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Direct Self-Control (DSC) of Inverter-Fed

Induction Machine

1

Abstract—The new *‘direct self-control”’ (DSC) is a simple method
of signal processing which gives converter-fed three-phase machines an
excellent dynamic performance. To control the torque of, e.g., an in-
duction motor, it is sufficient to process the measured signals of the
stator currents and the total flux linkages only. Optimal performance
of drive systems is accompisihed in steady state as well as under tran-
sient conditions by combination of several two-limits controls. The ex-
penses are less than in the case of proposed predictive control systems
or flux acceleration method (FAM), if the converter’s switching fre-
quency has to be kept minimal.

I. INTRODUCGTION

N MOST control strategies for three-phase motor drives

it is assumed that the controllable power source can
force any desired curves of currents or voltages into the
stator windings [1], [2]. In reality most of the inverters in
use can produce only seven discrete spacevector values of
actuating variables. Usually none of these is exactly equal
to the desired instantaneous value of the space vector. By
the use of PWM the desired agreement can be obtained

“only for the mean values taken about a pulse period. By

using high switching frequencies the desired curves of ac-
tuating variables can be approximated sufficiently well.
However, in the field of high power applications this is
not possible; for economic reasons the switching frequen-
cies of high-power semiconductors can’t be raised above
values of 200-300 Hz. Therefore it is desirable to derive
the single switching commands directly from suitable
control signals as, e.g., according to predictive current

control [3] or improved flux acceleration method (FAM) .

[4].

This paper describes a recently developed direct self-
control (DSC) method [5]-[7]. By consistent adoption of
the strategies to guide the stator flux and to control the
torque according to the switching capabilities of voltage
source inverters (VSIs) we get not only very simple and
robust signal processing schemes but also excellent dy-
namic performance even at the low switching frequencies
used in the high-power electronics field.
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II. Basic CIRCUIT AND STEADY-STATE PERFORMANCE
OF INVERTER-FED THREE-PHASE MACHINES
wiTH DSC

The shaft speed of a three-phase machine mainly de-
pends on the angular velocity of the rotating magnetic
field. In steady state this velocity is determined by the
frequency f, of electric stator quantities; the magnitude of
the magnetic field depends on the voltage to frequency
ratio. Fig. 1 shows how the on-off states of the power
switching elements of a three-phase VSI can be directly
controlled by comparing the time integrals of its own line-
to-line voltages to reference values + ¥ ;. This is called
*“direct self-control”” (DSC) for the sake of brevity. In
doing so the magnitude of the magnetic field is directly
determined by ¥ ... Without pulse control the frequency
depends on the ratio of dc voltage 2E, to ¥ ;. For further
simplification the time integral of a voltage will now al-
ways be called ‘‘flux,’’ regardless of whether the vOltage
is caused by variation of a flux linkage or not.

Fig. 2 shows the curves of line-to-line voltage ¢,. =
V3 ep, of all processed fluxes ¥4, (v = a; b; c), of all
line-to-dc-center point voltages e,¢, and of line-to-neutral
voltage e,, = e,,. The (B-fluxes are proportional to the
time integrals of line-to-line voltages; «-signals corre-
spond to line-to-neutral quantities. From Fig. 2 it can be
seen that the following equations hold in steady state:

\i’B - ‘I’ﬁ = 2\I/ref - 2Ed/\/§ : Tv/3

1 2E/V3
£ 6 ‘I/rcl'

Y, =2/V3-9/n% Vo =1,05 ¥, (2)

The curves show that the deviations of the real fluxes ¥,
from their fundamental components ¥, are so small that
the three-phase machine with DSC in steady state will
have nearly the same performance as one being line sup-
plied by sinusoidal voltages. In order to get nominal flux,
‘i/fo, the corresponding value of ¥ ; can be derived from
(2). The speed of shaft rotation can be controlled by vari-
ation of the dc voltage 2F, according to (1). To raise the
speed above the highest possible value at full dc voltage
and full flux the magnitude of flux can be weakened by
decreasing ¥ .. If all terminals of the machine are con-
nected simultaneously to one of the two dc terminals by

