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Analysis of Yagi—Uda-Type Antennas

GARY A. THIELE, MEVBER, IEEE

Abstract—A method of analyzing Yagi-Uda-type antennas is
presented. Since the Yagi-Uda array is a fairly well-known antenna,
it is used as an example to demonstrate the application and accuracy
of the method. However, the method of solution is not limited to a
planar array, such as the Yagi, but can be applied to arrays of non-
planar linear elements. The approach taken in analyzing Yagi~Uda
antennas is based on rigorous equations for the electric field radiated
by the elements in the array. All interactions are taken into account,
Calculated results are presented for the Yagi-Uda array that show
excellent agreement with experimental results reported in the lit-
erature. In addition, the dependence of the far-field patterns on the
phase velocity is shown. It is also demonstrated that the phase
velocity is generally nonuniform along the array.

INTRODUCTION

N 1927 and 1928, respectively, Uda and Yagi published

their papers on what today is known as the Yagi-
Uda antenna [1}, [2]. Much is known about the Yagi-
Uda array, but this has been due mostly to experimental
data rather than a method of theorctiecal investigation.
There are, however, some exceptions. One is a paper
published by Wilkinshaw in 1946 which applied only to
short (4 directors) Yagi-Uda antennas [3]. A theoretical
and experimental paper by Green gives design data for
several practical Yagi~Uda arrays [4]. His method was
the classical one in which the Yagi-Uda array is viewed
as a special kind of center-driven dipole array in which
all but the actual exciter element are short-circuited at the
terminals. Currents are induced in the parasitic elements
via the mutual impedances with the exciter, and radiation
oceurs as from a set of discrete sources. Green has analyzed
arrays with up to ten elements using this method with good
results.

Ehrenspeck and Poehler have published an interesting
experimental paper in which they describe a method for
obtaining maximum gain from a Yagi-Uda array [5].
Their method is based on achieving the proper phase
velocity along the array, but the resulting effect of the
phase velocity on the far-field patterns is not shown.
They imply equal phase delay from director to director.
However, caleulations made with the technique deseribed
in this paper indicate that the phase progression along the
array is nonuniform.

Serracchioli and Levis theoretically investigated the
phase velocity of long endfire uniform dipole arrays [6].
Their curves provide information relating element radius,
length, and spacing to the phase velocity. This information
is useful in the initial selection of these parameters when
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using the technique presented here. The longer the Yagi
under consideration, the more applicable are their curves.

Mailloux has developed a method for approximately
analyzing the behavior of finite Yagi arrays [7]. His
method essentially consists of truncating a semi-infinite
array and then calculating the reflection coefficient at
the end of the array. He presents results for a 20-element
reflectorless array. More recently King has applied his
three-term theory to a uniform Yagi~Uda array [8].

The following discussion deseribes a method of theo-
retically studying the complex current distributions on
all the elements of a Yagi-Uda array, the phase velocity
and the corresponding radiation patterns. The technique
is based on rigorous equations for the electrie field radiated
by the elements in the array. All interactions are taken
into account. There appears to be no restriction imposed
by the method itself on how few or how many elements
may be in the array. However, the size of the digital
computer employed to do the computations will place an
upper limit on the number of elements that may be
considered. Typically, it has been found that the storage
capacity of the IBM 7094 is sufficient to enable 27 elements
to be simultaneously included in the calculations.

Excellent agreement between calculated results obtained
by this method and experimental results reported in the
literature were obtained. In addition, these results enable
one to show clearly the dependence of the far-field patterns
on the phase velocity along the array.

FormuLATION OF THE PROBLEM

The approach taken in formulating this method of
solving the Yagi-Uda-type antenna problem is based on
an integral equation for the electric field of the array.
The point-matching technique is then used to satisfy
the integral equation at discrete points on the axis of each
element rather than attempting to satisfy this equation
everywhere on the surface of every element [9]-[13].
Thus a system of linear algebraic equations is generated
in terms of the complex coefficients in the Fourier series
expansion of the currents on the elements. Inversion of the
matrix yields the value of these coefficients from which
the current distributions, phase velocity, and far-field
patterns may readily be obtained. Experience has shown
that if one chooses a sufficient number of points at which
to match boundary econditions, then one can obtain
solutions to problems, such as this one, heretofore not
easily solvable.

