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Antenna array distributions and their associated patterns are 
now designed on physical principles, based on placement of zeros 
of the array polynomial. An overview of the synthesis processes 
is given. Robust and low Q distributions for  linear arrays and 
circular planar arrays, that provide variable side lobe level pencil 
beam patterns, are treated in detail. Associated difference patterns 
are included. Individual side lobes or groups of side lobes may 
be adjusted in level. The same technique allows synthesis of 
an efJicient shaped beam, with or without side lobe adjustment. 
Finally, the ultimate pencil beam array, the superdirective array, 
is evaluated. 

I. INTRODUCTION 
The control of side lobe topology in pencil beam patterns, 

and the synthesis of shaped beam patterns are discussed 
in this paper. Primary emphasis is on linear and planar 
broadside apertures and arrays; because of their lesser 
importance, endfire and ring arrays will be only briefly men- 
tioned. Although arrays are discreet, continuous aperture 
distributions are commonly sampled to provide the excita- 
tions for large arrays. In a few cases, discreet distributions 
that are suitable for any size of array have been developed. 
In the 1940’s aperture distributions were chosen for easy 
integrability, even though the results were usually difficult 
to use. Since modern computer power has been available, 
aperture distributions based on physical principles have 
been used. These principles for pencil beam antennas were 
developed primarily by Taylor [ 11, and are summarized 
as follows. Symmetric amplitude distributions are more 
efficient; nonsymmetric distributions produce symmetric 
patterns but are less efficient. Array polynomial zeros 
should be real; zeros off the unit circle raise side lobe nulls 
and side lobe heights. A 1/u envelope provides a robust, 
low Q distribution. Pattern zeros for wide angles should be 
separated by unity in the normalized variable U = (d /X )  
sin 8, where 8 is from broadside. 

Pencil beam antennas are frequently specified by the level 
of the first side lobe; it is convenient to use the inverse 
of this level, which is called side lobe ratio (SLR). The 
distributions to be discussed are all based on the proper 
adjustment of pattern function zeros to produce an efficient 
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and appropriate pattern. Distributions of limited utility 
include Gaussian, cosine-on-a-pedestal, and others that in- 
volve two or more parameters. The truncated Gaussian 
is of course in this category. Two-parameter distributions 
are usually difficult to optimize, and their zero placement, 
hence efficiency, is almost always nonoptimum. 

11. A PENCIL BEAM FROM A LINEAR ARRAY 
Distributions discussed in this section are Dolph-Cheby- 

shev, Taylor one-parameter, Taylor E,  Villeneuve E, and 
those that allow side lobe envelope shaping. All distribu- 
tions have constant phase. 

A .  Do lph-Chebyshev  A r r a y s  

The Dolph-Chebyshev pattern is conceptually simple, as 
it consists of a main pencil beam, plus side lobes of equal 
level. This was invented for a half-wave spaced broadside 
array by Dolph [2]. The oscillatory part of a Chebyshev 
polynomial is mapped onto the side lobes on one side of 
the pattern, while part of the x > 1 Chebyshev region 
is mapped onto half the main beam of the pattern. A 
direct mapping is not feasible as the main beam must be 
symmetric and have zero slope in the center. The number 
of zeros must also correspond, so an N element array is 
used with an N - 1 degree Chebyshev polynomial. The 
transformation from T,_l(x) to pattern F ( u )  is given by 
x = 20 cos(nu/2). The voltage SLR is given by 

SLR T N - ~ ( x o ) .  (1) 

The Dolph-Chebyshev pattern is given by 

F ( u )  = TN-l(xO cos m/2). (2) 

The excitation A, of the nth element is obtained by writing 
the pattern with the array center as phase reference: 

N 

F(u)  = A,  explj(2n - N - 1)7ru/2]. (3) 
1 

This is a finite Fourier series and the inverse gives the 
coefficients. These are easily calculated using formulas of 
Stegen [3]; his results are slightly different for odd and 
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even N ,  and may be used for spacings larger than half- 
wavelength. 

A different mapping between the Chebyshev polynomial 
and the array pattern, which is valid for spacings less than 
half-wavelength has been developed, but only for N odd. 
An extensive discussion of these mappings and various 
formulas is given by Hansen [4]. 

For a given SLR, the Dolph-Chebyshev distribution 
yields the highest directivity and the narrowest beamwidth. 
However, the constant side lobe envelope violates one of 
Taylor’s rules for obtaining a low-Q distribution. For large 
arrays with low side lobes, the distribution tends to be 
nonmonotonic, and may in fact have a peak at the end 
larger than the value in the center. Because of the high-Q 
of these distributions they are only occasionally used. Most 
often the Taylor distributions, which are quite robust, are 
used instead. 

