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Summary-In a  phased-array antenna with a very  large  number 
of regularly-spaced  radiating  elements, the gain  realized at  the  beam 
peak is equal  to  the  number of elements times the  gain  realized in 
the same direction  when  only one typical element  is excited. The 
ideal  radiation  pattern of one  such  element in a  large  planar  array 
has  a  cosine  variation of gain  with  angle  when the  elements are 
closely  spaced, and  has a  peak  value of gain  equal  to 4?rA/X2 where 
A is the  area  allotted  to  each  element. 

The active  impedance of each  element in a  practical  phased  array 
varies  with  scan  angle,  because of mutual coupling  between the ele- 
ments. The associated  mismatch  causes  power  to  be  returned  to  the 
generators,  thereby  reducing  the  gain  realized by the  array  and by 
the  element.  The  element  pattern,  measured in the proper  environ- 
ment of surrounding  elements,  deviates  from  the  ideal  pattern in 
proportion to this effect. 

Mutual coupling is  inherently unavoidable in a  closely-spaced 
i n h i t e  array of elements;  for example, in a  square  array with less 
than X / d z  spacing. There  is  a  loss of element efficiency caused by 
the coupling, and since  coupling increases with  closer  spacing, this 
accounts  for  the  lower gain expected  from  ideal elements with  re- 
duced  allotted  area.  Grating  lobes  can  exist  when  the  elements are 
not closely spaced;  for example, in a square  array with  more than 
X/2 spacing. In this  case,  the  ideal  pattern  is  truncated  to  discriminate 
against  grating  lobes;  this gives the  higher gain  expected  from  ideal 
elements with larger  allotted  area. 

It  is concluded that  in  a phased-array antenna having  a  very  large 
number of regularly-spaced  radiating  elements,  perfect  impedance 
match  for all scan  angles  can  be  postulated  for  every  typical  element 
without  encountering  any  real  discrepancy in the  determination of 
element gain. In  the  absence of grating lObe.5, such  an  antenna would 
realize the  greatest possible  gain  for all scan angles. 

I.  INTRODUCTION 

A BOUT TLI'O YEARS AGO this  writer  ran  into  an 
apparent  paradox  involving  the  gain of a  radiat- 
ing  element in a phased-array  antenna.  While 

studying  this  problem,  several  interesting  concepts  and 
relations  governing  the  behavior of an  array  element 
were generated;  these  concepts  are  the  principal con- 
tribution of this  paper.  However  the  original  problem 
has  undoubtedly  been  discovered  by  others  working in 
the field of array  antennas;  one  such  instance  has been 
communicated [l ] to  the writer. This  paper,  therefore, 
will include an  outline of the original  difficulties, in the 
expectation  that  they 1 ~ 7 i l l  be of interest  to  the  reader. 

11. PRELIMINARY 1 7 1 ~ n -  OF THE ELEMENT-GAIN 
PATTERN FOR AS INFINITE  ARRAY 

An element  pattern of an  array  antenna is the  radia- 
tion  pattern  obtained when only  one  element is excited 
by  a  generator,  as  indicated  in  Fig. 1. The  gain of this 
pattern is a  factor  in  determining  the  gain of the  array 
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when  all the  elements  are  excited;  therefore,  it is of 
interest  to  know  the  gain  as well as  the  shape of the 
element  pattern.  Both of these  quantities  are  contained 
in a plot of element  gain g(0, 4)  as a function of angle. 
This  plot will be  termed  the element-gain paltern;' a 
possible  one is indicated  in Fig. 1. 

IlThen the  antenna  array  contains  a  very large number 
of regularly-spaced  elements,  the  behavior of every ele- 
ment is the  same  except for  those  relatively few non- 
typical  elements  near  the edge. The essential  properties 
of such  an  array  can  be  conveniently  determined  on  the 
basis of an  array  having  an infinite number of elements 
[ 2 ] .  Fig. 2 indicates  a  portion of an ilz-finite planar array, 
in  which the  elements  happen to have a square  arrange- 
ment. 

Fig. 1-The element-gain pattern. 

A 

o n 0  f 

Fig. 2--An infinite planar  array. 

ratio,  not  voltage  ratio.  The reference is an isotropic radiator, which 
The element-gain pattern is, of course, a plot in terms of power 

has a gain of unity. 
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An area A is  allotted to  each  element  in  the  infinite 
array.  This is the maximum  area  available to  each ele- 
ment,  and is usually  greater  than  the physical  size of the 
actual  element. I t  is natural  to  assume  that  the maxi- 
mum  gain  obtainable  from  an  element in the  array is 
related to  the  area A by  the well-known  gain  formula 
for apertures  large  compared  with a wavelength, be- 
cause the  entire  array is indeed  large. Furthermore, since 
the effective area of an  element  should  be  proportional  to 
its projected  area  in  the  direction of interest,  the ele- 
ment  gain  should  have a cos 8 variation  with  angle. 
Based  on this  intuitive  reasoning,  the  maximum  element 
gain W O U I ~  be 

This relation  gives a fundamental  upper  limit  to  the 
gain  obtainable  in an  element of an  infinite  planar  ar- 
ray. I t  also  implies that   the ideal  shape of the gain 
pattern of such  an  element would approach  the cos 8 
variation.  However,  there  are  factors  not  contained  in 
(1) which must be  considered  in any  objective  analysis 
of element  gain. 

