slot, we proceed as
before, but now in finding the component of H
along the slot we must include, in addition, the
contributions from the voltages in all the other
slots, when reckoning the field either inside or
outside the guide. We must also allow for the fact
that the incident wave has a different phase at
the center of each slot. The calculations go very
much the same as before, finding a first approxi-
mation, and then a second approximation, to the
voltage in each slot. We omit the details and
quote the final result: the voltage amplitudes are
determined by the set of linear equations:

N
2 pipPy=(A/a)geV s, j'=1,--- N, (71)
i'=1

where it has been assumed that the incident wave
is traveling in the positive z-direction and has
amplitude A at some arbitrary point in the guide,
z; being the distance down the guide from this
point, measured in the positive z-direction, of the
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center of the jth slot, and where
pii=K; (72)
l

piv= [ [Fiyo() = Fyy (@ Tcoskede,

’ =i (13)
In (71), (72), ¢;, K; mean the constants ¢, K,
already defined, calculated for the jth slot, while
in (73), F;;©u®(¢) denotes the component of H
along the jth slot due to a sinusoidal voltage of
unit amplitude in the jth slot, calculated for
ouiside the guide, and F;;'i™(§) has a similar
meaning when calculated for imside the guide.
F;7(m can be found from formulae already
given ; it would probably be sufficient to confine
ourselves to the contribution from the Hy-wave
generated by the jth slot, so that F;tv(§)
would be quite a simple expression. F,;© can
be found by the method outlined in Section 6 for
finding the field outside the guide, and again
vields a simple closed expression.

There is thus no particular difficulty about
calculating the coefficients p; (75 7'), while the
coefficients p ;; are given by the calculations for a
single slot. The coefficients p;;(j#j') express, of
course, the interaction between the slots. For
distant slots, F;p©® decreases as (z;—z;)7%,
while F;;{i™ remains constant. While the calcu-
lation of all the coefficients p,; and the solution
of the set of equations (71) would in general
present a formidable task, it would appear that
in the arrays of practical importance considerable
simplifications are possible. The K; might be
determined experimentally.

If the incident wave is traveling in the nega-
tive z-direction we need merely write {;*e~ "% in
place of {e®# in (71).

9. THE CASE OF A TERMINATED GUIDE

So far we have dealt entirely with infinite
guides. In practice, however, the guide may have
an unmatched termination, so that we must take
account of the termination (a guide with a
matched termination can, of course, be treated as
an infinite guide). We shall indicate briefly here
how a termination of arbitrary impedance can be
dealt with, and it will appear that this case can be
deduced very simply from that of the infinite
guide already dealt with.
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Suppose we take the z axis pointing towards
the termination, and that we have available
solutions for the infinite guide for incident waves
traveling in either direction. Assuming that all
slots are at a sufficient distance from the termi-
nation (and in the negative s-direction from it)
for all waves but the Hy-wave to be damped out
at the termination, the infinite-guide-solution for
a wave incident in the positive z-direction will, in
the neighborhood of the termination, be an
Hy-wave whose generating function is, say, x1.
Similarly, the infinite-guide-solution for a wave
incident in the negative z-direction will, in the
neighborhood of the termination, be a superposi-
tion of Hy-waves traveling in both directions, so
that its generating function will be of the form
x: T ax2™, where « is a constant of the nature
of a reflection coefficient (the superscripts +,
— refer to waves traveling in the positive and
negative z-directions, respectively).

We now consider the field given by

X1 P +Ax2 +axe ],

where X is an arbitrary constant. By proper
choice of N we can now make the ratio of the
amplitudes of the incident to the reflected waves
at the termination anything we please, and hence
can give the termination an arbitrary “‘imped-
ance.” Thus a linear combination of the two
solutions for the infinite guide, for incident waves
traveling in opposite directions, gives the solu-
tion for the semi-infinite guide with an arbitrary
termination. In particular, the voltage amplitude
in any slot will be

Pi4+\P,

where P,, P,, are the voltage amplitudes for the
two solutions for the infinite guide.

APPENDIX

On the Correction Due to Imperfect Conductivity
of the Guide Walls

To take account completely of the finite conductivity of
the walls of the guide would be quite possible, but would
lead to elaborate computations. The following very rough
calculation, in which we consider the problem of Section 5,
indicates, however, that the error caused by the assumption
of perfect conductivity is not likely to be great.

38

The chief losses caused by the imperfect conductivity of
the walls will occur near the slot, where the fields are
large. In this region we can estimate the tangential com-
ponents of the magnetic field by analogy with the problem
of the half-wave antenna (see Section 3). We thus find
that, near the slot, the major component of H is that
perpendicular to the length of the slot, and is of amount

P N eik'rg eilcrl
H=s -9 -0+,

where (£, ) are the coordinates of a point in the guide face
containing the slot relative to the axes of Fig. 3, r\, 72 are
the distances of the point from the ends of the slot, and the
notation is otherwise that used before.!* Except near the
ends of the slot, this can be replaced approximately, if 5 is
small, by

> . .
H=217r—n[e“°”_5’ —ghtHD (A1
If, as we may assume, the depth of penetration is small
compared with the thickness of the wall, we have approxi-
mately for the tangential electric field when imperfect
conductivity is allowed for,1®

(A2)

7,

E=(1—¢)(4i)*(ﬂ><n).

where n is a unit vector drawn into the guide wall, f is the
frequency, and o the conductivity of the guide wall.

Using (A1), (A2), we thus have for the mean flux of
energy into the guide wall, per unit area,

< R FANTTIE
gy a-g (L)1

¢ (f)”PPu—coszkg).

“16x\4e 7

The total mean flux of energy into the guide walls is thus
of the order

where I’ is a length of the order of the length of the slot,
and 2e is, as before, the width of the siot.

Comparing (A3) with the expression (37) for the mean
flux of energy out of the slot, we see that the error involved
in assuming perfect conductivity of the walls is of the

order
L)
m\4o/ €’

For Copper and a wave-length of the order of 1 cm., f:4¢
is of the order 1078 A reasonable value of !'/e would be
about 30. The above error is then about 1072 or one percent.

14 See, for instance, Stratton, Electromagnetic Theory
(McGraw-Hill Book Company, Inc., New York, 1941),
p. 457, formula 76, on interchanging E and H and allowing
for the difference in units. Note that Stratton’s I, corre-
sponds to (¢/2w) . in the present case. We have disregarded
an unimportant phase factor.

15 See, for instance, reference 14, p. 534, formula 47,
allowing for the difference in units.
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