B. Taylor One-Parameter Distribution 
In developing the one-parameter distribution, Taylor [5] 

started with the pattern from a uniformly excited aperture: 
sin T U / T U .  The far-out zeros are spaced by integers, and the 
side lobe envelope decays as l/u. Thus the only problem 
is the high level of close-in side lobes. These were reduced 
by shifting the close-in zeros to suitable values, where the 
zeros are now given by: 

U = dn2 + B2 (4) 

where B is the single parameter. The pattern is a modified 
sinc, and is written in two forms as: 

sinh ad-, I F ( u )  = 7rd- 

A transition from the sinc pattern to the hyperbolic form 
occurs at U = B on the side of the main beam. The SLR is 
that of the sinc times the beam peak value. This is, in dB, 

sinh TB 
TB 

SLR = 2010g ~ + 13.26 dB (7) 

The single parameter B controls all characteristics: side 
lobe level, beamwidth, efficiency, and beam efficiency (the 
fraction of power in the main beam, null-to-null). The 
aperture distribution is the inverse transform of the pattern, 
and is 

where p is the distance from the center of the aperture to 
either end. IO is the modified Bessel function. The aperture 
(excitation) efficiency is given by 

= 2 s i n h 2 n B / ~ B Z ( 2 ~ B )  (9) 

where G is a tabulated integral [6], [7]. 
A typical Taylor one-parameter pattern is given in 

Fig. 9.22 of [4], and half of the symmetric aperture 

distribution is shown in Fig. 9.23 [4] for SLR’s of 25, 
30, and 40 dB. As expected, the patterns with lower side 
lobes have a lower pedestal at the end of the aperture. 
Table 1 gives the pertinent parameters, where u3 is half 
the half-power beamwidth and q, is the beam efficiency. 

Table 1 Taylor One-Parameter Distribution Characteristics 

SLR, 213 

dB B rad ‘I ‘Ib 

13.26 
20 
25 
30 
35 
40 
45 
50 

0 
0.7386 
1.0229 
1.2762 
1.5136 
1.7415 
1.9628 
2.1793 

0.4429 
0.5119 
0.5580 
0.6002 
0.6391 
0.6752 
0.7091 
0.7411 

1 
0.9330 
0.8626 
0.8014 
0.7509 
0.7090 
0.6740 
0.6451 

0.9028 
0.9820 
0.9950 
0.9986 
0.9996 
0.9999 
1.0 
1.0 

C. Taylor Distribution 
A compromise between the Dolph-Chebyshev and the 

Taylor one-parameter distribution was developed by Taylor, 
and called the E distribution [l]. This offers a modest im- 
provement in efficiency over the one-parameter distribution, 
by making the first few side lobes at equal level. Subsequent 
side lobes follow the 1/u envelope. The E distribution 
gives a narrower beamwidth and higher efficiency, without 
significantly degrading its robustness. The distribution is 
a modification of the continuous Taylor “ideal” line source 
[4], which is the equivalent of a Dolph-Chebyshev distribu- 
tion, with a dilation factor used to modify the first E zeros. 
This factor is designed to produce a smooth transition from 
the few equal level side lobes to the 1/u envelope of side 
lobes. The pattern is given in two forms; a canonical finite 
product on E - 1 zeros, or as a superposition of E sinc 
beams: 

- n-1 

= F ( n ,  A,E)sinc 7r(u + n)  
n=-E+l 

The zeros are: 

z ,  = &O.\/A~ + (n  - 1/212, 1 5 n 5 n 
Zn = f n ,  n 2 E. 

The coefficient in the equation is: 

[ (E  - 1)!12 
(E  - 1 + n)! (E  - 1 - n)! F ( n ,  A ,  E )  = 
- n-1 

m=l 

The dilation factor is: 
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Table 2 Taylor A Distribution Characteristics 

SLR A 213 n = 2  4 6 8 10 - 

dB U 

20 0.9528 0.4465 1.1255 1.1027 1.0749 1.0582 1.0474 
25 1.1366 0.4890 1.0870 1.0683 1.0546 1.0452 
30 1.3200 0.5284 1.0693 1.0608 1.0505 1.0426 
35 1.5032 0.5653 1.0523 1.0459 1.0397 
40 1.6865 0.6000 1.0430 1.0407 1.0364 
45 1.8697 0.6328 1.0350 1.0328 
50 2.0530 0.6639 1.0289 

Here A is the single parameter. Strictly speaking this is a 
two-parameter distribution, but since ii is so directly related 
to the characteristics of the pattern it is easy to choose. The 
aperture distribution is best expressed as a finite Fourier 
series: 

E- 1 

g ( p )  = 1 + 2 F ( n ,  A ,  E )  cos n ~ p .  (14) 
n=l  

The excitation efficiency is simply: 

A typical pattern is shown in Fig. 9.19 of [4]. Tables of 
aperture distribution and coefficients are given for SLR = 
20(5)40 dB and ii = 3(1)10 by Hansen [8]. Fig. 9.20 
of [4] shows half of symmetric aperture distributions for 
three combinations of SLR and ii. Table 2 gives typical 
parameters for this distribution. 