111. EFFECT OF REFLECTION o s  THE 
ELEMENT-GAIN PATTERN 

In   an  infinite  phased-array  antenna  the  radiation 
pattern  has  an infinitesimal  width,  and  it is convenient 
t o  consider the  antenna gain  only  in  the  direction  where 
all the  elements  add  in  phase;  this  corresponds  to  the 
peak of the  antenna  pattern.  When all the  elements  have 
identical  patterns  and  are excited with  equal  ampli- 
tudes,  as is the case  in an infinite array,  the principle of 
superposition may  be combined  with  consideration of 
the power available  from  the  generators t o  yield the 
familiar  relation 

Gr(e,4) = W ( @ ,  +), ( 2 )  

where G,(B, 4) is the gain  realized by  the  array  antenna 
in the direction 8, 6 when the  elements  are excited to  
add in  phase  in  that  direction, gr(O, #) is the gain  realized 
in the  same direction  when  only  one  element is excited, 
and n is the  number of elements (infinite  in this  case). 
I t  is Bppropriate to  remind  the  reader  that  the  element 
gain  must  be  determined  with  the  element  located  in 
its  actual  environment of surrounding  elements,  and 
that  every eIement  must be  connected to  the  same im- 
pedance  when  determining  the  element  gain  and  the 
array  gain.2 

The gain  realized  by an  antenna  system is always less 
than  the  directive  gain [SI of the  antenna alone. In 
addition  to  dissipation,  there  may  be  an  impedance mis- 

ment  which is transferred to  an  array of many  elements. I n  that  ap- 
2 Historically, (2)  has been  applied  to  the case of an isolated ele- 

plication it is necessary to assume that  mutual coupling and inter- 
action  effects are negligible;  unfortunately  this is usually far  removed 
from reality.  Only  recently  have  these  considerations  been  clearly 
stated [3], [4. 

match which returns power to  the  transmitter.  When 
these  two losses are included, the  resulting  value for  gain 
will be  termed  the realized gain. I t  is important  to recog- 
nize that  ( 2 )  applies t o  realized gain,  not  directive  gain. 
(Also, the  formula  does  not  apply  to power  gain [j], 
which term is generally  understood to  exclude loss 
caused by  impedance  mismatch.)  The  subscript r for : 

the  two  gains  in (2) denotes  the  term  “realized.” 
I t  will be  assumed  throughout  this  paper that   the 

radiating  elements  and  their  associated  transmission 
lines have no internal  dissipation.  In  this  case,  the 
difference  between  the  directive  antenna  gain  and  the 
realized antenna gain is caused  entirely  by power  which 
is returned  to  the  generators.  Thus  the  ratio of realized 
antenna gain Gr(8 ,4 )  in  some  direction to  directive  gain 
G&, 4) in the  same  direction is equal  to 

where I R(a, p)  I is the  ratio of returned power to  avail- 
able  power,  and or, p are  the phases  between  excitation 
of adjacent  elements  in  the rows and  columns  which 
produce  radiation  by  the  infinite  array  in  the 8, 4 direc- 
tion. 

The  returned power is caused by  departure  from  con- 
jugate  match between the  element  impedance  and  the 
generator  impedance.  The  element  impedance of sig- 
nificance  in this  case is the active impedance of the ele- 
ment,  that is, the  impedance  measured  while  all  the 
other  elements  are  excited  with  the  appropriate  phase. 
As will be discussed later,  mutual  coupling  between  the 
elements  causes  the  active  impedance  and  the  returned 
power to  vary  with excitation  phase;  hence R in (3) is a 
function of a and p .  

If the  generators  happen  to  be  matched  to  the  trans- 
mission lines  leading to  the  elements, R is also the 
voltage  reflection  coeficient in  these  transmission lines. It 
is an active reflection coefficient for  the  reasons  just 
mentioned.  In  the  general  case of generators  that  are 
not  matched  to  the  element lines, R is not a true reflec- 
tion coefficient in any physical  transmission  line. How- 
ever, R may  still  be  considered  as a voltage reflection 
coefficient where this reflection  is taken  to exist  within 
a hypothetical  generator. Fig. 3 indicates  this  generator 
consisting of a voltage  source  and  internal  resistance, 
followed by a hypothetical  transmission line matched 
t o  the  internal resistance, and ending  in a mismatched 
connection  (shown as a dot)  to  the  actual  element  trans- 
mission line. The “equivalent reflection  coefficient”  is 
considered to  exist  within  the  hypothetical  matched 
transmission line. I t  should also be mentioned that  the 
interpretation of returned power  in terms of a  voltage 
reflection coefficient or an  impedance  mismatch  applies 
only when a sinple  polarization is  involved.  When  two 
polarizations  can  propagate  in  the  transmission lines, 
as in an  array  system designed  for right-  and  left-hand 
circular  polarization, the  returned power may  be  di- 
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Fig. 3-Reflection of a  scanning array. 

vided  between  the  two.  Although  this  case  can  also  be 
analyzed  in  relation to  the element-gain  pattern,& 

the scope of t k a n p r  to Derform such an 

The  peak  directive  gain of a large,  uniformly-excited 
planar  array which has no grating lobes is related  to  the 
area of the  array  aperture  by  the  standard  formula for 
apertures large  compared  with a wavelength.  Thus for 
the  infinite  array,3  the  directive  gain is 

-. 

where 0,4 is again  the  direction  in  which all the  elements 
add  in  phase,  and  the  subscript o means that  no  grating 
lobes are  permitted. 

Now combining (2),  ( 3 ) ,  and (4) yields  for the ele- 
ment realized gain 

I t  should  be  emphasized that (5) relates two  conditions 
of operation of the  array.  The  element realized  gain is 
obtained  by  exciting  only  one  element of the  array  and 
measuring  gain  in  the 0,  C$ direction,  as  indicated  in 
Fig. 1. The reflection  coefficient is determined  by  excit- 
ing  every  element  with  a  progressive  phase  shift a,  
such tha t  a beam  in  the 0, 4 direction is obtained,  and 
measuring  the  ratio of returned  to  available power. This 
latter  condition  is, of course, the  operational  condition, 
and is indicated  in  Fig. 3. 

Comparing (5) with the simple  intuitive  equation (l), 
i t  is seen that  the  two differ only  by  the  factor  involving 
the reflection  coefficient.  Perhaps (1) is the  more  funda- 
mental  relationship  because i t  involves  only the  an- 
tenna,  and  not  the  interaction  between  the  antenna  and 

gain  because the projected aperture is large  compared  with  the  end- 
J With the  infinite array,  it is not necessary to consider  end-fire 

fire aperture for all values of 0 less than 90'. 

the  generators  which  theoretically  can  always  be  tuned 
out.  However,  in a scanning  array  antenna  it is not 
customary to  tune  out  the  mismatch as a function of 
scan; hence,  in  practice, i t  is the realized  gain that  is 
significant. The element realized gain of (5) determines 
the  array realized gain,  according to  (2). 

