1 Problem Set

- 1. Exercise 1 Let $\Lambda \subset \mathbb{R}^{2n} \simeq \mathbb{C}^n$ be a lattice.
 - (a) Show that the standard Hermitian metric on \mathbb{C}^n induces a Kähler metric on the *n*-dimensional complex manifold $T = \mathbb{C}^n / \Lambda$.
 - (b) Explicitly exhibit harmonic (p, q)-forms on T.
- 2. Let Γ be a discrete group acting holomorphically and properly discontinuously on the complex manifold M. Assume furthermore that the action is free so that the orbit space $\Gamma \setminus M$ is a complex manifold.
 - (a) Consider the special case where $\Gamma \simeq \mathbb{Z}$ and $M = \mathbb{C}^2 \setminus \{0\}$ and $1 \in \mathbb{Z} = \Gamma$ acts as multiplication by 2 (and so -1 as multiplication by $\frac{1}{2}$). To what familiar 4-dimensional real manifold is the complex manifold $\Gamma \setminus M$ homeomorphic?
 - (b) Does $\Gamma \setminus M$ admit of a Kähler metric?
 - (c) Generalize to the case where $M = \mathbb{C}^n \setminus \{0\}$.
- 3. On $\mathbb{CP}(n)$ with homogeneous coordinates $[z_0, z_1, \ldots, z_n]$ consider the line bundle $\mathcal{L} = \mathbb{C}^{n+1} \to \mathbb{CP}(n)$ where the projection is the map

$$[\lambda z_0, \lambda z_1, \ldots, \lambda z_n) \longrightarrow [z_0, z_1, \ldots, z_n].$$

- (a) What are the transition functions $\{\rho_{\alpha\beta}\}$ for the bundle $\mathcal{L} \to \mathbb{CP}(n)$?
- (b) By working out the connecting homomorphism $H^1(\mathbb{CP}(n); \mathcal{O}^*) \to H^2(\mathbb{CP}(n); \mathbb{Z})$, show that $\{\rho_{\alpha\beta}\}$, regarded as an element of $H^1(\mathbb{CP}(n); \mathcal{O}^*)$, maps to a generator of $H^2(\mathbb{CP}(n); \mathbb{Z}) \simeq \mathbb{Z}$. (By general convention, this generator is taken to be -1 rather tha 1.)
- (c) Assume n = 1 and follow above convention. Let $\mathcal{T} \to \mathbb{CP}(1)$ be the holomorphic tangent bundle which is a holomorphic line bundle. Show that the line bundle $\mathcal{T} \to \mathbb{CP}(1)$ is holomorphically equivlent to the line bundle which is the tensor product of \mathcal{L} with itself k times (k can be a negative integer which means the transitions functions of \mathcal{L} should be replaced by their inverses) and determine k.
- (d) Let k be a negative integer. What is the space of global holomorphic sections of $\mathcal{L}^k \to \mathbb{CP}(1)$? (For example, can it be identified naturally with the space of homogeneous polynomials in two of a certain degree?) What is its dimension?
- (e) Can you generalize to $\mathbb{CP}(n)$?

- 4. Let ω_1 and ω_2 be two complex numbers linearly independent over \mathbb{R} , L the lattice generated by ω_1 and ω_2 and $T = \mathbb{C}/L$. Let \mathcal{D} be the divisor on T consisting of a single point p and $\mathcal{L}_{\mathcal{D}}$ the corresponding line bundle.
 - (a) What is the dimension of the space of sections of $\mathcal{L}_{\mathcal{D}} \to T$?
 - (b) Consider the Weierstrass \wp function as a doubly periodic function relative to L on \mathbb{C} . Can we regard \wp as the meromorphic representation of a section of a line bundle? Which line bundle?
 - (c) Is there a necessary relation between the locations of zeros and poles of a meromorphic function on T? Prove your answer.
- 5. (This problem requires looking for references and writing an essay that answers the questions raised below.) Let $\mathcal{G}_{(k,n)}$ denote the Grassmann manifold of k-planes in \mathbb{C}^{k+n} , and \mathcal{F}_n the flag manifold of sequences of linear subspaces

$$V_1 \subset V_2 \subset \ldots \subset V_{n-1} \subset \mathbb{C}^n,$$

where dim $V_j = j$.

- (a) Describe topological structure of \mathcal{F}_n as a cell complex having only cells in even (real) dimensions and the set of cells is naturally parametrized by the symmetric group \mathfrak{S}_n on n letters as explained in class.
- (b) What is the dimension of the cell corresponding to an element $\sigma \in \mathfrak{S}_n$?
- (c) What do the Hard Lefschetz Theorem and the Poincaré Dulaity tell us about the combinatorial structure of the symmetric group?
- (d) Show that $\mathcal{G}_{k,n}$ has natural cell decomposition with cells parametrized by the cosets $\mathfrak{S}_{k+n}/(\mathfrak{S}_k \times \mathfrak{S}_n)$.
- (e) What do the Hard Lefschetz Theorem and the Poincaré Dulaity tell us about the cosets representatives of $\mathfrak{S}_{k+n}/(\mathfrak{S}_k \times \mathfrak{S}_n)$ or certain card shuffles?