In the case of linear elements, such as those in Fig. 1,
it has been found that an efficient representation for the
current on element p is

N 7z
I() = 2 I,,cos (2n — 1) 7 (1)
n=1
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Fig. 2. Diagram showing distance from a matching point (observa-~
tion point) on pth element to source region on gth element.
Insert shows relationship between 2’ and ¢’ when observation point
and source region are on the same element.

This series of odd-ordered even modes is chosen such that
the eurrent goes to zero at the ends of element p. This is a
suitable approximation for elements whose diameter is
small in terms of the wavelength. Also, this series has been
used by the author in treating the thin linear antenna
or dipole [13].

From the vector potential may be derived an integral
expression for the electric field radiated by the array.
This integral expression is

?\\/;T/e D+2 N Lp/2 ,
EZ(xyy;Z) = o o Z Z Iﬂp G(.’l),yﬂ!ﬁ’,y 721)
8r%  p=1 n=1 —Ly/2

z7
-cos (2n — 1) Z—z dz' (2)
»
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where

exp [—jkr]

G($7y}z|$’7y’7zl) = 5 [(1 + ]’Cr)(2r2 — 3a?)

+ k%] (3)

and

r= V@ -2+ @ -yt @t @ -2 @)

as shown in Fig. 2.

It has been found that 2z’ is an efficient variable of
integration when the current on wire p is observed at a
matching point on element ¢, p # ¢. However, when
p = g, it is more efficient to use ¢’ as the variable of
integration since the integrand varies rapidly when 2’ =~ z.
Details of this change of variables may be found in [9].
For either variable of integration, the integral in (2) is
carried out numerically.

SYsTEM oF LiNEAR EQUATIONS

Considerable insight into the point-matehing technique,
when applied to a problem as complex as the Yagi-Uda
array, can be obtained by looking at the system of linear
equations and the resulting matrix representation. For the
moment, let us consider an array composed of D directors,
a reflector, and a driven element. Let us have N modes
on each element, but let each element be of different
length. Using (2), the first part of the system of equations
is then of the form

D+2 N

2 2 Cunlay, =0, m=1,2---,NXD. (5)
p=1n=1
These equations are generated by requiring that tangential
E be zero at N points on each director. That is to say,
tangential £ is zero at a total of N X D points on the
directors. The matching points on any one director are
illustrated in Fig. 3.
The next N equations are similar to the previous N X D
equations since tangential £ vanishes at N points on the
reflector element, as shown in Fig. 3. Thus

D42 N

Z Z Cm.ﬂplﬂp = OJ

p=1n=1

(NXD)+1, -, NXD+1. (6

The last & equations are generated by using the bound-
ary condition on the driven element, as shown in Fig. 4.
That is,

m =

D+2 N

Z ZCm,np]np=07
p=1 n=1
m=NXDO+1)+1, -- - NXD+2 -1 ()
and

S Iy,=1 e=D+2 m=NX(D+2). (8
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On the driven element the tangential E boundary condi-
tion is only enforced at N — 1 points even though there
are N modes. The Nth equation on the exciter arises
from the constraint on the terminal current value [13).

CoMPUTER PROGRAM!

A discussion of the computer program is, perhaps,
facilitated by considering a simple example. Consider an
array composed of a director, a reflector, and a driven
element. Further, assume only two modes on each ele-
ment. Thus the complete system for this example would be
similar to

Cll Cl2 Cl3 CH Clﬁ ClG ] —Ilj [ 0 ]
CZI 022 023 0‘24 C'ZS CZG I 2 O
C31 CS2 C33 034. C35 CBG . IS — 0
C4.1 C42 C43 C44 C45 046 I 4 0
C51 C52 053 054 055 056 I 5 0
0 0 0 0 11 L] 1]

The physical interpretation of the matrix elements is as
follows: at point z; on element 1 (the director), Cu is the
“field” generated by mode 1, and (. is the field generated
at the same point by mode 2. Cy is the field generated by
mode 1 at point z; on the director, and Cy is that of mode
2. In a similar manner we can interpret Cy;, Cs, Cu, and
Cu.