In a  typical  array  antenna  the reflection  coefficient 
would vary  with  scan  angle.  This would modify the 
shape of the  element  realized-gain  pattern  from  the 
simple cos 0 shape, as has  been recognized by  others 
[4], [ 6 ] .  Since  the reflection  coefficient  in (5) is actually 
an  equivalent reflection  coefficient  which accounts for 
the power returned  to  the  generators, its value  depends 
partly on the  impedance of the  generators  connected t o  
the  elements.  Therefore  the element  realized-gain  fiattern 
depends  on  the  impedance of the  generators. -4lthough this 
dependence  appears  to conflict with  the  usual  rules of 
antenna  pattern  measurement,  it  should  be  pointed  out 
that  only  the  impedance of the  inactive  generators  sur- 
rounding  the  excited  element  affects the  element  pat- 
tern  shape,  while  the  impedance of the  active  generator 
affects  only  the level of the  element-gain  pattern. 

The  array  antenna  system which has been  discussed 
is one  in which each  element of the  operating  array is 
connected  to a separate  generator.  This is often  called 
an active  array. When a single  generator  excites  all  the 
elements  through a network of power dividers  and  phase 
shifters,  the  antenna  may  be called a passive  array. Such 
an  antenna  does  not  have  the  obvious  identical  per- 
formance  for  every  element that   the infinite  active  ar- 
ray has.  Furthermore, reflections  from the  elements  do 
not necessarily return  to  the  generator,  but  may be 
absorbed  in  terminations  or  reradiated  in  other  direc- 
tions [7],  [8], depending  on  the  particular  network 
used. Thus  the passive  array is actually  more  compli- 
cated  to  analyze  than  the  active one. The  active  array 
not  only  is  relatively  simple,  but  also  it  provides  the 
concepts  and  fundamental  limitations  for  any  array; 
thus  the  active  array is  considered  exclusivelv  in t b  
paper- 
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Fig. 4-The ideal  element  realized-gain pattern when 
no  grating  lobes exist. 

I t  is  interesting  to recognize that, while the  relations 
in this  paper  are  derived  for a transmitting array,  they 
apply  as well to  a receiving array in  which there is a  re- 
ceiver  connected to  each  element.  In  this  case,  the 
equivalent reflection coefficient is that  quantity which 
accounts  for  the power reradiated  by  the  antenna  sys- 
tem  because of a departure from  conjugate  match be- 
tween the receiver impedance  and  the  element  imped- 
ance.  Although the  element  is  receiving, i t  is still  the 
active impedance of the  element  in transmission which is 
significant  here. Thus  the  relations in  this  paper  obey 
the usual  laws of reciprocity,  even  though  the  antenna 
is an  active  array  rather  than a passive  one. 

IV. THE PARADOX 

Suppose  that  it is possible to  obtain  an  array  antenna 
system which has  perfect  impedance  match for all  scan 
angles. Then in (5) the reflection coefficient R is zero 
over  the  range of CY and /3 corresponding to  0 <e < ~ / 2  
and 0 <C#J < 2a. The  element realized-gain pattern  then 
becomes the ideal  element pattern  mentioned  in  Section 

’ 11. This  pattern, shown  in  Fig. 4, has a peak realized 
gain of 4aA/X2 and a cos 6 shape. 

If all the elements of the  array  are perfectly  matched 
for  all  directions  of array  radiation,  it  might seem  rea- 
sonable to  assume  that when a single element is excited 
i t  will also  be matched. If i t  is also  assumed that  the 
elements  have no dissipation,  then  the  element realized 
gain is equal  to  the  element  directive  gain. Now a  gain 
pattern  having  the cos 6 shape  described  above  has a 
di rec t iv i t~ .~  of four [ 9 ] .  Therefore  the  peak  value of ele- 
ment realized  gain  should  also be  four.  This,  however, 
does  not  in  general  correspond to  the  value of 4rA/X2 
derived  above. 

To  illustrate  this  discrepancy, consider an  array  with 
a square  arrangement of elements. If the  element  spac- 
ing is X / 2 ,  then 4nA;/XZ equals a instead of four. If the 

\element  spacing is X/v’/z, then 4aA/X2 equals 2~ instead 
of four. There  appears  to  be a paradox  here;  evidently 
some of the  assumptions  made  are  not  valid,  or  there 

are still  other  factors which must  be considered. Of great 
interest  is  the  question of whether it  is  really  possible  tu 
have an  array  antenna  system  which  has perfect impedance 
match for all  scan  angles. In the  following  sections of this 
paper,  further  analysis will be  made  to answer  these 
questions. 

V. EFFECT OF GRATING  LOBES ON THE 
ELEMENT-GAIN  PATTERN 

Eqs. (4) and (5) were derived for the case of an  array 
antenna in which no grating lobes  were permitted.  When 
grating lobes do exist,  a  different  result  is  obtained. 

Grating lobes [ lo]  occur in an  array  antenna when 
the spacing  between  elements  is  great  enough to  permit 
all the  elements  to  add in  phase  in  one  or  more  direc- 
tions  other  than  the  direction of the  main lobe. In   an 
infinite array  the  scan-plane  beamwidth of any of these 
in-phase lobes, although  infinitesimal,  is  inversely  pro- 
portional to  the cosine of the angle of the lobe  from 
broadside,  because  the  projected  aperture of the  an- 
tenna  varies by the cosine. Therefore  the power radi- 
ated in one of these lobes is proportional  to  the  directive 
gain  in the lobe direction,  divided  by  the cosine of the 
lobe  angle. When  many  such lobes  exist, the  total power 
radiated is the  sum of all the lobe  powers. If this  total 
power is set  equal  to  the power radiated  when only the 
main  lobe is permitted to  exist,  the following relation is 
obtained : 

where on the  left,  the  subscript m identifies the lobe 
(m= 0 for main lobe, m = 1 for  first  grating lobe, etc.), 
and  the  summation covers  all the lobes that  exist. In  all 
cases, 0 and C#J represent  the  directions  in which all  the 
elements  add  in phase. 