(1)
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Fig. 1. Basic scheme of DSC.
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Fig. 2. Curves of stator gquantities with DSC.
the inverter, all terminal voltages of the machine will be  machine can be reduced by PWM as shown in the right
zero. This can be done in addition to the normal switch-  portion of Fig. 2. If the pulse period 7, is short relative
ings caused by the Schmitt triggers via a single modulat-  to the smallest time constant of the machine, a very sim-

ing device, as described later. In this way, instead of con- ple feed-forward control is possible.
trolling 2E,, the terminal voltages of the three-phase The dynamic properties of DSC can be represented by



422 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL.

-

the response to a step change of motor voltage, via 2E,
or by pulse control, keeping ¥ . constant, or vice versa.
To illustrate the theory the induction machine is chosen
as an example.

III. RESPONSE OF ROTOR QUANTITIES OF AN INDUCTION
MACHINE ON STEP CHANGE
OF SLIP

Fig. 3 shows the track curve of space vector \if's, which
we get by transforming the three 3,-flux quantities of Fig.
2 into a space-vector representation by the formula

‘i;s =j%[‘I’Ba + a,\I’Bb + az\Ilﬁc]

= %[\I,aa + a\I’ab + az‘I,ac]

a = exp (27/3) (3)

Usually the lower representation is taken, if the line-to-
neutral voltages are chosen as input quantities, of which
the time integrals are forming the «,-fluxes. At constant
dc voltage 2E, the space vector €, of VSI output voltages
can assume only seven discrete values, characterized in
Fig. 3 by the points O - - - 6. According to

¥, = ¢, (4)
| €| determines the tracking speed with which the head

of ‘f’s traverses its track curve. That means tracking speed
depends only on the instantaneous value of 2E,, if we
don’t have just a stop of motion, when zero value €,(0)
is realized during a part of the pulse period. The direction
of &, gives the direction of the straight lines forming the
track curve of ¥,. With DSC the distance of the straight
parts of the track curve from the tail of ¥, is given by
¥.r. The projections of the moving ¥, on the three
B,-axes give the curves of the 8,-fluxes, which are com-
pared to + ¥ ;. Keeping ¥, constant, the track curve of
‘I_}x forms a regular hexagon. Its center point is lying on
the origin of the complex plane, independent of preceding
changes of ¥ ;. At constant dc voltage and without pulse
control, the track speed of ¥, remains constant, and -mag-
nitude and angular speed of this space vector are slightly
pulsating. The points of Fig. 3 identified by capital letters
correspond to the points with those letters in Fig. 2.
The question about the dynamic properties of the in-
duction machine with DSC can be divided into two prob-
lems, first the response to a step change of track speed
keeping the track curve unchanged and second the re-
sponse to variation of the track curve by a stepwise change
of V., keeping the track speed constant. The form of
solutions should be as obvious as possible and be based
on the well-known steady-state representation of the in-
duction machine. To change the track speed of space vec-
tor ¥, chiefly means to vary the instantaneous slip of mag-
netic field relative to the rotor conductors of the induction
machine. All consequences concerning torque and cur-
rents depend only on slip and not on shaft speed. Only
stator voltages depend on the angular speed w of the shaft.
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Fig. 3. Space vectors of stator voltages, total fluxes, and track curves with
DSC.
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Fig. 4. Equivalent circuit and space vector quantities of ideal induction
machine with two poles at angular speed w.