If we write the above matrix in a submatrix representa-~
tion,

Su Se Ss| | 0
I, 0
S21 Szz S23 . Is =10
I, 0
Sa Sz Saa I LO
I 1

! Requests for additional information on the computer program
may be addressed as follows: Director, ElectroScience Laboratory,
Ohio State University, 1320 Kinnear Road, Columbus, Ohio 43212.
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then it is apparent that, regardless of the number of sub-
matrices, those on the main diagonal of submatrices will
represent the field generated by the eurrent on the element
at which the tangential £ boundary condition is being
enforced. Hence if there are D identical directors, the
first D submatrices on the main diagonal will all be iden-
tical. This fact is utilized to shorten the running time of
the program but is no restriction on the method itself
which could be used on tapered or modulated structures.

For elements off the main diagonal of submatrices the
following reasoning applies. The quantity Cs; represents
the field at point 1 on element 2 (the reflector) due to the
first mode (mode 5) on the driven element (element 3).
A similar interpretation applies to Cs, Cs, and Cgk. Thus
submatrices S, ¢ # 7, represent the interaction between
elements ¢ and ». If all the directors are of the same
length, then S,, = §;, for director submatrices. Further,
for uniform director spacing there will be several inter-
director spacings or distances that will be the same.
Consider the 4-director Yagi in Fig. 1. The distance
between directors 1 and 3 is the same as that between 2
and 4, for instance. Hence S;3 = Sz, assuming the directors
are of the same length.

Thus we see that it may not be necessary to calculate all
the submatrices individually, and, consequently, a
significant savings in computer time is realized when
working with long and complex problems that require
large amounts of numerical integration. The program de-
veloped for this problem utilizes the above mentioned
techniques. However, the program is not restricted to
uniform director spacing. It simply takes advantage of
geometrical symmetries that may exist.

Once the entire matrix has been caleulated, it is easily
solved by standard methods for the coefficients I, in the
Fourier series representation of the currents on the
various elements. Using these currents, the far-field
patterns may be obtained in a straightforward manner.

FAR-FIELD PATTERNS

The far-field pattern of a single element of the Yagi an-
tenna in Fig. 1 is given by

> L/2
Jor 1(2)

Eq(6) =
6(8) i

exp [—jkr] sin 4 f

—L/2
- exp [jkz cos 8] d2’. (9)

Since the current is expressed as a Fourier series, we ob-
tain

LN /€

Ey(6) = —2 exp [—jkro] sin 0

wre

N
E e

o (2n — 1)1, cos (L’ cos 6)
(2n — 1) — (2L’ cos 6)?

(10)

where L’ = L/\. Since

r=r—(zsingcos¢ + ysindsing + zcose) (11)
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we can define a pattern factor

F(6,¢) = L, sin ¢ exp [+7k(z, sin ¢ cos ¢

N
+ y, sindsin ¢ + 2, cos 6)]21 (=n*

(2n — 1)1, cos (rL’ cos 6)

(2n — 1)* — (2L cos 8)? ' (12)

Thus if we have W elements each with N modes, we may
write for the total pattern factor Fj (8,¢),

w
Fp(8,¢) = sin 0 Y, L, exp [+7k(z, sin 6 cos ¢
p=1

x
+ y, sin 0 sin ¢ + 2, cos 8)] 21 (=n”

_ (2n — 1)I,, cos (7L'cos :9)’
(2n — 1)2 — (2L’ cos 6)?

2

W=D+

(13)

If the number of modes on each element is not the same,
then the above expression is necessarily more complicated.