There is an appropriate range of values for ii. A 
value too large will give results close to those of the 
Dolph-Chebyshev distribution: a nonmonotonic aperture 
distribution and large peaks at the ends. Too small a value 
of 5i will not allow the transition zone zeros to behave 
properly. The largest values of E that allow a monotonic 
distribution are given in Table 3, along with the values of 
ii that produce maximum efficiency. It can be seen that the 
increase in efficiency over the monotonic case is very small, 
and hence the monotonic cases are almost always used. 

The two Taylor distributions are widely used for lin- 
ear and rectangular arrays due to their low-Q and good 
efficiency. 

D. Klleneuve ii Distributions 
A discrete version of the Taylor ii distribution, which 

is exact for both large and small arrays, was developed 
by Villeneuve [9]. He started with the Dolph-Chebyshev 
distribution, then the zeros past ii were shifted to give 
a l / u  envelope. Just as the excitation coefficients for 
the Dolph-Chebyshev were slightly different for even and 
odd numbers of elements, the Villeneuve coefficients are 
similarly different. Although they are readily computed, the 
formulas are messy and are not repeated here; see [9], [lo]. 
These excitation values are different for each size of array, 
so that for each new problem a new calculation must be 
made. This is in contrast to the sampling of the Taylor 5 

Table 3 Tavlor A Efficiencies 

Monotonic A - Max 17 Values 
SLR n 7 n 17 - 

25 12 0.9252 5 0.9105 
30 23 0.8787 7 0.8619 
35 44 0.8326 9 0.8151 
40 81 0.7899 11 0.7729 

distribution, where the simple formulas are good for all 
large arrays. 

Of interest here is the relative efficiency of these finite 
ii distributions. These have been calculated [lo], and are 
shown in Table 4 for arrays with odd numbers of elements 
ranging from 5 to 41, and for SLR’s of 25 to 40 dB. 
For comparison, Table 3 gives the Taylor ii excitation 
efficiencies for comparable cases. It can be seen that arrays 
can be as small as 15 elements and have only a 3% loss 
in efficiency. Thus for small arrays, the exact Villeneuve 
ii distribution should be used, while for roughly 20 or 
more elements, sampling of the Taylor ii distribution is 
satisfactory. 

E. Side Lobe Envelope Shaping 
Control over the side lobe envelope of a pencil beam 

array is provided by adjusting individual side lobe heights, 
using techniques developed by Elliott [ 111. Suppose that a 
cluster of side lobes is desired to have a low level while 
other side lobes can be higher. The side lobe envelopes on 
each side of the main beam need not be equal; the side 
lobe shaping applies to all side lobes. In this technique, 
after the desired pattern is sketched, a canonical pattern 
is selected so that the main beamwidth and the average 
side lobe level are roughly the same. The canonical pattern, 
which might be a Taylor one-parameter pattern, should be 
chosen to have the same number of pattern zeros. This 
pattern is then written as a product of zeros. Each zero of the 
desired pattern is assumed to be that of the canonical pattern 
plus a small shift. When higher order effects are discarded, 
the desired pattern can be written as the canonical pattern 
times a factor, which is one plus a sum over the zeros. 
This sum involves the pattern variable, the canonical pattern 
zeros, and the shifts in zeros that will produce the desired 
pattern. For low side lobes, the side lobe peak position 
is approximately halfway between the adjacent zeros. For 
each side lobe in the pattern, the side lobe peak position 
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Table 4 Villeneuve Max Monotonic % 

SLR 
n n n n 40 dB 

SLR 
35 dB 

SLR 
30 dB 

SLB 
25 dB - - - - N 

41 5 ,9026 7 .8551 9 ,8098 12 ,7701 
31 5 ,9000 7 ,8528 9 ,8078 13 ,7693 
21 5 ,8947 7 ,8479 11 ,8060 11 ,7630 
15 6 ,8917 7 ,8409 8 ,7949 8 ,7540 
11 6 .8807 6 ,8276 6 .7825 6 .7441 
9 5 ,8674 5 ,8158 5 ,7732 5 ,7384 
7 4 ,8468 4 .7987 4 ,7608 4 ,7310 
5 3 ,8182 3 ,7725 3 ,7448 