Therefore, if we want to describe the response to a step
change of slip, it is most reasonable to choose a reference
frame fixed to the rotor. Fig. 4 shows an exact equivalent
circuit of the fundamental wave three-phase induction
machine with one pair of poles, and without skin effect.
'w* means the angular speed of used reference frame
relative to the stator. In the chosen case of rotor fixed
frame, w* is equal to the_angular speed w of the shaft.
Because of j(w — w*) + ¥, = 0 there'is no influence of
any rotor phase upon each other. Concerning the space
vector of fluxes, currents, and resultant voltages, their
magnitudes and angular displacements do not depend on
w*,'only the derivations of the latter do. As noted before,
if we keep V¥, constant, we may approXir_r}ate without
essential error the hexagonal track curve of ¥, by the cir-
cle (see Fig. 3) corresponding to the fundamental com-
ponents of total fluxes in steady state. Then we may
express the space vector ¥, », which rotates counterclock-
wise with angular speed w, relative to three projection
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lines «, ap, a;., by
\—I;Il-f= —‘j * ej“”'. (5)

With magnitude \i/“f being constant we get the space vec-
tor €, of voltages across the three series connections of
L, and R, from

\I/uf )

—é = ‘ifpf=jw, * \i;#fz w, * \IA’uf' ejw'(
é=wo * ¥ (nominal values). © o (6)

We get all line-to-neutral values of rotor quantities by
projection of the corresponding space vectors on the pro-
jection lines «f, af, .. Under sinusoidal conditions at
constant angular slip frequency w,, the track curves rela-
tive to the projection lines of all space vectors are circles,
which are traversed counterclockwise with identical an-
gular speed w,. If we rotate the projection lines clockwise
with angular speed w, in the complex plane, all space vec-
tors assume fixed positions; we get the well-known phasor
representation of induction machine quantities. If the
angular frequency w, is varied, the Heyland circle shown
in Fig. 5 is obtained, which is the locus curve of
the space vectors iy, i, = ¥,/L,, and ¥,/L, =
(\I/ - ¥ +)/Ls. The rotor fluxes ¥,, can be explained as
the time integrals of voltages i,, = R;, similar to ¥, being
the time integrals of voltages L, - i,,. From the flux angle
¢ we get the relative rotor frequency n, by

n, = w/wg=tan ¥, wg=R./L,=1/T,, (7)

wg being the angular rotor frequency at breakdown point
K. The space vectors of the stator and rotor currents only
lie on the circular locus curve shown in Fig. 5 during
steady-state operation with a constant magnitude {\I/ | of
the resulting flux and at constant angular rotor frequency
w,. Every other point of the current space vector plane
corresponds to values of the two linearly independent state
quantities of the three rotor currents, which are in prin-
ciple also possible under dynamic conditions. If we, e.g.,
choose a value of the space vector €, according to (6) with
a value w,p of the rotor frequency, which results in steady-
state operation in the rotor currents determined by the
point P on the current locus curve, then the transition into
the associated periodic operating condition can be readily
described from any starting condition at ¢ = 0. The start-
ing state for r = 0 is characterized in Fig. 5 by point S.
At this point in time the differences between the instan-
taneous rotor curents and the rotor currents, which would
flow under stationary conditions at this point in time, are
represented by their space vector zPS(O) The prOJectlons
of this space vector onto the rotating axes o, o, o, at
time ¢ = O furnish the starting values of the transient com-
ponents of the currents. All three of them decay to zero
with the same time constant T, = L,/R;. Considered rel-
ative to the rotating axes, the space vector i pg(t) retains
its direction, since all three transient components of rotor
currents change so uniformly that their ratios remain un-

changed. Only the magnitude | i ps(1) | is decreasing with

Fig. 5. Steady-state and transient locus curves of space vector quantities
of induction machine.

the time constant T,. If the transient space vector ;‘.ps(t)
is considered relative to the locus curve circle, which is
stationary in Fig. 5, a space vector rotating clockwise with
the constant angular velocity w,p is obtained with a mag-
nitude which is decaying to zero with the time constant
T,. The track curve of the transient space vector ipg(t)
is therefore a splral of which the convergence center is
at point P.