In practice, it has been found desirable to retain more
modes on the driven element than are required for the
parasitic elements. Hence the computer program actually
allows for K modes on the former and N modes on the
latter.

Resvrrs

Excellent results were obtained with the point-matching
method applied to the Yagi-Uda antenna problem. The
patterns calculated by this method agree quite well with
experimental patterns published in the literature [4],
[14]. For example, Fig. 5 shows a calculated E-plane
pattern for a 15-element Yagi-Uda array. The pattern
agrees so well with an experimental one published by
Fishenden and Wiblin [14] that there is no reason to
attempt to distinguish between them in the figure. In
this and subsequent figures Ly, Lz, and Ly are, respee-
tively, the director length, exciter length, and reflector
length. As implied by Fig. 1, X is the z coordinate of the
reflector, and X, indicates the uniform director spacing.
Fig. 6 shows an experimental power plot of a 4-element
array published by Green [4]. Good agreement is seen to
exist between the experimental pattern and the theoretical



28

o

)
~1.0
a
)
w E - PLANE
u
QTOJS
o
30° 5 ] 30°
w
]
Lp = 0.406 XA uloso
Lg = 0,47 A >
Lq = 0.50 A E
Xg =-0.125 A W
Xp, 034 X SPACING &0° Q.25 60°
25 DIRECTORS /
a = 0.003 X
90° i 90°
120° 120°
150° 180 150°
Fig. 7. E-plane pattern of 27-element Yagi-Uda array.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, JANUARY 1969

[a)

o H- PLANE

.

©
30° = 30°

Q

w

-

w

ol

>

—

<

-~

w

x
60 60°
90° 90°
120° 120°

150° 180" 150°

Fig. 8. H-plane pattern for array o Fig. 7.

S)

o
3

/
A

o
[

\

©
A

N

e

o
N

2h 3X

RELATIVE CURRENT AMPLITUDE

Ix

Ox

o

28 (-39 ™™

] 1

ax -2

Ak 3

\\EXCITER
REFLECTOR

5 9

13 15 21 23 25

DIRECTOR NUMBER

Fig. 9. Relative current amplitudes for array of Fig. 7.

one obtained with the point-matching method. In fact, the
front-to-back ratio is precisely the same.

Figs. 7 and 8 show ecalculated E-plane and H-plane
patterns, respectively, for a 27-element array. This was the
largest number of elements that could be handled con-
veniently by the computer program on the IBM 7094.
With a computer of larger memory more elements could
be accommodated. It is interesting to note that the £-plane
pattern of this 27-element array is similar to a measured
pattern also published by Fishenden and Wiblin for a 32-
element array with a slightly longer director length of
0.4081. All other parameters were the same. Fig. 9 shows a
plot of the eurrent amplitudes on all of the 27 elements.
This plot clearly shows that the director currents are not
equal nor are they smoothly tapered in the forward
direction. It will be shown later that the progressive
phasing of the eurrents is also not uniform, even for
uniform director spacing.

There are two principle ways in which the far-field
pattern of a Yagi-~Uda array may be “tuned” or adjusted
for a particular frequency. One way is to vary the director
spacing while holding the element length and reflector
spacing constant. The second method is to vary the director
length while holding all other parameters fixed. Either
one of these methods will have a considerable effect on the

far-field patterns. On the other hand, the usual effects of
altering the reflector spacing or length are mostly to
change the level of the back lobe and to control the
impedance of the array. Further, changing the length of
the driven element will have a negligible effect on the
pattern. Of course, as one would expect, altering the exciter
length will change the input impedance of the array. A
method of caleulating the array input impedance is under
consideration.

All of the aforementioned changes that affect the far-
field pattern do so because they alter the phase velocity
along the array. Hence it is reasonable to use this as a
design criteria rather than simply observing the change in
far-field patterns due to a change in director length and/or
spacing, ete.