Fig. 1. Shaped side lobe pattern. (Courtesy Elliott.) 

is inserted into the equation described above; this gives 
for each side lobe relationship between the desired and 
canonical levels of that side hbe, and the various zeros. 
This then is a set of simultanebus equations, where the 
differences in side lobe heights are specified, and the zero 
shifts are the unknowns. These equations must be solved 
iteratively, using each resulting pattern in place of the 
canonical pattern of the previous step, until convergence 
is reached. A gradient scheme such as Newton-Raphson 
[12] gives a rapid way of finding the null shifts. Usually 
less than 10 iterations are needed. 

The resulting pattern can be computed as a product on 
the zeros. To obtain the array excitation coefficients, the 
product form is multiplied out to obtain a sum, with the 
coefficients in the sum giving the array excitation values. 
An example of the results has been given by Elliott [13]. 
The objective was a Taylor ?i = 8 distribution with 20 dB 
SLR, except for the three closest side lobes on the right side 
which should be at -30 dB. Figure 1 shows the resulting 
pattern, which required three iterations, while Fig. 2 shows 
the amplitude and phase of the resulting complex aperture 
distribution. This has proved to be a powerful technique 
for side lobe envelope shaping. 

The method can also be used for the discretization 
of a continuous distribution when the number of array 
elements is too small to effectively realize the specified 
side lobe envelope. This is important because sampling is 
only applicable to longer arrays when very low side lobes 
are required. For this case the canonical starting pattern is 
just the sampled continuous distribution. Then the side lobe 

-40 ' I I I I 

Fig. 2. Distribution for shaped side lobe pattern. (Courtesy 
Elliott.) 

zeros are adjusted to produce the desired side lobe envelope. 

111. A PENCIL BEAM FROM A PLANAR ARRAY 
Rectangular planar arrays are often designed using linear 

array distributions along the two principal axes. This gives 
patterns in the two principal planes that are linear array 
patterns, while the side lobes outside of these regions tend 
to be much lower, as they are the product of the side 
lobes of the two distributions. It is possible to synthesize 
a rectangular array distribution in which the side lobes 
in the principal planes are lower and those elsewhere are 
higher, such that the side lobe envelope surface is more 
slowly varying. However, these methods are not analytic 
but numeric, using such synthesis techniques as minimax 
or Simplex. 

A. Hansen One-Parameter Circular Distribution 
A symmetric distribution for circular disk arrays and 

apertures has been developed by Hansen [14]; this is 
analogous to the Taylor one-parameter linear distribution. 
Just as the latter was a modified sinc T U ,  this circular 
distribution is a modified ~ J ~ ( T U ) / T U  pattern. The close- 
in zeros of the canonical pattern are shifted to produce the 
desired SLR. The pattern similarly has two forms, which 
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are: 

The single parameter is H ,  and the J1 and 11 are the usual 
Bessel and modified Bessel functions of the first kind and 
order one. The SLR is given by: 

211 ( T H )  SLR = 17.57 dB + 20 log ~ T H  ‘ 

Table 5 gives parameters for this distribution. The aperture 
distribution is: 

d P )  = l o ( T H d i - 7 )  (19) 

where 10 is a modified Bessel function and the aperture 
extends to p = f l .  It is interesting that the circular 
and linear one-parameter patterns have the same aperture 
distribution, with only different constants. This is perhaps 
why this distribution was not developed along with the 
others by Taylor; he may have been expecting a more 
complex result. The excitation efficiency is obtained from 
a simple integration over the aperture: 

Typical aperture distributions and patterns are given in [4, 
ch. 101. 

Table 5 Hansen One-Parameter Distribution Characteristics 

SLR U 3  

dB H rad 1? V b  

17.57 0 0.5145 1 0.8378 
25 0.8899 0.5869 0.8711 0.9745 
30 1.1977 0.6304 0.7595 0.9930 
35 1.4708 0.6701 0.6683 0.9981 
40 1.7254 0.7070 0.5964 0.9994 
45 1.9681 0.7413 0.5390 0.9998 
50 2.2026 0.7737 0.4923 1.0000 

B. Taylor T i  Circular Distribution 
The Taylor E circular source distribution offers a modest 

improvement in efficiency and beamwidth over the Hansen 
one-parameter distribution, just as occurred for the lin- 
ear distributions. Again the starting point is the uniform 
~ J ~ ( T u ) / T u  pattern. On each side of the main beam, 5i 
zeros are modified by moving them to produce the desired 
SLR [15]. Again a dilation factor (T is used to effect a 

smooth transition. The pattern is given by a finite product 
on the zeros: 

