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Analysis of Yagi-Uda-Type Antennas 

Abstract-A method of analyzing Yagi-Uda-type antennas  is 
presented.  Since the Yagi-Uda array  is a  fairly well-known antenna, 
it  is  used  as an  example to  demonstrate  the application and accuracy 
of the method.  However, the method of solution is  not limited to a 
planar array, such as  the Yagi, but can be applied to arrays of non- 
planar  linear elements. The approach taken in analyzing Yagi-Uda 
antennas  is based on rigorous equations for  the electric field radiated 
by the  elements in the array. All interactions  are  taken  into account. 
Calculated results  are  presented for the Yagi-Uda array  that show 
excellent agreement with experimental results reported in the lit- 
erature. In addition, the dependence of the far-field patterns on the 
phase velocity is shown. It is also demonstrated  that  the  phase 
velocity is generally  nonuniform along the array. 

INTRODUCTION 

I X 1927 and 192S, respectively, Uda  and Yagi published 
t,heir  papers  on what t,oday is known as the 1-agi- 

Uda  antenna [I], [a ] .  Much is known about  the Yagi- 
Uda  array,  but  this  has been due  mostly to experimental 
data. ra.t,her than a met,hod of theoretical investigat,ion. 
There axe, however, some except>ions. One is a  paper 
published by JVilkinshaw in 1946 which applied only to 
short (4 direct.ors) Ya.gi-Uda ant,ennas [3]. A theoretical 
and  experimental  paper  by  Green gives design d a h  for 
several  practical Yagi-Vda arrays [4].  His  method was 
the classical one in which the Yagi-Udn array is vien-ed 
as a special kind of center-driven dipole army  in which 
all  but. the actual excit.er element are short-circuited at  the 
terminals.  Currents  are  induced in t.he parasitic  elements 
via thc  mutual impedances with the exciter, and ra.diat.ion 
occurs as from a set of discrete sources. Green has  analyzed 
arrays n4t.h up to  ten elements using this  method  with good 
results. 

Ehrenspeck and Poehler  have published an interesting 
experiment>al paper  in which t,hey describe a. method  for 
obtaining  maximum  gain from a Yagi-Uda array [ 5 ] .  
Their  method is based on  achieving  t,he  proper  phase 
velocity along the array,  but  the resulting effect of t.he 
phase  velocity  on the far-field patt,erns is not shown. 
They imply  equal phase delay from  director to director. 
However, calculations  made wit.h t,he  technique described 
in this pa.per indicate  t,hat the phase progression along the 
array is nonuniform. 

Serracchioli and Levis theoretically  investigated t.he 
phase ve1ocit.y of long endfire uniform dipole arrays [6]. 
Their  curves  provide  information  relating element radius, 
length, a.nd spacing t.0 the phase velocit,y. This  information 
is useful in  t.he  initial selection of t,hese parameters when 
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using t.he technique  presented here. The longer the 1?agi 
under considera.tion, the more applicable  are  their curves. 

Maillous  has developed a  method  for  approximately 
analyzing t,he behavior of finite Yagi arrays [i]. His 
method essent.ially consists of truncat.ing  a semi-infinite 
array a.nd then calculat,ing t,he reflection coefficient at. 
the end of t,he array.  He presents  results  for  a 30-elementm 
reflectorless array.  More  recently  King has applied his 
three-term  theory t,o a uniform Yagi-Uda array [S j.  

The following discussion describes a nlet.hod of theo- 
retically  studying the complex current  distributions on 
all tJhe e1enlent.s of a 1-agi-Uda array, t.he phase velocit,y 
and t.he corresponding radiat.ion pat,terw.  The technique 
is based on rigorous equatiorls for t,he electric field radiat.ed 
by the elements in  the  array. All interactions  are  taken 
into  account.  There  appears t.o be no restriction imposed 
by  the nlet.hod itself on how  few or how many  elements 
rimy be in the  array. However?  t,he size of the digital 
computer employed to do the  computatiom will  pla.ce an 
upper  limit on t.he number of e1ement.s that may be 
considered. Typically, it, has been found that  the st,orage 
capacit,y of t.he IBM 7094  is sufficient, t.o enable 27 e1ement.s 
to  be  simultaneously included in  the calculation?. 