The Hansen~Woodyard condition for an endfire array
states that for increased directivity in the forward direc-
tion it is necessary to have a total phase delay of almost
180 degrees along the array. That is to say, the phase
velocity needs to be slower than the corresponding free-
space phase velocity. The Hansen—~Woodyard condition
assumes equal amplitudes in the array eclements. How-
ever, as seen in Fig. 9, this is not the situation for a Yagi-
Uda array. Nevertheless, it is possible to draw a vector
diagram which will show when the array has been prop-
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erly adjusted for increased directivity in the forward
direction. The vector diagram will, of course, take into
account the unequal amplitudes in the various elements.
Furthermore, the diagram will afford much greater insight
into the behavior of the array. Such diagrams have been
published by Ehrenspeck and Poebler [5]. However, they
indicate equal phase delay from director to director.
Calculations with the point-matching method show that
this is not the case; a result which is not illogical when one
considers the complexity of the finite array and the fact
that the current amplitudes are unequal.

Fig. 10 shows two patterns of an 8-element array. We
observe that an increase in the director length has caused a
narrowing of the main beam without an inerease in the
side lobes. Thus we might expect that the phase velocity
on the L, = 0.4135) array is somewhat slower than that
for Ly = 0.405\. Inspection of Figs. 11 and 12 shows
this to be true. Fig. 11 shows a plot of the current am-
plitudes on the exciter and directors. The change in
direction from one vector to the next is determined by
taking the difference between the calculated phase pro-
gression and that which would exist if the phase vel-
ocity were that of free space. Hence if the phase
velocity were that of free space, all the vectors would lie
along the horizontal axis. Further, if the phase velocity
were uniform, the change in direction from one vector to
the next would be the same for any two adjacent veectors
(assuming uniform director spacing). Examination of
Fig. 12, for instance, shows that such is not the case.
Thus we may conclude that the phase velocity is generally
nonuniform. In prineiple, this finding is in agreement with
Damon’s results for endfire dipole arrays [15].

As additional phase delay is achieved, the tip of the last
vector (D6 in this situation) moves away from the hori-
zontal axis and toward the vertical axis. The maximum
vector is defined to be that vector from the origin to the

43°™a/ D6
Lp=0.405 A
D5
R
A yest D4
U
i
D3
D2
EXCITER 5y
Fig. 11. Phase velocity diagram for 8S-element array with Lp =
0.405A.
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Q
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N
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25
W
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EXCITER D)

>

Phase velocity diagram for 8-element array with Lp =
0.415A.

Fig. 12.

tip of the component vector farthest from the origin.
Thus we see in Figs. 10-12 that by increasing the director
lengths we have slightly increased the directivity in the
forward direction because the phase velocity has been
decreased.

It should be mentioned that although the point-matching
method permits one to obtain more accurate results than
are generally obtainable by other methods, one should
not infer that the director lengths given here are meaning-
ful in practice to more than two decimal places. What is
meaningful, however, is the change in phase velocity due
to a given change in director lengths, as discussed in the
following paragraphs.

Figs. 13 and 14 show the vector diagrams for successively
longer director lengths, We note that in Fig. 14 the
maximum veetor is not to the tip of the last vector D6.
When this situation oceurs, it indicates that the phase
delay is excessive, and, consequently, that the far-field
pattern will start to deteriorate. To see that this is indeed
the case, we refer to Fig. 15. Here we see the pattern for
the case Lp = 0.4275x. Also indicated are the back and
side lobe levels for several other cases. Comparing Fig.
15 with Fig. 10, we immediately see that the main beam
in the former is significantly less than in the latter. This is
consistent with what the vector diagrams indicate.

In Figs. 13-15 we see that as the maximum vector
approaches the point where it no longer extends to the
tip of D6, but to D5 instead, the lobes in the pattern
start to come up quickly, especially the back lobe. At
the same time the beamwidth is decreased only a very
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slight amount. Specifically, for L, = 0.42504, it is about
2 degrees wider than the pattern for L, = 0.4273x, about
2 degrees narrower for Ly = 0.4300A, and about 4 degrees
narrower than indicated in Fig. 15 for L, = 0.4350A.