The pattern zeros are: 

and the dilation factor is: 

Here the ,un are the zeros of J ~ ( T u ) .  The aperture distri- 
bution is given by a finite series: 

The coefficients are given in [4]. Extensive tables of these 
have been published [8], [16]. Table 6 gives the values of 
dilation factor and parameter A for various combinations 
of SLR and 5i. The excitation efficiency is computed from 
integrals over the aperture as before; using Bessel function 
orthogonality results in a single series for the efficiency; 
see also [17]. Some efficiencies are shown in Table 7. Just 
as for the linear Taylor 5i distribution, there is a value of E 
that gives maximum efficiency. This value increases with 
SLR as may be observed. 

For circular disk or octagonal arrays, these two distri- 
butions have found wide use, due to their high efficiency 
and low-Q. 

IV. DIFFERENCE PATTERN DISTRIBUTIONS 
Difference patterns are useful in providing tracking for 

narrow beam antennas. Considered here are only those with 
a biphasal distribution, where orle-half of the aperture is 
inphase, while the other half is 180 degrees out-of-phase. 
The simplest of these is the uniformly excited linear array, 
where the two halves of an ariay are fed, for example, 
through a 180-degree hybrid. This connection provides 
ports for the sum and difference patterns. The sum pattern 
is of course sinc U ,  while the difference pattern is: 

(25) 
1 - cos7ru 

F ( u ) = f i  K u  . 

The difference distribution is normalized so that the integral 
over the aperture distribution squared is unity; the peak 
value of the difference pattern is 1.0248 and the slope 
in the center is .7071. The first side lobe is -10.57 dB 
with respect to the peak. This is a simple distribution, but 
the side lobes are relatively high. Even worse are those 
of the maximum slope difference pattern [18], [19]. This 
distribution is triangular, a single sawtooth, with a peak 
(edge) value of 1.2247, using the same normalization. The 
pattern function is given by: 

(26) 
sinc 7ru - COSTU 

F ( u )  = & Tu 
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Table 6 Taylor Circular A Distribution Characteristics 
~ ~ _ _ _ _ ~ ~ ~  ~ ~ 

SLR A 213 n = 3  4 5 6 7 8 9 10 
dB U 

- 

20 0.9528 0.4465 1.2104 1.1692 1.1398 1.1186 1.1028 1.0996 1.0910 1.0732 
25 1.1366 0.4890 1.1792 1.1525 1.1296 1.1118 1.0979 1.0870 1.0782 1.0708 
30 1.3200 0.5384 1.1455 1.1338 1.1180 1.1039 1.0923 1.0827 1.0749 1.0683 
35 1.5032 0.5653 1.1134 1.1050 1.0951 1.0859 1.0779 1.0711 1.0653 
40 1.6865 0.6000 1.0916 1.0910 1.0854 1.0789 1.0726 1.0560 1.0620 

a b l e  7 Taylor Circular si Efficiency 

20 0.9723 0.9356 0.8808 0.7506 0.6238 
35 0.9324 0.9404 0.9379 0.9064 0.8536 
30 0.8482 0.8623 0.8735 0.8838 0.8804 
35 0.7708 0.7779 0.7880 0.8048 0.8153 
40 0.7056 0.7063 0.7119 0.7252 0.7365 

The beam peak is a little closer to the center of the pattern; 
the slope is 31650. However the first side lobe is only 
-8.28 dB, which makes this pattern unattractive. 

The formula used to compute excitation efficiency for 
equiphase apertures [20] must be modified for difference 
pattern distributions to include the pattern peak location 
U0 : 

Since difference patterns with high side lobes cause 
poor tracking due to interference, clutter, etc., it was to 
be expected that the zero shifting principles of pattern 
adjustment would be applied here. This was done by 
Bayliss [21], who produced a difference pattern analogous 
to the Taylor Ti pattern. A starting point is the Taylor 
"ideal" line source sum pattern (see Section 11-C), which 
is differentiated to obtain a difference pattern. When this 
pattern is examined it is seen that the side lobes are of 
irregular levels, and the envelope is nonmonotonic. An 
iterative procedure was used to adjust these zeros to yield 
equal level side lobes. It was necessary to adjust only 
four, but these four zeros depend upon the SLR. Bayliss 
gives results in terms of fourth order polynomials in SLR. 
The four zeros, the parameter A,  and uo which is the 
difference peak location, are given in Table 8. These zeros 
are applicable for both linear arrays and for circular planar 
arrays. The remainder of the zeros are the same as for the 
linear Taylor Ti case. The pattern is given by a ratio of finite 
products, which replaces the first 5 zeros of cos TU by the 
modified set, or by a finite sum: 