As shown in Fig. 5, the component of z,(t) which is
orthogonal to ‘I/ and therefore the torque of the ma-
chine, grows very fast after = 0 because w,p > wg. If
the stator voltage is changed, e.g., to zero upon reaching
point 1 on the dynamic track curve the angular rotor fre-
quency shall assume the large negative value w,y. The
stationary point N on the locus curve circle is associated
with this new angular rotor frequency. This point is now
the center of convergence of the new dynamic space vec-
tor i, (2), of which the magnitude also decreases expo-
nentiallx with the time constant T7,. However, the space
vector iy (?) rotates counterclockwise with the angular
velocity | w,y|, because the projection axes o, aj, o) now
also rotate in this sense. As may be seen directly, the
torque of the machine now decreases very quickly. If the
angular rotor frequency is again made equal to w,p at point
2 of the new dynamic track spiral, the initially described
processes are repeated with somewhat larger-overall val-
ues of that component of the rotor current space vector
i, lying in the direction of ¥, . If the method of switching
between the angular rotor frequencies w,p and w,y is con-
tinued in the manner described above each time the same
upper or lower torque value is reached, a stationary limit
cycle with the limit transient track curves shown in Fig.
5 is obtained. The starting and ending points of the cycli-
cally traversed sections of both transient track spirals co-
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incide and are designated in Fig. 5 by symbols 1 and 2.
The sections of the two transient locus curves located be-
tween these two points are so close together that no dif-
ference can be noted in Fig. 5. Point 3 is associated with
the fundamentals of the three rotor currents, and it lies on
the circular locus curve.

An infinite number.of transient spirals lead to each cen-
ter of convergence P of the Heyland circle. If we choose
a starting point S lying on the Heyland circle at a step
change of slip (¢ = 0), then, e.g., the flux-angle Jsis a
suitable parameter to differ between all spirals leading to
P. If we refer fluxes to nominal value ¥ 10 and currents to
‘I/fo /L,, we get the per-unit (pu) quantities y -+ - and y

. Considering the transient space vector \I’FS with its
tail ﬁxed to point P, and its head passing point § at ¢ =
0, we get the equations

exp (—t/T,) - exp (—jwpt)
Frs(0) = sin 85 - exp (~jds) — sin Ip exp (jdp)
= sin (J5 — Jp) - exp [—/(3s + 3p)] (8)

When ‘i;ps crosses the Heyland circle in point S, the
direction_of the transient track curve is equal to the direc-
tion of ¥, this means the magnitude of space vector
¥ -( = 0) keeps unchanged near point §. Angular speed
of ¥ (¢t = 0) relative to space vector ‘If of total fluxes
is, at this point,

d(t = (9)

Based on this understanding of response to step change of
slip, for simplicity results have been derived in the rotor
fixed reference frame, a very simple direct two-limit con-
trol of torque can be established and this in the stator fixed
frame (w* = 0) to avoid the coordinate transformations
usually needed in field-oriented controls.

Jps = yPS = yPS(O) )

0) = A“"’rS = Wp T Wpge

1V. Direct Two-LiMiT CoNTROL OF TORQUE

Fig. 6 shows the basic circuit of a direct two-limit con-
trol of torque and of superimposed speed control. The
electromagnetic torque T, of a rotating field machine can
be calculated by the following relation, all quantities cor-
responding to the stator fixed reference frame (w* = 0):

=1, 5(‘?aa : iBa - \I’Ba * iaa)' (10)

In the expanded signal processing structure shown in Fig.
6 this quantity, calculated by the torque computing unit
TC, is compared with the torque reference value T, in
the Schmitt trigger STy. Within the full-flux speed range
a simple control works as follows: If the torque T, ex-
ceeds its reference value by more than chosen tolerance
value er, then zero voltages are switched on to the motor
as long as the torque T, underpasses Trs by more than e.
If this happens, full voltage is switched on to the ma-
chine, the direction of the corresponding space vector is
determined by the fluxes-comparing Schmitt triggers STy,
as shown in detail before. In this state the electronic sig-
nal select ESS connects the output signals S/, S;, S¢ of
Schmitt triggers ST directly to the control outputs S, S,
S, as symbolically shown in Fig. 6. When zero voltages

have to be switched on to the machine, a common signal
S, is connected simultaneously to all three control outputs
by means of the ESS. The two possible values of S, are
chosen by the zero select unit ZS such that secondary con-
ditions can be met, concerning, e.g., minimum switching
frequency, allowed minimum duration of switching states,
etc. '