Consequently, it would appear that in the design of a
Yagi-Uda array one should strive to keep the phase
velocity at or above that which would produce a vector
diagram similar to Fig. 13. From another viewpoint we can
interpret the slower phase velocity as giving rise to a back-
ward surface wave which is evidenced most prominently
in an increasing back lobe, In fact, the computer print-
out shows an increasing current amplitude on the reflector
element in such cases.
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CoxcLusioN

A method of analyzing the Yagi-Uda array by using
the point-matching or linear equation technique has been
presented. The method is general in that it may be applied
to nonplanar arrays with an arbitrary number of elements
having arbitrary length and with arbitrary spacing be-
tween them. While there is essentially no minimum
number of elements that may be considered, the maxi-
mum number appears to be limited only by the size of the
digital computer available. For instance, 27 elements
were accommodated by the program on the IBM 7094
by using three modes on each of the parasitic elements and
seven on the driven element. In addition, this method of
analysis permits one to obtain accurate information
not only about the far-field patterns, but also on the
current distributions and phase veloecity as well. One
could also investigate the scattering behavior of such
arrays by removing the generator and exciting the antenna
with a plane wave.

This method need not be limited to the one reflector,
D-director-type of Yagi-Uda array depicted in Fig. 1,
but it may easily be extended to other antenna con-
figurations using linear elements or elements that may
be subdivided into linear elements such as in a vee con-
figuration. Consequently, the various elements would not
need to be parallel with one another as they are in the
Yagi-Uda array. In such cases it would be necessary to
consider the contribution to the tangential electric field at
a matching point by the radial component of the electric
field in addition to the z component given here. Further,
current distributions that are not symmetrical about the
center of the elements may be handled by the inclusion
of the modes sin 2nwz/L, in the current expansion for

1,(2).
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Finally, the use of a computerized approach in the
investigation and design of Yagi-Uda-type antennas
presents several distinet advantages over an experimental
approach. Among these are the obvious savings in the
expenditure of time and money and also the possibility of
obtaining antennas optimized with respect to directivity,
side lobe levels, bandwidth, or any weighted combination
of these.
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Radiation from Elliptic Current Rings

G. N. TSANDOULAS, MEMBER, IEEE

Abstract—A solution is given for the radiation fields due to a
current sustained in an elliptic ring of arbitrary dimensions. Al-
though the case examined is that of a constant current, the study
can serve as the basic formalism by which other distributions may
be treated. The derived results apply directly to the elliptical ca~
pacitive antenna and the elliptical annular slot.

I. INTRODUCTION

EV ER SINCE 1944 when Foster [1] obtained a solution
for the far fields of a circular current loop, a number of
investigators have examined the circular shape exten-
sively [2]-[4]. Whereas the circular loop has received
considerable attention, other geometrical shapes are less
understood. Understandably, the cirele is of great practieal
importance. Its utilization in a wide variety of applica-
tions more or less obviated the need for investigation
of other figures. Nevertheless, the elliptical eylindriecal
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antenna has received some attention [3]. It was finally
recognized that the circle and ellipse are conneeted by a
linear transformation, a fact used to advantage by Lo and
Hsuan [6] in systematizing and simplifying ecalculations
involving elliptical arrays.

Interest in the elliptical current ring stems from two
considerations. First, the radiation pattern is a function
of the azimuthal coordinate ¢ as well as the polar 6. As a
result, different directive properties are exhibited as the ¢
plane is scanned, a fact that might be desirable in some
applications. Second, there are two degrees of freedom
available to the designer (the lengths of the two principal
axes or, equivalently, the interfocal distance and the
eccentricity) rather than one, as is the case of the circle.

The analysis covers as extensions the elliptic eapacitor
antenna consisting of two elliptic plates of small separation
and the elliptic annular slot, just as the analysis of the
circular ring leads to the solution of the circular capacitive
antenna and the ecircular annular slot. Formal interchange
of electric and magnetic fields is, of course, necessary in
both cases.