Excellent  agreement bet.m-een calculat.ed results  obt,ained 
by t,his nlet,hod and experimental results reported  in the 
1it.erature were obtained. In  addit,ion,  these  results  enable 
one to show clearly t.he dependence of the far-field pat.terns 
on the phase velocity along the arra.17. 

FORMULATION OF THE PROBLEM 

The approach taken in formulat,ing this method of 
solving the Yagi-Uda-type antenna problem is based on 
an integral  equation  for  t,he  electric field of the  array. 
The point-ma.tching technique is then used to satisfy 
t,he int.egra1 equation  at. discret.e points on the axis of each 
elenlent rather  than a,t.tempting to satisfy this  equation 
ever-mhere  on  t,he  surface of every element [9]-[13]. 
Thus a  system of linear algebraic equations is generated 
in t e r m  of the complex coefh3ent.s in t,he  Fourier series 
expansion of the currents  on  the elements. Inversion of the 
nmtrk yields the value of these coefficients from which 
the  current distributions,  phase velocity, and far-field 
pat.terns  may rea.dily be obtained.  Experience  has shown 
that if one chooses a sufficient, number of points a t  which 
to  match  boundary conditions, t.hen one can  obtain 
solutions to problenls, such as this one, heret,ofore not 
easily solvable. 

In  the ca.se of linear element.s, such as those in Fig. 1, 
it, has been found that  an efficient representation  for the 
current on element p is 

9 
I&) = I,, cos (2n - 1) - T 2  

L (1 )  
n = l  
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Fig. 1. Coordinate  system used to analyze Yagi-Cda array. 
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Fig. 2. Diagram showing distance from a matching point (observa- 
tion point) on pth element to source region on qth element,. 
Insert. shoss relationship between z’ and 0’ when observation point 
and source region are on the same element. 

This series of odd-ordered even modes is chosen such  that. 
the  current goes to zero a.t the ends of element p .  This is a 
suitable a,pproximat.ion for elements whose diameter is 
small in  terms of t.he n-avelength. Also, this series has been 
used by the a.uthor  in  treat,ing the  thin linear  antenna. 
or dipole [13]. 

From t.he vect,or potential  may  be  derived an integral 
expression for the electric field radiated  by tlhe  array. 
This  integral expression is 

where 

exp [ - j k r ]  
r5 

G(x;y;zId,y’,z’) = [(l + j lcr)(2r3 - 3a2) 

+ li2a21.21 (3) 

and 

r = d(d - x)’ + (y‘ - y)2 + a2 + (2’ - z)’ (4) 

as shown in Fig. 2. 
It,  has been found  that. z’ is an efficient variable of 

integration when tlhe  current  on wire p is observed a t  a. 
matching point, on element, q, p # q. However, when 
p = q, it) is more efficient to we e’ as the variable of 
int,egration since the int,egrand varies  rapidly when z’ = z. 
Det,ails of hhis change of mriables  may be  found in [9]. 
For eit,her variable of integrat.ion, t.he integra.1 in ( 2 )  is 
carried out numerically. 

SYSTEM OF LIXEAR EQUATIOKS 

Comiderable insight int,o the point-matching  technique, 
when applied to a  problem  as complex as  t,he Yagi-Uda 
array, can be  obtained  by looking at. the system of linear 
equat,iom and  the  resuking mat,rix representation.  For the 
moment,, let us consider an  array conlposed of D direct,ors, 
a reflector, and a  driven element,. Let us have N modes 
on each .element, but let ea.& elenlent  be of differeht 
length. Using (a), the first part of the system of equations 
is t.hen of t.he form 

D + 2  X 

C,,,J,, = 0, W L  = 1, 2, . . ., AT X D. (5 )  
p = l  n=l 

These  equations  are  generated by requiring that.  tangential 
E be zero at, N points on each  director. That is t,o say, 
tangential E is zero a t  a total of N X D points on t,he 
directors. The matching  points  on any one director  are 
illust,rat.ed in Fig. 3. 