At lower values of stator frequency f, the difference be-
tween \I/ and the space vector of total flux linkages ‘I’
cannot be neglected, since Te,l .| decreases proportional to
fs and therefore | i, - R;| gets more and more influence.
Because | ¥, | should be kept, as far as possible, indepen-

dent of f; or ?x in the expanded signal processing structure
shown by Fig. 6, the quantity (&, — i,R,) = €, is inte-
grated to get the needed signals ¥,, and ¥g,. By means
of simple algebraic calculations from these quantities the
two additional needed input signals ¥4, and ¥z, of Schmitt
triggers STy are determined by the coordinate transfor-
mation unit CT. This kind of signal processing works suf-
ficiently well down to values of frequency f, near to the
nominal value of the siip frequency. Fig. 7 is taken from
a CRT display showing the track curve of space vector
¥, at zero r/min of shaft (w = 0) and at about nominal
value of torque (inner trace) in comparison to the track
curve measured at about half nominal speed. By self-con-
trol under load conditions the track curve turns relative to
the no-load curve as far as the voltages of the inverter get
the needed components orthogonal to the track curve to
cancel the decreasing influence of /; - R; on the magni-
tude of flux. If the drive is to work under conditions which
lead to values of stator frequencies clearly below the nom-
inal value of slip frequency, additional control of |\I/ |
has to be provided [6], and instead of integration of in-
duced voltages, other known methods have to be applied
to determine total flux linkages. The measured response
of torque of a 66 kW motor due to large and small step
changes of its reference value is given later in Fig. 9(a).

At low speeds of shaft, such as in the range below 30
percent of the highest speed at full field, the dynamic per-
formance can be further improved in the case of large con-
trol error AT, caused by suddenly decreasing reference
value T, In [hlS case, instead of the space vector of volt-
ages having zero magnitude, the space vector €, =
—1 - €/ can be switched on, €] being the space vector
selected by the Schmitt triggers at counterclockwise
movement of ¥,. Now the space vector ¥, not only stops
but it moves along the track curve, which it previously
traversed counterclockwise, with full speed in the oppo-
site direction. By this, even at very low speed of shaft,
large negative values of angular rotor frequency w, can be
achieved, which are necessary if the torque is to be de-
creased very fast. If the demands concerning steady state

- and dynamic quality of speed control are moderate, a very

simple signal processing without equipment for direct
measuring of shaft speed is possible, as shown in Fig. 6.
At constant dc voltage the averaged output voltage of
Schmitt trigger STy is proportional to mean value w, of
the angular stator frequency. By means of algebraic cal-
culations from the torque reference value the correspond-
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Fig. 6. Extended scheme of signal processing with DSC.

I Integrator

ST  Schmitt Trigger

CT Coordinate Transformation
ESS Electronic Signal Select

Fig. 7. Track curves of space vector \f/u. Inner trace: w = 0, T, = Tpx/2.
Outer trace: w = wp/2, T, = 0.

ing mean value w, of the angular rotor frequency can be
determined. w, — @, = w is the quantity to be compared
to reference value w,;. The output of speed controller SC
gives the torque reference value T.

V. TORQUE RESPONSE IN THE FIELD WEAKENING

RANGE
If the inverter produces its highest possible output volt-
ages, there are only the values 1 - - - 6 of €;, which have

to be switched on in cyclic sequence. By this kind of op-
eration, called fundamental frequency switching, we can-
not fulfitl the condition of (5) and (0). H’“| to be con-

ZS Zero State Select
TC Torque Calculator
»C Speed Calculator
SC Speed Controller

stant. To investigate the dynamic behaviour of an
induction machine fed by VSI in the field weakening
range, therefore, the limited switching capabilities have
to be fully accounted for. Furthermore, the errors caused
by assuming R, =0 remain negligible; therefore we can

note ¥, = ¥, = ¥. Fig. 3 shows what happens after a
step change of ¥ . After point 4 there is a difference