The zeros zn are given in the table for n = 1 - 4, and for 
n > 4 are: 

2, = & d m .  (29) 

The dilation factor is given by: 

0 = (A+  1/2)/2E. (30) 

Figure 3 gives a typical Bayliss pattern, which is for a 25- 
dB SLR and E = 5. The aperture distribution is given 
by: 

- n-1 

S ( P )  = B, sin ../(n + 1 P ) P  (31) 
n = O  

where the coefficient is: 

B, = - (-l)"(m - 1/2)' 

The amplitude of the aperture distribution is shown for the 
same case in Fig. 4. The excitation efficiency, defined here 
as the directivity at one difference peak uo divided by that 
of a uniformly excited sum line source, is given by:' 

c BE 
n=O 

(33) 
Finally the slope at the center is given by: 

- n-1 

s = (2/7r) (-l)nBn/(n + 1/2)? (34) 
n = O  

Table 9 gives the efficiency compared to a sum pattern, and 
the normalized slope, where that of the maximum slope 
pattern is unity. 

A Bayliss distribution was also developed for symmetric 
circular apertures, analogous to the circular Taylor A pat- 
tern. The development parallels that for the circular Taylor 
case, with the adjusted first four zeros mentioned previously 
used here also. For details, see [21], [22]. 

Since the array distributions that produce good difference 
pattern side lobes are quite different from those that produce 
good sum pattern side lobes, ways have been developed for 
independently optimizing both distributions. Two of these 
methods will now be briefly discussed. The tandem feed 
was invented by Kinsey [23]. In its best (symmetric) form, 

'Unpublished calculations by R. C. Hansen. 
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Table 8 Bayliss Line Source Parameters 

SLR, 
dB 15 20 25 30 35 40 

A 1.00790 1.22472 1.43546 1.64126 1.84308 2.04154 
21 1.51240 1.69626 1.88266 2.07086 2.26025 2.45039 
if2 2.25610 2.36980 2.49432 2.62754 2.76748 2.91234 
23 3.16932 3.24729 3.33506 3.43144 3.53521 3.64518 
if4 4.12639 4.18544 4.25273 4.32738 4.40934 4.49734 
U0 0.66291 0.71194 0.75693 0.79884 0.83847 0.87649 

Fig. 3. Bayliss E = 5 Pattern, SLR = 25 dB. 