The next N equat,ions are similar t,o the previous N X D 
equat,ions since tangential E va.nishes a t  N points  on  t<he 
reflect,or element,, as shown in Fig. 3. Thus 
D + 2  A- c c c 7 L . J n p  = 0, 
p = l  n=l 

772 = ( N  X D) + 1, . . - ,  N X (D + 1). (6) 

The last. A T  equations  are  generated  by using the bound- 
ary condit,ion on t,he driven  element, as shown in Fig. 4. 
That is: 
0 4 - 2  -V 

p = l  n = l  
C C C m , J n P  = 0, 

m = M X ( D  + 1) + 1, e - . ,  N X (D + 2) - 1 (7) 

and 

3- 
I,, = 1, e = D + 2, m = N X (D + 2). (8) 

n =  1 
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then it. is apparent  that, regardless of the number of sub- 
matrices, t.hose on the ma.in diagonal of submatrices will 
represent t.he field generated  by the current on the element 
at which t,he t,angential E boundary  condition is being 
enforced. Hence if t,here are D identical directors, the 
first D submatrices on the ma.in diagonal will all  be iden- 
t,ical. This  fact is ut,ilized to  shorten  the running  time of 
the program but is no restriction on the method  itself 
xvhich could be used on  tapered or modulated  stmctures. 

For element,s off the main  diagonal of submatrices the 
following reasoning applies. The  quantity C,  represents 
t.he  field at point 1 on element 2 (the reflect,or) due t,o the 
first mode (mode 5) on the driven element. (element 3). 
A similar interpret.ation applies to c36, C 4 5 ,  and C~S. Thus 

Fig. 3. Parasiticelementwith Fig. 4. Driven  element with submatrices sgr, # r ,  reprment the int,eract,ion betffeen 
N matching points along Lv - 1 matching points 
its axis. along its axis. element,s q and r.  If all the directors are of the same 

length, then S,, = X,, for director subma.t.rices. Further, 

X I AM?. X 

On the driven element the t,angent.ial E bounda.ry condi- 
tion is only enforced at  N - 1 point,s even  though  there 
are N modes. The  Nt.h  equation on  t,he exciter arises 
from the constraint  on t.he t.ermina1 current  value [13]. 

for uniform director  spacing  there  nil1  be  several int,er- 
director spacings or distances that will be t,he same. 
Consider the  4director Yagi in Fig. 1. The distance 
between directors 1 and 3 is the same  as that. beteween 2 
and 4, for instance.  Hence S13 = SN, assuming the directors 

COMPUTER  PROGRAM^ 

9 discussion of t.he conlput.er program is, perhaps, 
faciIit,ated by considering a  simple example. Consider an 
array composed of a  director,  a reflect.or, and a  driven 
element. Further, assume only two modes on  each ele- 
ment.  Thus  the complete system for t,his example Ivould be 
similar to 

The physical interpret.at,ion of the matrix  elements is as 
follows: a t  point z1 on element. 1 (t,he director), Cn is the 
“field” generated by mode 1, and C12 is t,he field generat,ed 
at  the same  point by mode 2. is the field genera.t.ed by 
mode 1 a t  point z2 on the direct,or, and Cn is that of mode 
2. In  a similar  manner we can int.erpret CS3, C3+, 6 4 3 ,  and 

are of t,he same  length. 
Thus we see t.hat. it may not be necessary to calculate  all 

the submat.rices individually,  and, consequently, a 
significant. savings in  computer  time is realized when 
xvorking n-it,h long and complex problems that.  require 
large  amount,s of numerical int,egration. The program de- 
veloped for t.his problem utilizes the above ment.ioned 
t,echniques. However, the program is not restricted to 
uniform director spacing. It simply t.akes advantage of 
geometrical symmet.ries that may exist. 

Once t.he entire  matrix  has been calculated, it is easily 
solved by  st,andard  methods for the coefficients I,, in the 
Fourier series representation of the  currents on the 
various elements. Using these  currents, the far-field 
pat.t.erns nmy be  obtained  in a straightfonmrd manner. 

FAR-FIELD PATTERNS 

The far-field pattern of a single elenlent, of the Yagi a.n- 
tenna  in  Fig. 1 is given b)? 