S o w  the  derivation of (4) relies on a determination of 
total power radiated. If the  same  derivation is made for 
the case  which  includes grating  lobes,  consideration of 
( 6 )  yields the following relation: 

Directivity is the peak  value of directive  gain [SI. 
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Combining (7) with (2) and (3) now  yields the  general 
expression  describing the element  realized  gain, 

This  reduces  to ( 5 )  when  there  are  no  grating lobes. 
However,  when the  element  spacing is great  enough  to 
permit  grating  lobes,  there  is  no longer the  simple  situa- 
tion  which led to  the  paradox described  in the preceding 
section. Before analyzing  this,  however,  another  aspect 
will be  considered. 

\,'I. EFFECT OF ~ I U T U A L  COUPLING ON 
ELEMENT  EFFICIENCY 

11:hen an  array  antenna  has  elements which are 
closedly  spaced,  there  is  usually  an  appreciable  amount 
of interaction  between  the  elements.  This  interaction 
may  be  separated  into  several  components,  such  as 
backward  coupling,  forward  coupling,  and  scattering. 
I t  is the backward  coupling which  is of interest  here;  this 
will be  referred to  as the  mutual coupling. 

Determination of the  mutual coupling  between two 
elements is accomplished by connecting a generator  to 
one  element  and  a  receiver t o  the  other.  For  the  meas- 
urement  to  be significant,  these  two  elements must, of 
course,  be in the  same  environment of surrounding ele- 
ments  that exists in the  complete  operating  array,  and 
all the  surrounding  elements  must  be  connected  to 
terminations  (or  inactive  generators).  Furthermore,  the 
impedance of the  generator,  receiver,  and  terminations 
must  have  the  correct  value.  There  are  two  values for 
this  impedance  which  may  be  chosen.  In  one  case,  the 
impedance is equal  to  that of the  transmission lines 
leading to  the  elements;  this  corresponds  to  a  measure- 
ment of a coefficient of the  scattering  matrix.  In  the 
other  case,  the  impedance  is  equal  to  that of the gener- 
ators in the  complete  operating  array.  While  the  former 
case is generally  simpler to  measure,  interpretation of 
its significance  is  necessary if the  operating  system  has 
generators which are  not  matched  to  the  element  lines5 
The  latter will be  employed  in  this  paper  because of its 
direct  application to  the  array  srstem  performance. 

Fig. 5 shows the measurement of mutual  coupling 
coefficient,  which compares the signal  available at the 
generator  with  the  signal  received  by  the  receiver.  Both 
the  amplitude  and  the  phase  are  measured,  yielding  a 

two quantities.  One quantity  is  the active impedance of an element 
6 In  this case, the determination of returned power would involve 

calculated  from the reflection coefficient determined  from a summa- 
tion of the  scattering coefficients as measured  with terminating  im- 
pedances which are  all  matched to  their transmission lines. The  other 

array. Comparison of these  two quantities on the basis of departure 
quantity  is  the  actual impedance of the  generators in the operating 

from  conjugate  impedance  match at a common reference  plane  would 
be necessary to determine the  fraction of available power  which is 
returned  to  the  generators in the  operating  array. 

Fig. 5-Determination  of mutual coupling. 

W 

Fig. 6-Effect of mutual coupling on array reflection. 

complex  coupling coefficient. As the receiver  is  con- 
nected to  each  element line in turn, a set of complex 
coefficients is  obtained; included  in the  set is the "self- 
coupling"  coefficient or  passive  reflection coefficient, 
determined  by  means of a directional  or  standing-wave 
measurement. 

IVhen the  beam of the  operating  array  antenna is 
scanned  by  varying  the  phase of element  excitation,  the 
presence of mutual  coupling  causes  the  signal  reflected 
into  each  generator t o  vary. If all the coupling coeffi- 
cients  are  available,  the  characteristic of reflection vs 
excitation  phase  can  be  computed.  This is done  simply 
by  adding  together  the  signals  from all the  generators as 
they  are coupled  back  into  one  generator,  as  suggested 
in  Fig. 6. Thus  by reciprocity  and  superposition,  the 
reflected signal is the  sum of the  products of the  coupling 
coefficients times  the  appropriate  generator  phase  fac- 
tors.  Each  pair of elements  which is symmetrical  about 
the  element in question  contributes  a  term  equal  to 
C,, exp j(pa+q/3) + C-,-, exp j (  -pa - 40) where p is 
the column  and q is the row.  Since C,,= C-p-g because 
of symmetry,  the  contribution of each  pair of elements 
is C,, cos (pa+q/3) + C-p-q cos ( -pa - q/3). Thus  the 
complete reflection  coefficient is 
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p=-m q=-m 

+m +m 

p=-m q=-m 

where R has  the  same  interpretation as that  discussed  in 
Section 111. Eq. (10) is  obtained  from (9) by  the  stand- 
ard  trigonometric  identity.  When  there  is  horizontal 
and  vertical  symmetry, as in the  ordinary case of linear 
polarization  parallel t o  a  row  or column,  the  sin  terms in 
(10) drop  out. As mentioned  previously, all the coupling 
coefficients C,, are complex, as is the reflection coeffi- 
cient R. 

I t  is  evident  from (9) or (10) that  when any of the 
mutual ( p  or q> 0) coupling coefficients are  not zero, 
the reflection coefficient R will vary  with  the phasing 
a, /3. This  variation confirms the  statements  made in 
Section 111, and  has been  generally  recognized  for 
many  years6 Now i t  is  desirable to  have  an  array  that 
has  no  change of complex  reflection coefficient with  scan 
angle,  because an  impedance-matching process a t  one 
scan  angle will then provide a match at all angles.  One 
is  therefore inclined to  state  that   the ideal  antenna  array 
is  one  in which there is no mutual  coupling. This, how- 
ever,  is not always  true, as will be seen  in the  next section 
of this  paper.  In  preparation  for  this, a relation  between 
the  characteristic of reflection vs phasing  and  the  total 
coupled  power will now be derived. 