Table 9 Bayliss Efficiency and Pattern Slope 

n Efficiency Normalized Slope - 
SLR 
dB 

~~~~~ ~ ~ ~ ~ 

15 4 0.5959 0.9567 
20 4 0.5846 0.8974 
25 5 0.5633 0.8427 
30 6 0.5393 0.7912 
35 7 0.5162 0.7448 
40 8 0.4951 0.7037 

it consists of a ladder network, with a directional coupler 
at the end of each rung. The inboard arms of the couplers 
are connected along the rungs, while the outboard arms 
on one side are connected to the linear array elements, 
with the outboard arms on the other side terminated in 
loads. At the center of each of the ladder rails is located 
a hybrid junction, with the outputs of these connected to 
give the sum and difference ports. The rail of couplers 
adjacent to the array provides the sum excitation; both 
rails of couplers provide the difference excitation. This 
arrangement, although complex, gives excellent control of 
both sum and difference patterns; see [24], [25]. 

A simpler scheme divides a linear array symmetrically 
into subarrays, which need not be of equal length. Symmet- 

U 

ric pairs of subarrays are connected to a hybrid junction. 
A stair-step approximation to the desired sum pattern 
distribution is provided by connecting the sum port of 
the hybrids to suitable power divider. Similarly a different 
power divider provides a stair-step approximation to the 
desired difference pattern distribution [26].  Obviously as 
more subarrays of smaller size are used, the stair-step 
approximations become better, and the resulting patterns 
are closer to those desired. The same procedure has been 
applied to planar arrays by Josefsson and others [27]. 
Here the array is divided into subarrays, usually quadrantly 
symmetric. Again the number of elements, and the shape 
in each subarray, is often different. Symmetric pairs are 
then connected to hybrid junctions; these hybrids are then 
connected to the sum and the two difference feed networks, 
again to provide a stair-step approximation to the three 
desired distributions. Excellent results have been obtained 
even with only a small number of subarrays per quadrant. 
This scheme is especially attractive with printed circuit 
antennas, as this implementation fits well with realizing 
the feed networks in stripline. 

v. A SHAPED BEAM FROM A LINEAR ARRAY 

For many applications a pencil beam is not appropriate, 
as for example, in radar where a cosecant type beam 
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Fig. 4. Bayliss FZ = 5 Distribution, SLR = 25 dB. 

is often used. This section discusses the two principal 
methods used for synthesizing shaped beams from a linear 
array: the classical Woodward-Lawson, and the newer 
Orchard-Elliott methods. 

A. Woodward-Lawson Synthesis 
The Woodward-Lawson synthesis [28] utilizes a set of 

multiple beams from an array or aperture. These are simple 
sinc beams of the form: 

E, = sinc n [ 4 sin 6' - n] . (35) 

This equation is for a continuous aperture; the equivalent 
form of sin N x / N  sin x is used for an array. These 
sinc beams are spaced apart from each other such that 
at an angle where one beam has a peak, all of the other 
beams have nulls. Thus the Woodward-Lawson synthesis 
is simply a matter of adding a series of these beams with 
each weighted equal to the value of the desired pattern 
at that sampling point. The aperture or array distribution 
is then the sum of constant amplitudes, each weighted by 
the appropriate factor, and linear phases, each having a tilt 
appropriate to the beam position. The result for a csc 6' 
pattern, for example, has a symmetric amplitude distribution 
with a large peak in the center (representing the largest 
beam at the start of the cosecant pattern), with the rest of 
the distribution being oscillatory and lower. The phase is 
roughly linear with oscillations, ranging from -T at one 
end to T at the other end, with skew symmetry about the 
center. This synthesis technique is easy to understand and 
easy to use, and is natural for arrays that inherently involve 
multiple beams. An example is the Rotman lens, where 
each beam port may simply be weighted and summed to 
generate a shaped beam pattern [29]-[33]. However the 
Woodward-Lawson technique has a serious intrinsic limi- 
tation in that the pattern zeros occur in pairs. This means 

that there are only half as many adjustments available as 
there could be for a given number of elements in an array. 
The practical result is that in the shaped pattern region, 
the number of ripples is half what it could be, and thus 
the ripples tend to be larger. A less critical difficulty with 
this method is that of controlling the side lobes outside the 
shaped beam region. Fortunately with modern computers 
and the techniques of zero placement previously discussed, 
better synthesis techniques are available and one will be 
discussed next. 

B. Orchard-Elliott Synthesis 
The Orchard-Elliott synthesis is quite similar to that used 

in Section 11-E for side lobe envelope shaping, except that 
here a power pattern is synthesized. To understand this, the 
pattern is written in terms of the previously used variable U 

and then expanded into a product on the zeros of the array 
polynomial with variable w = expju .  Next each zero is 
expressed in exponential form: wn = exp(a, + jb,). One 
of the roots is anchored at -1 + j 0 .  The power pattern in 
dB is then given by a sum over the roots: 

N-1 

n=l 

+ 10 log 2(1 + cosu) + C. (36) 

The constant C is used to set the level of the pattern. If 
the specified pattern is S(u), a total differential of the 
difference between the specified pattern and the pattern 
expressed above gives: 

N - 1  

d(P - S) = [%, + %bn]. abn (37) 
n=l 'an 

When this equation is implemented at a sequence of U 

values at the ripple peaks and troughs in the shaped 
portion of the pattern, and at the side lobe peaks in 
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the side lobe portion, a set of simultaneous equations 
results. These equations can be solved iteratively using the 
Newton-Raphson technique described earlier to obtain the 
shifts in the zeros. At each step in the iterative process, 
the new locations of peaks, troughs and side lobes must 
be determined. Usually less than a dozen iterations are 
sufficient. When the final complex roots are obtained, via 