CM. exp [ j k z  cos 81 d d .  (9) 

tion, Since the  current is expressed as a Fourier series, we  ob- 
If we writ.e the above mat.rix in  a  submatrix  representa- 

1 Request.s for additional information on the computer program 
may be addressed as follows: Director, ElectroScience Laboratory, 
Ohio Stat,e University, 1320 Kinnear Road, Columbus, Ohio 43212. l’o = 1’ - (0 sin e cos I$ + y sin 8 sin 4 + z cos e) (11) 

where L’ = L/X. Since 
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Fig. 5. E-plane pattern of 15-element E-agi-Uda array. 

180 144 108 72 36 0 0 
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Fig. 6. E-plane pattern of 4element Yagi-Uda array. 

we can define a pa.ttern  factor 

F(8,+) = L, sin 8 exp [+jk(x, sin e cos 
x + yp s ines in+ + Z, cos e)]x (-11~ 

n=l 

(2n - l)ln, COS (TL' COS e) 
(2n - 1)* - (2L' cos e)2 

(12) 

Thus if we ha.t-e W elements  each  mith N modes, we may 
write  for t.he  t.otal pattern  factor FT (e,+>, 

PT(e ,d)  = sin e L, exp l+jk(xD sin e cos tp 
w 

p = l  

+ yp sin e sin + + z p  cos e ) ]  ( - I ) ~  
n= 1 

(2.n - l ) I n p  cos (rL'cos e) 
(2n - 1)* - (2L' cos 0)2 

1 n . = n + 2 .  

(13) 

If the  number of modes on  each  element is not the same, 
t,hen the above expression is necessarily more complicat,ed. 

In  practice, it has been found desirable to ret,ain more 
modes on t,he  driven element than  are required for t.he 
parasitic element,s. Hence the comput,er progra.m actually 
allows for K modes on the former and N modes on the 
latter. 

RESULTS 
ExcelIent results were obtained wit,h the point-matching 

met.hod applied to  the Yagi-Cda antenna problem. The 
pat.t.erm  calculated by this met.hod agree quite well with 
experimenbl  patterns published in the lit,erat,ure [4], 
[14]. For example, Fig. 5 shows a. calculated  E-plane 
pat.tern  for  a 15-element Yagi-TTda array.  The  pattern 
agrees so well with  an experimental one published by 
Fishenden and Wiblin [14] that there is no reason to 
att.empt, t.0 distinguish between t,hem in  the figure. In  
this  and subsequent, figures LD, LE, and LR are, respec- 
tively, the director  length, exciter length, and reflector 
length. As implied by Fig. 1, . X R  is the x coordinate of t.he 
reflector, and X. indicates t.he uniform director spacing. 
Fig. 6 shows an experimental power plot of a 4eIement 
army published by Green [4]. Good agreement is seen to 
exist between the experimental pattern  and  the theoretical 



28 IEEE TRANSACTIOKS ON ANTENXAS AND PROPAGATION, JANU-IRY 1969 

L~ = 0.406 A 
LE = 0.47 x 
LR = 0.50 x 
XR = - 0.125 X 
X D  0.34 A SPACING 

25 OIRECTORS 

a = 0.003 A 

3 0" 

60° 

9 0" 

I 20° 

I \ H -  PLANE 

9 0" 

120' 

150'  180' 150" 

Fig. 7. E-plane pat,tern of 27-element Yagi-Uda array. Fig. 8. H-plane pattern for array o Fig. 7. 

\EXCITER DIRECTOR NUMBER 

Fig. 9. Relative current amplitudes for array of Fig. 7. 

one  obtained  with the point-matching  method. In  fact, the 
front-to-back ratio is precisely the same. 