Eq. (10) involves a doubly  infinite series of cosine 
and sine terms  having  arguments of increasing  multiples 
of the  independent  variables.  This  is  just a two-dimen- 
sional  Fourier series [I41 whose  coefficients are  the 
coupling coefficients. Now i t  is a well-known property 
of a Fourier series that  the  average power in  the com- 
plete  “waveform” is equal  to  the  sum of the powers  in 
all the  “harmonics.”  In  relation  to ( lo) ,  this means that  

The significance of (11) for the  array  antenna is that  
the average power, over a 0 to T interval of phasing in both 
coordinates,  returned  to  one  generator in the  complete  oper- 
ating  array,  is  equal  to the  net  power  returned to all  gen- 
erators when only one is excited. This presumes  equal 
power available at  every  generator for both  conditions, 
because the R and each C in  formulas (10) and (1  1) are 
quantities which are normalized to  unit-amplitude gen- 
erators.  Fig. 7 illustrates  the  principle; a typical  deter- 
mination of average  returned  power for the  operating 
array is shown  in Fig. i(a),  and  the  net  returned power 
when  one  element  is  excited is indicated  in Fig. 7(b). 

active impedance [ll], [12] rather than reflection  coefficient. How- 
In the  past,  the  variation  has usually  been  expressed  in terms of 

ever, a variation of active impedance  corresponds to  the  variation of 
returned power and equivalent  reflection coefficient just described. 
Recently,  the reflection coefficient (or VSn7R) has  been  employed  in 
a t  least  several  instances [3], [13]. 

AVG. RET. PWR. 

AVAIL PWR. 

- - 
VOL. UNDER SURFACE 

VOL OF CUBE 

0 a a. 

Fig.  7-Determination of average  reflection and  net coupling. 
(a) Characteristic of reflection  vs  phasing. 

NET RET. PWR. 
AVAIL. PWR. 

- - 

SUM RET. PWRS. -- = z4 
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t l C O - , I *  

(b) View of coupled pon.ers. 

I t  should  be  mentioned  that,  although  the  principle  was 
derived  for a square  or  rectangular  arrangement of ele- 
ments in the  array,  it applies  also to  a triangular  or  any 
other  regular  arrangement, so long as  the.  phasing co- 
ordinates  are  in  orthogonal  directions. 

Consider now the significance of the  net power  re- 
turned  to all the  generators  when  only  one  is  excited. 
This power  is dissipated  in  the  internal  resistance of the 
generators,  including  the  one  active  generator,  and 
therefore  does  not  radiate.  Suppose  that the  eficiency of 
an element in the  array is dejined as the  power  radiated 
divided  by  the  power  available,  when  only  that  element is 
excited. This  “element efficiencyn7  is then  equal  to  one 
minus  the  ratio of the  net power returned  to  the power 
available,  and  that  ratio is  equal to  the  right  side of 
(1 1). Thus  the  element efficiency is 

element efficiency = 1 - ~ 

P n e t  ret 

P s v a i l  
(12) 

+m +m 

radiation efficiency [SI of the element,  because the  latter  term does 
7 The  “element efficiency” as defined  above is not the Same as the 

not  include loss by reflection into  the  active  generator.  Only if the 

generator would the two types of efficiencies be equal. 
passive  impedance of the element  happened to be  matched to  the 



1964 Hanna.n:  Element-Ga.in  Paradox 439 

By virtue of (ll), the  element efficiency can also be 
written  in  terms of the reflection characteristic of the 
operating  array.  Thus 

element efficiency 

This  result  does  not  appear  to  be  unreasonable,  since  it 
is  seen that  greatest  element efficiency corresponds to  
the  least  average reflection in the  operating  array.  In 
the following  section, (14) will be  employed to develop 
some  ideal  properties of an  element in an  array. 

VII. THE IDEAL ELEMENT-GAIN PATTERN 

In  the  early sections of this  paper,  the  concept of an 
ideal  element-gain pattern  was  introduced.  This  section 
will at tempt  to specifically  define the ideal pattern, 
based on  the  results  obtained in Sections V and VI. For 
simplicity of presentation,  the discussion will be con- 
fined to  a  square  arrangement of elements,  and  only 
two elements  spacings will be  considered, X/2 and 
X / d j .  These  two  cases will serve  to  illustrate  the 
principle. 

A .  Square  Array, X/2 Spacing 
When  the  element  spacing  in a square  array is X/2 or 

less, no grating  lobes  can  be  formed, no matter  what 
combination of. excitation  phases a, p are employed.8 
Hence,  for  this  case, i t  is  not  necessary to  refer t o  Sec- 
tion V. The  results of Section VI, however, are signifi- 
cant for this case. 

The ideal  element of an  array is  one which  somehow 
provides a reflection coefficient R equal  to  zero for all 
scan  angles 0 from 0" to  90". This does not correspond to  
zero  reflection  coefficient  for  all phasings a, p, however, 
because  for  small  element  spacings  there  are  some 
values of phasing  where an infinite array  cannot  radiate. 
IVhen the  array  cannot  radiate,  the reflection coefficient 
must be equal  to  unity. 

The phasings  corresponding to nonradiation  by  the 
array  are  those which exceed the values that  yield  a scan 
angle of 90". Since the  element  spacing is such  that no 
grating lobes  can be  formed,  there is then  no  direction 
in  which all the  elements  add  in  phase.  Furthermore,  in 
an  inJinite  array the  major lobe and  the  near minor 
lobes  occupy an infinitesimal  angular  region;  there is no 
residual  radiation  in  any  out-of-phase  condition. 