the coefficients a,  and b,, they are inserted into the pattern 
equation to obtain the final pattern [34], [35]. The shaped 
beam region is formed by some of the nulls located off the 
unit circle. It is interesting to note that essentially the same 
patterns can result from pairs of these nulls either outside 
or inside the unit circle, thus giving four design option 
cases. Elliott has observed that the array distributions that 
accompany these four cases are generally quite different, 
so that the designer should make adjustments during the 
iterative process to obtain in turn each of the four cases, 
so that the best aperture distribution in terms of array 
realization may be used. This then is another powerful 
pattern synthesis technique using the physical principles of 
adjusting zeros in the array pattern polynomial. 

VI. SUPERDIRECTIVE ARRAYS 

A. Arrays 
Superdirectivity, formerly called supergain, exists when 

an antenna exhibits directivity greater than normal; normal 
directivity occurs for a broadside array when the elements 
are spaced half-wavelength apart, and for an endfire ar- 
ray with quarter-wavelength spacing. These arrays were 
established conceptually at least as early as 1922 by Oseen 
(see [36]). The major investigative work occurred in the 
1950’s, with a now almost complete understanding of the 
phenomenon. An extensive list of references is given in 
[36]. Superdirective arrays possess fundamental limitations, 
as the Q increases rapidly as directivity increases above 
normal. Since bandwidth for narrow band matched systems 
is approximately 2/Q,  these arrays have narrow bandwidth. 
Another limitation occurs because the input resistance of the 
elements decreases, making impedance matching difficult. 
Further, the allowable tolerances on the excitation of the 
array elements decrease rapidly with increase in directivity. 

A superdirective array may be designed to have maxi- 
mum directivity, to have maximum directivity subject to 
a side lobe level constraint (Dolph-Chebyshev design), 
or maximum directivity subject to a constraint on Q or 
tolerances. To understand the capabilities and limitations 
of superdirective arrays, maximum directivity without con- 
straints will be used. In addition, since maximum directivity 
occurs for an endfire array [37], only these are consid- 
ered here. Ring arrays and broadside linear arrays are 
less effective. The maximum directivity array excitation 
coefficients are, in general, complex at angles off broadside. 
The directivity for a linear endfire array of dipoles of length 
l can be written in terms of mutual resistances: 

8 1 

Fig. 5. Q of endfire arrays of parallel dipoles. 

For dipole or slot elements the resistances are provided 
by a Sine and Cosine Integral subroutine [38], while 
for isotropic elements the virtual mutual resistance of 
120 sinc kd is used. The directivity is maximized by a 
Lagrangian multiplier scheme, which results in a set of 
complex simultaneous equations. These are solved for the 
array excitation coefficients, which are then substituted into 
the directivity expression. The Q is given by: 

120 A,A; 
AnAkRnrn ‘ Q =  (39) 

For arrays of significant superdirectivity, the formulas in- 
volve subtracting large numbers, especially for &. Thus it 
is necessary to use double precision in the calculation of 
the mutual resistances, and hence for the Sine and Cosine 
Integrals. A Chebyshev economized series expansion devel- 
oped by Luke [39] is used to construct a double precision 
subroutine. Figure 5 gives log Q versus directivity G for 
arrays of length one, two, and five wavelengths; parallel 
dipoles of .1 wavelength are used [40]. It is interesting 
that the variation of log Q with directivity is almost linear 
for a given length of array, and that the slope changes 
markedly with array length. Longer arrays are more robust. 
The conclusion is that only modest directivity increases, 
usually less than 3 dB, can be utilized, as larger increases 
incur high Q’s. 

B. Superconducting Arrays 
With the advent of high T, materials, no discussion of 

superdirective arrays would be complete without mention- 
ing the possibilities offered by these new superconductors. 
For superdirective arrays, the materials might be used in 
the antenna, or in the matching network. Figure 6 shows 
radiation resistance of the center element of a number 
of arrays versus Q. It can be noted that for radiation 
resistance as low as .1 ohms, the Q is already two thousand. 
This would give an antenna bandwidth of .l%, which is 
generally not useful. Typical loss resistances are much less 
than .1 ohm; for superdirective arrays where conduction 
loss plays a significant role, the Q’s are generally many 
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Fig, 6. Q versus center element resistance for endfire arrays. 

thousands, and the array is impractical [41]. Consequently 
superconductors are not needed for the antenna itself. 

However, for the matching network the outcome is com- 
pletely different. All matching networks involve one or 
more resonant circuits, either lumped or distributed, and 
they may be represented roughly by a single lossy trans- 
mission line match. For this case, a matching line with a 
matched loss of L has a net loss with a mismatch VSWR 
of v, of: 

(40) 
(V + q2L2 - (V - 1y 

4VL Lnet = 

To show how serious is this increase of loss, a 1 ohm 
radiation resistance matched to 50 ohms gives V = 50, 
while a reactance of 10 000 with this resistance gives 
V = 20000. From these numbers it can be seen that 
even very small losses in a matching network rapidly 
magnify to significant losses. To give an example, Khamas, 
et al. [42] measured UHF dipoles of copper and 1-2- 
3 superconducting material, both with matching stubs. 
The dipole efficiency was near loo%, while the matching 
network loss was of the order of 12 dB for the copper case. 
Thus the loss is essentially in the matching circuit. 

The conclusions for superdirective arrays are as follows. 
Arrays of modest superdirectivity are useful, and they can 
be synthesized either for maximum directivity or with 
a limit on Q. Superconducting materials are extremely 
attractive for use in the matching network, but are not 
needed in the antenna itself. 
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