Figs. 7 and 8 show calculated  E-plane and H-plane 
patterns, respectively, for  a 27-element array.  This was t,he 
largest  number of elements  t.hat could be  handled con- 
veniently by  the computer  program on t.he IBhI 7094. 
T;Srith a computer of larger memory more elements could 
be accommoda.t,ed. It is interesting to note  t.hat  the E-plane 
pattern of t.his 27-element array is similar to a measured 
pattern also published by Fishenden and Wiblin for  a 32- 
element array  with a  slightly longer direct.01. length of 
0.4OOsx. All ot,her pa.rameters were t.he same. Fig. 9 shows a 
plot of the current a.mplitudes on  all of the 27 elements. 
This plot clearly shows that  the director  current8  are not. 
equal nor are  t,hey smoot,hly tapered  in  the forward 
direction. It will be shown lat.er that  the  propessive 
phasing of the currents is also not uniform, even for 
unifornl director spacing. 

There  are two principle ways  in which the far-field 
pattern of a Yagi-Uda array  may be  "tuned"  or  adjusted 
for a  particular frequency. One wa.y is to  vary  the director 
spacing while holding t,he  element 1engt.h and reflector 
spacing const,a.nt. The second method is to  vary  the director 
lengt,h while holding all other  parameters fixed. Either 
one of these  methods will have  a considerable effect. on the 

far-field patterns.  On  the  other  hand,  the usua.1 effects of 
altering the reflect,or spacing or 1engt.h are mostly to 
change  t.he level of the back lobe and  to control the 
impedance of the array.  Further, changing the length of 
the driven element will have  a negligible effect, on the 
pattern. Of course, as one would expect,  altering the exciter 
length will change t,he input impeda.nce of the array. A 
method of calculat,ing the axmy input.  impedance is under 
considerat.ion. 

All of the aforementioned changes that, affect t,he  far- 
field pattern do so because they  alter  the phase velocity 
along t,he  array.  Hence it is reasonable to use this  as  a 
design criteria rather  than simply  observing the change in 
far-field pat,terns  due to a  change in direct,or length  and/or 
spacing, etc. 

The Hansen-Woodyard condition  for  an endfire a.rray 
states  that for increased directivit,y  in t.he forward direc- 
tion it, is necessary to have a. tot,al  phase  delay of almost 
180 degrees along the array.  That, is t,o say, the phase 
velocity needs to be slower than  the corresponding free- 
space  phase  velocity. The Hansen-Roodyard condit,ion 
assumes equal  amplitudes in  the  array elements. How- 
ever, as seen in Fig. 9, this is not t,he  situation for a Yagi- 
Lda array. Nevert.heless, it is possible to draw a vector 
diagram which will show when t.he array  has been prop- 

I 

, 
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Fig. 10. E-plane pa.tt.em of t,ao %element arrays. 

erly adjusted for increased directivity in thc forward 
direct.ion. The vect,or diagram mill, of course, take  into 
account, the unequal  amplitudes in the various elements. 
Furthermore, the diagram will afford much  greater  insight 
into  the beha.vior of the  array.  Such diagrams  have been 
published by  Ehrenspeck and Poehler [SI. However, they 
indicat.e equal  phase  delay from direct.or to director. 
Calculations  with t,he point-matching met.hod show that 
this is not t.he  case;  a  result which is not illogical when one 
considers the complexity of t.he f i d e  array  and t.he fact 
that  the current  amplit,udes  are  unequal. 

Fig. 10 shows two  patterns of an 8-element, array. We 
observe that  an increase in the direct.or length  has caused a 
narrowing of the main beam without a.n increase in the 
aide lobes. Thus we might. expect that  the phase velocity 
on the L ,  = 0.413X array is somewhat. slower t.han that. 
for L ,  = 0.405X. Inspection of Figs. 11 and 12 shows 
t.his t,o be  true. Fig. 11 shows a  plot of the current am- 
plitudes  on the exciter and directors. The change  in 
direction  from one vectm t,o t,he next, is determined  by 
t.aking the difference bet,meen the calculat,ed phase pro- 
gression and  that which would exist, if the phase vel- 
ocity were that of free space. Hence if the phase 
velocity mere t,hat of free space, all the vectors would lie 
along the horizontal axis. Further, if the phase velocity 
were uniform, the change in direction from one vect,or to 
the next, would be the same for any tmo adjacent vect,ors 
(assuming uniform director  spacing).  Esaminat,ion of 
Fig. 12, for instance, shows that such is not the case. 
Thus we may conclude t,ha t the phase  velocity is genera.lly 
nonunifornl. In  principle, t.his finding is in a.greement, with 
Damon's  results for endfire dipole arrays [15]. 