AV between the actual space vector of fluxes ¥ and ¥,
increasing linearly with time, which is the value of the
space vector of fluxes we would have got at the same point
in time if we had had no change of ¥ ;. A¥ does not
change its direction until point B, where all total fluxes
are in new steady state. Space vector AV, is the response
of ¥, due to ramp change AY¥ of ¥. At point B we get

2 & . _exp (p,Atp — 1)
AV, = AV -
5 prTu . (prAtB - 1)
IA‘f’| - L. [¥reta — Vo) (11)
N3

AtB=tB—tA

p, is one of the two complex eigenvalues of the induction

machine. Under the assumption R, = 0 we get
pT,=0 pT,=—1+jn n=owwg. (12)

If we only change from one steady-state track curve to
a new one as shown by Fig. 3, after ¢t = tp, ¥ is again in

steady state. ¥, = \i/r,, + AV¥,; being an exact known



426 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL.

Fig. 8. Track curve of space vector ¥ at fast rise of torque by transient
field weakening.

quantity, without essential error the following response of
rotor quantities can be treated like the response of slip to
step change, according to the results of the last chapter,
because both | ¥, | and w, remain practically constant after
point B. Because Aw, normally remains smaller than wy,
the speed of torque change is rather low [7]. Fig. 8 shows
which track curve of ¥ has to be chosen if the torque has
to be changed, e.g., from no load to breakdown value, as
fast as possible, shaft speed having nominal value wgp, and
this angular speed is assumed to be nine times wg. From
point A to point B AV is increasing proportional to time,
from point B to point £ A¥ remains constant. During the
last interval response AV, of ¥, can be easily calculated
as response on step change AY of ¥. Under the assump-

tion R; = O the final value of AV, at ¢ = t¢ is
AT = [exp(PrAtB) — 1][exp (p,415)]
rE =
: (plAtB - l)
88| = 2= [Ty = Yur): (13)
V3
AtB = tB - IA; AtE = tE - tB

After point E, ¥ is again in steady state. If we demand
that the mean value of torque assumes at 7 = 7z a set value
TqE, it is reasonable to express the mean value of torque:
by that component of torque 7,/ generated by the funda-
mental component of ¥ and ‘I’, att = tg:
|‘I’,.E| - sin 19./'5 = TqE
. 9 2
Ve = — = Vo, 14

fEE 2 3 (14)

Y, angle between \ff and ‘I_;,

- damentals of ¥

3NO. 4L OCTOBER 1988

To get value T, q£ at 1 = ip the corresponding ¥ ..;p, can be
calculated from (13) and (14) and the equation of angle
between ¥ and ‘I/f, well-known in the case of steady-state
fundamental switching. In the case of our example, under
the conditions mentioned above, we get

\IlrefA = \I/refo; \IlrefE = 0'9‘I’ref0;

\I/refD = 0.5458 - \I/N:IO'

Fig. 9(b) shows the results of a corresponding computer
simulation. To decrease torque under fundamental fre-
quency switching conditions as fast as possible we have
to realize ¥ orp > Vg > Wiy, €.8., by taking a tran-
sient track curve as shown in Fig. 3, leading from point
A via B and D' to E'. In this case AV, can be calculated
also by combinations of ramp response and step response
but the relation corresponding to (13) is somewhat more
complicated. Fig. 9(c) shows the results obtained by a
simple suboptimal torque control for a 50-kW drive under
fundamental frequency switching conditions.

VI. CONSIDERATION OF DISTORTION QUANTITIES IN
HEYLAND DIAGRAM

In steady state, deviation between rotor fluxes ¥,, and
their fundamental components can be neglected without
remarkable error. That means that in the stator fixed ref-
erence frame the space vector ¥, = ¥, traverses, relative
to projection axes o, «,, ., a circular track curve with
constant angular speed wy, as shown in Fig. 10. If the
same is assumed of space vector \I/M, representing fun-
> the projections of space vector ¥, =
¥, — ¥, give those components of leakage fluxes, con-
nected by L, to fundamentals of rotor currents. The space
vector of distortion fluxes due to the noncircular shape of
track curve