To  determine  the critical  values of phasing which  cor- 
respond to  a 90" scan  angle, i t  is convenient t o  employ 
the  space-coordinate  system based on the  intersection of 

would just exist  in the end-fire  directions for this array:  Since only 
8 If the phasing is a in either a or 8, then  two  radiation lobes 

values of 0 less than 90' are considered  in this  paper,  this is regarded 
as no significant  formation of a grating lobe. 1:alues of phasing greater 
than   ra re  not significant  because they simply  correspond to  negative 
values less than a. 

two cones [15], as indicated  in  Fig. 8 (next  page).  These 
cones are defined by  the angles p, E ,  as  shown;  the sines 
of these  angles  are  proportional t o  the  phasing a, p, 
respectively,  required to  scan  the  beam  to  the  cone  in- 
tersection.  Also,  sin2  p+sin? E =sin2 0, so that  a con- 
stant  scan angle,  variable  plane of scan,  plots as a circle 
on the  sin p, sin E plane [lo].  The  particular circle  corre- 
sponding  to  the 0=90° boundary of radiation  is shown 
in  Fig. 9. In  addition,  the  proportionality  between  the 
sin p ,  sin E coordinates  and  the a, /3 phasing is shown in 
the general  form  dependent on element  spacing S for  the 
square  array. 

Inside  the  radiation circle the reflection coefficient R 
equals zero  for an ideal array  element;  outside  the circle 
R must  be  unity. Fig. 10 presents  this  result on the  char- 
acteristic of reflection  coefficient R vs phasing a, B,  for 
X/2 element  spacing.  With  this  particular  spacing,  it 
happens  that  the  radiation circle  is  inscribed  in tha t  
square of phasing  described by a, p between --P and P, 
so the ideal  reflection-phasing  characteristic  has  the  par- 
ticularly  simple  shape  shown for this case. Nevertheless, 
it  illustrates  that  there  are some  values of phasing  which 
require  complete  reflection;  for  example,  when a and 
p are both equal t o  P, the  value of R must  be  unity. 

I t  is interesting  to  consider  the significance of this 
situation  in  terms of the  mutual-coupling  behavior. 
This ideal  element  provides a reflection  which must 
vary  with  phasing.  The  Fourier series representing  the 
reflection coefficient in  (9) or (10) must  therefore  have 
mutual-coupling  coefficients  which are  not zero, but  
have  just  the  right  values  to  provide  the  particular  vari- 
ation of reflection with  phasing.  Consequently,  in  the 
infinite array  with X/2 element  spacing, the  ideal  ele- 
ment must have mutual coupling. In  fact,  even  for a non- 
ideal  element  in  this  array,  that is, an  element  having 
a nonzero  reflection coefficient in the  radiating condi- 
tion of phasing,  there  must  be  mutual  coupling  unless 
the reflection coefficient is unity for  all phasings. Ex- 
cept  for  this  trivial case, then, m u t z d  coupling must al- 
ways be present in the infinite  square  array  with X/2 
element  spacing. 

Returning now to  the  information  contained  in Fig. 
10, and  applying  it  to (14), the  element efficiency for 
the ideal  element  in  this  array  can  be  obtained  by  in- 
spection. The  value  turns  out  to  be a/4. Thus  the maxi- 
mum possible efficiency of an  element  in  this  particular 
array is less than  unity.  This corresponds, of course, t o  
the  unavoidable presence of mutual  coupling,  as  noted 
above. 

I t  is now possible to  derive  the  element realized-gain 
pattern for this  ideal case. Since  there  are no grating 
lobes with X/2 spacing, the cos 0 pattern  shape discussed 
in the  early sections of this  paper is indeed the  shape 
for the ideal  element  pattetn  in  this case. At  the  peak of 
this  pattern,  the directive gain  must  be  four,  as  men- 
tioned  in  Section I\'. The  peak realized gain,  however, 
is reduced  from the  directive  gain  by  the  element effi- 
ciency  factor  because  this efficiency is the  ratio of power 



430 IEEE  TRANSACTIONS O N  ANTENLVAS  AND  PROPAGATION J d Y  

Fig.  8-Phased-array  coordinate  system. 
Fig.  9-Radiation  circle  for a square  array 

with  element  spacing S. 

0 a 

Fig. 10-The ideal  characteristic of reflection vs phasing  for n 
square  array  with Xj2 element  spacing. 

T 

radiated  to power  available. Thus 

where the  element realized  gain g, and  the  element  direc- 
tive  gain g d  are specified in the  same direction t?, 4. 
Multiplying  the  peak  directive  gain of four by the ele- 
ment efficiency of ~ / 4  determined  above  yields a value 
of T for the  peak realized  gain of this  ideal  element. 

T o  summarize  the  result, in an infinite  square  array 
having X/2 element  spacing,  the ideal element realized- 
gain pattern  has a peak  value of T and a  cos 6 shape. 

B. Sqamre Array, X / d j  Spacing 
“hen  the  element spacing  in a square  array is X / d / 2  

or  more,  there is no combination of phasing cy, p where 
the  array  cannot  radiate.g In this case, then,  the reflec- 

exist in the end-fire  directions (in  the diagonal  planes)  for this  array. 
If the phasing is H in both 01 afid 6, then four  radiation  lobes just 

For smaller  values of 01 or 6 ,  two of these  lobes  can  sometimes  exist, 
and  there  is  always a t  least  one  lobe which can  radiate. 

tion coefficient does not  have  to become unity at certain 
phasings; the ideal  element  can  be  assumed to  have 
zero  reflection coefficient for  all  phasings.  By (1 1) , this 
means that  the ideal  element  in  this  particular  array  has 
no mutual coupling and also no  passive reflection. This 
corresponds to  the  intuitive  (but  not  always  correct) 
specification of an ideal array  element. Also, by (14), 
the  element efficiency is  unity for the  ideal  element  in 
this  array.  Therefore,  by (15), the realized  gain equals 
the  directive  gain for this  ideal case. 

To compute  the  directive  gain,  it is  necessary  first to 
determine  the  shape of the  element  pattern.  This  deter- 
mination is complicated by  the  fact  that  grating lobes 
[lo] are possible with  the h/dT element  spacing con- 
sidered  here.  When  grating lobes  can  exist, the ideal ele- 
ment  pattern no longer has  the  simple cos 0 shape;  this 
is  implied by  the discussion  in  Section V and  by  the  sum- 
mation  required  in (8). There is  actually an infinite set 
of pattern  shapes  that  are possible, all of which  would 
satisfy  the ideal  condition of zero  reflection coefficient 
for  all  phasings.  Fortunately for the  brevity of this dis- 
cussion,  there is one  simple  pattern  shape  that is also 
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ideal  in other  respects;  this  pattern  provides  complete 
discrimination  against  the  radiation of grating lobes. 