As additional  phase  delay is achieved, t.he tip of the last 
vector (D6 in  this  situation) move  away from the hori- 
zontal axis and  toward  the  vertical axis. The maximum 
vector is defined to be that vector from t,he origin t.o the 

I L, = 0.405 X 

Fig. 11. Phase velocity diagram  for S-element array wit.h LD = 
0.405h. 

E X C I T E R  

Fig. 12. Phase velocig diagram for %element, array  xit.h LD = 
0.413. 

tip of the component  vector  fart,hest  from t,he origin. 
Thus we see in Figs. 10-12 that  by increasing the director 
lengths we have  slightly increased t.he direct,ivity  in t.he 
forward  direction because the phase velocity has been 
decreased. 

It should be  mentioned  t,hat  ahhough  t,he  point-mat,ching 
met.hod permits one to obtain more accurate  results  tha,n 
are genemlly  obt.ainable  by  other met,hods, one should 
not, infer that.  the director  lengths  given  here  are meaning- 
ful in pract.ice t.0 more than  two decima.1  places. What is 
mea.ningful, however, is the cha.nge in  phase velocity due 
to a given change in  director  lengths, as discussed in the 
following paragraphs. 

Figs. 13 a.nd 14 show the vector  diagrams  for successively 
longer director lengths. R e  note  t,hat  in Fig. 14 the 
maxinlum vector is not  to  the  tip of the last vect,or 06 .  
When t.his situat.ion occurs, it. indicat,es t,hat t,he  phase 
delay is  excessive, and,  consequently, that  the far-field 
pattern will  st,a,l% to  det,eriorate. To see that t.his is indeed 
the case, we refer to Fig. 15. Here we see the pat,tern for 
the case L,  = 0.4275X. Also indicated are  the ba.ck and 
side  lobe levels for  several  other cases. Comparing Fig. 
15 wit,h Fig. 10, we immediately see that  the main bean1 
in  the former is significantly less than in 6he latter.  This is 
consistent wit.h what,  t,he  vector  diagrams  indicate. 

In  Figs. 13-15 me see that as t.he maximum  vector 
approaches the point. Tvhere it no longer extends to  the 
tip of 06,  but t.0 0 5  instead, the lobes in  t,he pattern 
sta.1-t t.0 come up quickly, especially t,he  back lobe. At. 
the same  time the  beanmidth is decreased only a  very 
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Fig. 13. Phase velocity diagram for %element array with LD = 
0.4275X. 

Fig. 15. E-plane pattern of optimum %element array with side lobe 
levels indicated for several other versions of array. 

Lo = 0.430 X 

I /  
V EXCITER 

L - 
Fig. 14. Phase velocity diagram  for %element. array with LD = 

0.43ox. 

slight mount .  Specifically, for LO = 0.4250h, it is about 
2 degrees wider than  the  pattern  for L D  = 0.4273, about. 
2 degrees narrower  for L D  = 0.4300X, and  about 4 degrees 
narrower than indicated  in  Fig. 15 for L D  = 0.4350X. 

Consequently,  it would appear that  in t.he design of a. 
Yagi-Uda army one should strive  to keep the phase 
velocit,y a t  or above that. which would produce a  vector 
diagram similar t.0 Fig. 13. From another viewpoint. we can 
interpret  the slower phase velocit,y as giving rise t.0 a  back- 
ward  surface wa.ve which is evidenced most pronunent.ly 
in  an increasing back lobe. In  fact, the comput.er print- 
out, shows an increasing current  amplitude  on the reflect.or 
element in such cases. 