V, =¥, — V¥, (15)
forms a connection between the circular track curve of
¥, rand the distorted track curve of ¥, represented by
dotted lines in Fig. 10. In the case of direct two-point
control of torque its mean value remains practically con-
stant in steady state. Theoretically the alternating portion
of torque can be made indefinitely small by increasing
pulse frequency. All quantities in the limit case 7, = 0
give fair approximations of their mean values at 7, > 0.
Therefore quantities of thought limit case 7, = 0 shall be
expressed by mean value variables with overbars. Then

the tracking speed of —‘17“ is adjusted automatically by the
torque control such that there is no difference between the

directions of distortion space vector ¥, and rotor fluxes
representing space vector ¥,, because only then the dis-
tortion fluxes do not disturb the constant torque generated
by fundamental quantities.

If we now rotate the projection axes o, «a, «, clock-
wise with angular speed wg, then all fundamental quan-
tities keep fixed positions in the complex plane and we
get the Heyland diagram shown in Fig. 11, If we add the
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Fig. 9. Step response of induction machine with DSC.

(a) Experimental results: 0 = 8.5%, T, = 52. S ms, ny = 16.5, n/no =0.4,T,/T, = 1.5 (T, = subtransient value).

(b) Computer simulation:

(c) Experimental results: o = 6.1%. T, = 33.6 ms, ng = 6.1, n/no =2, T, /TY =

ng=9.nfny, = 1.1, = T,/ T ¥ = ‘I//‘I/,, ‘
= |5 (T) = subtransient value).
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Fig. 10. Distorted track curve of total flux \i;“ and fundamental track
curves.
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Fig. 11. Heyland diagram, completed by distortion quantities.

space vector of distortion portions of stator currents

- 1 1 -
lsh=<f‘+L_o>‘\I’h

n

(16)

to the tail of space vector ?Sf in the origin of the diagram
at each moment, the tail of space vector i of the resultant
. stator currents travels from point 4 to point 5 and back to
4 six times within a period of stator quantities. In the limit

case T, = 0 the head of space vector 7, is fixed to point
3 on the Heyland circle; the track curve traversed by its
tail in the limit case is a straight line which has the direc-

tion of space vector ¥, /L, leading from point 3 to point
o of the Heyland circle.
Compared to pure sinusoidal conditions, the harmonics

of currents caused by a noncircular track curve of _‘17“ in-
crease only somewhat the RMS value of stator currents
and normally their peak values, but at large values of
torque (¥ > 38.5°) a hexagonal track curve leads even
to peak values of stator currents slightly below the mag-
nitude of their fundamentals. In. reality the possible
switching frequencies of VSI in heavy power applications
are so low that distortion currents additional to those of
the limit case at 7, = 0 and an alternating component of
torque, all ringing at pulse frequency, cannot be ne-
glected. If we now rotate the projection axes a,, q, o,
with the instantaneous angular speeds zero or full nominal
value wg, the space vector of rotor fluxes ¥, begins to
move in the complex demonstration plane. Similar to the
representation of Fig. 5, now the head of i travels from

point 1 to point 2 and back to I within each pulse period.
If then the mean value of the speed, with which ¥, is
running along the hexagonal track curve during each pulse
period, agrees to that corresponding mean value of speed
in the case of constant torque at 7, = 0, the tail of i
furthermore approximately traverses the straight track
curve between points 4 and 5 of Fig. 11. This happens in
the case of two-point control of torque. If ¥, runs along
its hexagonal track curve, keeping the mean value of track
speed unchanged, now the tail of i, in Fig. 11 traverses
the droplet-shaped track curve around the origin of i ;six
times within a period of stator quantities. This happens,
€.g., in the case of fundamental frequency switching. The
droplet-shaped curve differs from the straight track curve