If the  main  beam of the  array is scanned  away  from 
the  broadside  direction  in a cardinal  plane,  the  grating 
lobe  first  appears  in  an end-fire direction  on  the  opposite 
side of broadside. Further  scan of the main  beam will 
cause  the  grating lobe to  move  toward  the  broadside 
direction;  eventually  the  grating lobe will occur a t  a 
scan  angle  equal to   that  of the main  beam. If the ele- 
ment  gain is zero  for scan  angles  greater  than  this  critical 
one,  then  only  a single beam will radiate  for  any  amount 
of phasing in the  cardinal  plane.  The  value of phasing 
a t   the  critical  angle is n; naturally, a bidirectional  radia- 
tion  pattern  with  symmetry  about  the  broadside  direc- 
tion would be  expected  for  this  phasing. 

For  the  more  general  case of scan in any  plane,  the 
critical  scan  angle is a function of the  scan  plane. How- 
ever, for a square  array,  the  critical  values of phasing 
for either a or /3 are  stdl n. Thus  the  scan  boundary, be- 
yond which the element  gain  should  be  zero  for  single- 
beam  radiation, is a square on the  sin p ,  sin e plane 
having -n and +n as  the  values of phase  in  both co- 
ordinates.  For  element  spacing of X/.\/2, it  happens 
that  this  square is inscribed in the  radiation  circle,  as 
shown  in  Fig. 11. 

If the element-gain pattern is zero  for  directions  out- 
side the  square,  the greatest possible  scanning coverage 
with a single  lobe is obtained  because a single  lobe  is 
always  radiated  no  matter  what  values of phasing  are 
applied.  Since  there is radiation  for  all  phasings,  a zero 
reflection coefficient is  possible  for all  phasings,  even 
though  the  element  pattern is truncated  to preclude 
radiation  beyond  the  critical  scan  angle.  Since  only  one 
lobe is radiated,  the  element  pattern  should  have  the 
cos 8 shape  for  directions inside the  square in order  to 
permit  a  constant  or zero  reflection coefficient for  scan 
angles  inside the  square. An attempt is made in Fig. 12 
to  portray  this “tuuncated  cosine” pattern  shape which is 
considered  here to  be ideal  for the infinite  square  array 
with X/J? element  spacing. The  truncated sections are 
formed by  the intersection of the  pattern  sphere  with a 
cluster of four 90” cones tangent  to each other;  these 
sections  correspond to  the  four  shaded regions in Fig. 11. 

Having  determined  the  pattern  shape, i t  is a  straight- 
forward  process to  compute  the  directive  gain a t   the  
peak of the  pattern.  This  turns  out  to  be 2n. -4s dis- 
cussed  earlier, the realized  gain equals  the  directive  gain 
in the ideal  case, and so the  peak realized  gain is also 2n. 

I t  should be mentioned that a less ideal pattern  might 
have been  chosen, that  is, one  which permitted  grating 
lobes although still maintaining zero reflection coeffi- 
cient  for  all  phasings. In  this case the main  beam  may 
radiate for any scan  angle,  and so zero reflection coeffi- 
cient  can also  be obtained  for  all  scan angles. The  shape 
of this  pattern would have  to  be modified from the 
simple cos 0 shape  in  accordance  Kith (8); this would 

SCAN AREA FOR 
NO GRATING LOBES 

ELEMENT PATTERN 

1 
Fig. 11-Grating-lobe discrimination  square for a square 

array  with A / d  element  spacing. 

Fig. 12-The ideal  element  realized-gain  pattern for a 
square array  with A/v’/z element  spacing. 

involve  some  form of partial  truncation  (either  stepped, 
or  a  more  practical  smooth  shape  such  as  in  Fig. 1) in 
the grating-lobe  regions at   the  sides of the  pattern.  The 
resulting  peak  gain  would still turn  out  to  be 27r. 

T o  summarize  the  result, in an infinite  square  array 
having X/& element  spacing,  the  ideal  element  real- 
ized-gain pattern  has a peak  value of 2 ~ ,  and  a cos 0 
shape  truncated so as  to  account for, and  preferably  to 
eliminate,  grating lobes. 

VIII.  RESOLUTION OF THE PARADOX 

One of the  results  obtained  in  the  previous  section  is 
the  peak  value of element realized  gain  for two specific 
cases. This was done  by first determining  the  directive 
gain  from the  pattern  shape,  and  then  converting to 
realized gain.  This is just  the process  which in Section 
I\?, failed to yield values  corresponding to  those  ob- 
tained  from (5) based  on element effective area. Now, 
however, i t  is evident  that perfect  agreement is ob- 
tained.  This is the  result of including the  appropriate 
additional  factors  in  the  analysis.  For X/2 spacing  in 
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the  square  array,  the  additional  factor  is  the loss by 
mutual coupling and passive  reflection;  for the X / V ‘ ~  
spacing  it is the modification of the  element  pattern  to 
account  for  grating lobes. 

These  two  spacings were  chosen as significant  exam- 
ples illustrating  the  principles  involved. I t  is natural  to 
wonder  whether  other  spacings would  also  yield  perfect 
agreement;  the answer is that  they  do.  When  the  spac- 
ing  is less than X/2, there  is  more loss from mutual 
coupling, and  the realized  gain  is  correspondingly less. 
\{Then the  spacing is greater  than X/&, the  ideal  pat- 
tern  must  be  further  truncated  to  prevent  grating lobes, 
so the gain is correspondingly  greater. For intermediate 
spacings  between X/2 and X& (the  most  common  range 
in phased  arrays),  both  the  unavoidable  mutual-coupling 
effects  and  the  grating-lobe  effects  are  present; neverthe- 
less,  perfect  agreement  is  still  obtained. 