COSCLUSIOK 

A method of analyzing the Yagi-Uda. array  by using 
t,he point,-nmt,ching or  linear  equation  technique  has been 
presenkd.  The  method is general  in  tha.t it may  be a.pplied 
to nonplanar  arrays  with an  arbitrary number of ele1nent.s 
having  arbitrary  length  and  with  arbit,rary spacing be- 
t>ween them. While there  is essentially no miniRlUnl 
number of elements that may be considered, the m s i -  
mum  number  appears to be limited only by t-he size of the 
digital  computer  available.  For  instance, 27 elements 
were accommodated  by  t,he  program on the IBM 7094 
by using three modes on each of t,he  parasitic  elements and 
seven  on the driven element. In  addition, this met.hod of 
analysis  permits  one to obta.in accurate  information 
not. only about the far-field patterns,  but also on  t,he 
current  distributions and phase velocity as well. One 
could also investigate t,he scattering  behavior of such 
arrays  by removing the generat.or and exciting the a.ntenna 
with a  plane wave. 

This met,hod need not  be  limited to the one reflector, 
D-director-type of Yagi-Uda array depicted  in Fig. 1, 
but  it ma.y easily be ext.ended to ot,her antenna con- 
figurations using linear elements or elenlent,s that ma,y 
be subdivided into linear elements  such  as in a vee con- 
figurat.ion. Consequent.ly, the various e1ement.s would not 
need t.o be parallel with one another  as  they  are  in  the 
Yagi-Uda array. In  such cases it would be necessary t.0 
consider the cont,ribution to t.he tangential electric field at 
a ma.tching point by t,he radial component of the electric 
field in  addition t.0 the z component given here. Further, 
current  dist.ributiom that are  not symmet,rical a.bout the 
center of the elements  may  be  handled  by the inclusion 
of t,he modes sin 2.nrz/Lp in the current expansion for 
Ip(zl. 
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Finally, the use of a  computerized  approach in t.he 
investigat.ion a.nd design of ’I‘agi-Cda-type antennas 
presents severa,l distinct. advantages over an experiment,al 
a.pproach. Among t.hese are  the obvious savings  in the 
expenditure of time  and money and also the possibility of 
obtaining  ant,ennm opt>imized wit,h respect. t,o directivity, 
side lobe levels: bandwidth, or any weighted combination 
of t,hese. 
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Radiation  from Elliptic Current  Rings 

Abstract-A solution is given for  the radiation fields due to a 
current  sustained in an elliptic ring of arbitrary dimensions. Al- 
though the  case examined is  that of a  constant current,  the  study 
c a n  serve as the basic formalism by which other  distributions  may 
be treated. The derived results apply directly to  the elliptical ca- 
pacitive antenna  and  the elliptical annular slot. 

E 
I. IKTRODUCTIOS 

ITER SINCE 1944 when Fost,er [l] obtained  a  solution 
for the  far fields of a circular current, loop? a number of 

invest.igatom have examined t,he circular shape  exten- 
sively [2]-[4]. Whereas t.he circular loop has received 
considerable at.t,ent,ion, other geometrical shapes  are less 
understood.  Understandably,  the circle is of great) practical 
import,ance. 1t.s utilizat.ion in  a wide variety of applica,- 
t,ions more or less obviated tlhe need for investigation 
of ohher figures. Severt,heless, the ellipt.ica1 cylindrical 
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antenna has received some at.tention [5]. It was finally 
recognized t.hat  the circle and ellipse are connected by a 
linear transformation, a fact used to advantage  by Lo and 
Hsuan [6] in  systematizing and simplifying calculations 
involving elliptical arrays. 

Interest  in  the elliptical current,  ring stenx from t,wo 
considerations. Fi&, the radiat,ion pat.t,ern is a  function 
of the azimutha.1 co0rdinat.e q as well as the polar 0. As a 
result., different, directive  properties a.re exhibited as t.he p 

plane is scanned,  a  fact that, might be desirable in some 
a.pplications. Second, there  are two degrees of freedom 
available to  the designer (the lengths of the t,n;o principal 
axes or, equivalently, t,he int,erfocal dist,ance and  the 
eccentricity)  rat,her than one, as is the case of the circle. 

The analysis covers as ext,ensions the elliptic  capacitor 
antenna consisting of two ellipt,ic plat,es of small separdon 
and t-he elliptic annular  slot, just as  the analysis of the 
circular ring leads to t,he solution of t,he circular capacit.ive 
antenna  and  the circular annular slot.. Formal int.erchnnge 
of electric and  magnetic fields is, of course, necessary in 
both cases. 