of i, because at a constant track speed of \I_;# on its hex-
agonal track curve we cannot continuously give ¥, the
direction of ¥,. In the case of two-point torque control
the magnitude of distortion currents and the alternating
part of torque ringing at pulse frequency depends on the
distance between points 1 and 2, which is proportional to
pulse period 7, if we keep all other parameters constant.
At fixed mean value of VSI switching frequency, pulse
periods get their lowest duration, if we keep the number
of changes in the direction of track curve minimal. As can
be seen from Fig. 2, a pulse period needs only two
switchings if the direction of track curve is not changed
and duration of the full voltage part of pulse period ex-
ceeds the allowed minimum time of VSI switching state,
otherwise three switchings are needed per pulse period,
which is an increase of 50 percent! To reduce the alter-
nating portion of torque the hexagonal track curve of ¥,
is optimal, because only six changes of its direction are
needed. If the resultant distortion of stator currents is to
be minimized below a limit value of the ratio between
stator frequency and switching frequency, the next better
approximation of the track curve to an ideal circle shape
has to be chosen. Now the direction of the track curve is
changed 18 times, which means we get a reduction of cur-
rent distortion only at the cost of increased pulsation of
torque compared to the case with a hexagonal shape of
track curve. This shows that there is no simple rule to
determine optimal shape of track curve; many conditions
and parameters have to be considered. their relative im-
portance depending strongly on the applications.

VII. CONCILUSIONS

Direct self-control is a method of simple signal pro-
cessing which gives three-phase machines fed by VSI an
excellent performance even at the low switching frequen-
cies usual in heavy power applications. In the basic ver-
sion of DSC the power semiconductors of a three-phase
VSI are directly switched on and off via three Schmitt
triggers, comparing the time integrals of line-to-line volt-
ages to a reference value of desired flux, if the torque has
not yet reached an upper limit value of a two-limit torque
control. When the upper limit value is reached, zero volt-
ages are switched on to the machine, as long as the lower

\
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.

limit value of torque is not yet underpassed. The track
curve of a space vector of stator fluxes forms a hexagon.
At a given switching frequency then the undesirable al-
ternating component of torque becomes minimal. If at
continuously switched-on full voltage the desired torque
is not reached, field weakening is achieved by decreasing
the reference value of flux. Dynamic properties of induc-
tion machines with DSC can be represented by response
to step change of tracking speed of the flux space vector
keeping the track curve constant and vice versa. If the
well-known Heyland diagram is completed by simple
transient locus lines, the results can be surveyed without
difficulties at each point of duty. Computer simulations
and experimental measurements confirm the validity of
these theoretical investigations.
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NOMENCLATURE

a, b, c Subscripts denoting names of phases.

v Subscript instead of a, b, or c.

o Subscripts for line-to-neutral phase
quantities.

B Subscripts for line-to-line phase quan-

ab, bc, ac tities.

W, 0 Subscript  for ~magnetizing/leakage
quantities.

s, r Subscript for stator/rotor quantities.

f Subscript for fundamental compo-
nents.

h Subscript for harmonic distortion com-
ponents.

K Subscript for quantities at breakdown
point.

0 Subscript for base values.

nom Subscript for nominal values.

ref Subscript for reference values.

- Arrow denoting space vectors, e.g.,
e,.

a Boldface denoting complex numbers,
e.g., a.

- Overbar denoting mean values, e.g.,
w. :

~ Tilde denoting quantities at steady
state.

A,V Caret/inverted caret denoting maxi-
mum/minimum values.

a Control factor.

€r Tolerance value of torque.

v Flux angle between \f# and ¥, .

w* Angular speed of reference frame.

w, N Absolute/normalized  angular  fre-
quency.

f Frequency.

T, Period of stator quantities.

T, Pulse period.

T, Rotor leakage time constant at low fre-
quencies. '

T, Rotor leakage time constant at high
frequencies.

T,, t, Absolute/normalized electromagnetic
torque.

D+ Ds Complex eigenvalues.

L,L, Magnetizing/leakage inductance of

equivalent circuit.

R, R, Stator/rotor resistance of equivalent
circuit.

o Leakage factor.

e Voltage.

2E, Input dc voltage of inverter.

v,y Absolute/normalized flux.

i,y Absolute/normalized current.
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