IX. DISCUSSION 
In Section 117, it was  suggested that  a  possible  ex- 

planation of the  apparent  paradox  regarding  element 
gain  was that  the assumed  perfect  impedance  match for 
all scan  angles  might  be impossible. That  paradox  has 
been  resolved without  modifying  the  impedance-match 
assumption.  Consequently,  it  appears  that perfect im- 
pedance match  for  all scan angles  does  not  result in a n y  
real discrepancy in the  determination of element  gain. 
Naturally,  this  suggests  that  it is theoretically  possible to  
obtain  perfect  impedance  match  for all scan  angles. 41-  
though  these  results  have been  shown  for the infinite 
square array considered  in this  paper,  they  can also be 
shown  for the  currently  important case of an infinite 
triangular array [16]; i t  therefore  seems  reasonable to  
assume  that  these  general conclusions apply  to  any  in- 
finite  regular  array. 

Achievement of such  perfect  match in practice is 
another  matter.  When  the  element  spacing is large,  one 
approach  is to  eliminate  mutual  coupling;  this  might  be 
done  by  appropriate design of the  radiating  element,  in- 
corporation of isolating  devices  between the  elements,  or 
by cancellation  networks  between  the  transmission lines 
leading to  the elements.  When  the  element  spacing is 
not large (less than X / d ?  for a square  array) i t  is not 
possible  to  eliminate  mutual coupling,’O as was  discussed 

that an attempt  to  eliminate  mutual coupling in any regular array 
10 This law, which is  exact for an infinite  regular array, implies 

having a large number of closely-spaced elements  is  unlikely to  be 
successful. Once the  net coupled power has been reduced to the mini- 
mum  value  obtainable  with a given element  spacing in an infinite 
array,  further reduction in the noninfinite but large array  with  the 
same spacing becomes very difficult. If the  mutual coupling  between 
nearby  elements in such an  array is eliminated, then  either  the  net 
coupling to  the  further-away elements or the “self coupling”  (passive 
reflection) is likely to  be increased. This writer has come across sev- 
eral experimental  programs for the elimination of mutual coupling 
between closely-spaced elements  in a large array,  and believes that 
the anomalous  results which  were obtained are explained by  this law. 

in Section VII.  What is  needed then is just  the  right 
amounts of coupling to  yield zero  reflection for  all  scan 
angles;  this could presumably  also  be  accomplished by  
the  three  techniques  mentioned,  but would be  extremely 
difficult. 

Another  approach  involves  the  achievement of the 
ideal  element  pattern.  This  is  perhaps  the  most  funda- 
mental  solution,  but is also likely to  be  the  most diffi- 
cult. The  most  direct  approach  is  to  operate on the  active 
impedance  itself. This  may  be  done  either  externally or 
internally,  as  mentioned.  An  example of the external 
technique is the improved  impedance  match  calculated 
[I71 for  a square  array of dipoles, by  means of baffles 
between the dipoles. An  example of the internal tech- 
nique is the improved  match  calculated [18] for a simi- 
lar  array,  by  means of circuits  connecting  the  element 
lines. In  the  latter case i t  is possible to  extend  the  meth- 
od to  approach perfect  match  for  all  scan angles. 

In  Section VII ,  i t  was  shown that  the ideal  element 
pattern  has a cos B shape  for  small  element  spacings  and 
a truncated cos B shape for  spacings that’are  not small. 
The  ideal  element  pattern  for  small  spacings  is  automati- 
cally  obtained  by  achieving  impedance  match fo r  all  scan 
angles; for  example,  by using  connecting  circuits. How- 
ever, for  large  spacings,  impedance  match  is  not  suficient 
to provide the perfect  truncation of the  element  pattern  that 
would give complete  discrimination  against  grating lobes. 
Usually the larger  element  has a partial  truncation cor- 
responding to  its  inherent  greater  directivity, so that  
some  discrimination  against  grating lobes  is  achieved. 
Often the  element  spacing  is  limited so that  grating 
lobes are  not possible  for the  operating  range of scan 
angles.  Nevertheless, i t  would be  desirable to  achieve 
the ideal  element  pattern  with  perfect  truncation,  there- 
by  permitting  the  greatest  element  spacing  and  the 
greatest  gain.  This could be accomplished  only by  de- 
sign of the  radiating  portion of the  antenna,  and would 
require  either  utilization of scattering  by  surrounding 
elements  or  superdirectivity  in  each  element. No pro- 
cedure  for  such a design appears  to  be practical. 

In conclusion, the  element realized-gain pattern of an  
infinite  planar  array  antenna  has been analyzed,  includ- 
ing its relation to  reflection vs scan  angle  and  to  grating 
lobes. The significance of mutual coupling and some 
general  rules  governing mutual coupling have been  pre- 
sented.  The ideal  element  patterns  for a square  array 
have been  derived  for  two  element spacings. I t   has  been 
shown that, for  these  cases, an  apparent  discrepancy  in 
the gain  computed  from  two  different  viewpoints is re- 
solved  when the effects of mutual coupling and  grating 
lobes are included. The  concepts presented  in th i s  paper 
for an infinite array  are expected to  be helpful  in  under- 
standing  the behavior of the  radiating  elements  in a n y  
regular  planar  array  containing a large  number of ele- 
ments. 
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X. SYMBOLS 
A =area  allotted  to  element in array 
C = equivalent  backward  coupling coefficient 

g(8, +) =gain of element  in specified direction 
G(8, +) =gain of array in specified direction  where  all 

elements  add  in  phase 
n =number of elements  (infinite) 
P = power 

R(0, p)  =equivalent reflection  coefficient  when  all  ele- 
ments  are excited  in a specified phase 

S = element  spacing 
01 = excitation  phase  between  adjacent  elements 

/3 = excitation  phase  between  adjacent  elements 

8 =angle  from  broadside  direction  (scan  angle) 
+=angle of plane  from row (scan-plane  angle) 
p=angle of cone  from  column 
E = angle of cone  from  row 
X = wavelength 

in row 

in column 

sub d =directive 
sub  m=lobe  number 
sub = single-lobe 
sub p = column  number of element 
sub q = row  number of element 
sub 7 =realized. 
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