1 Prelimiharies from Real Differential Geometry

(There may be some sign differences between the notes and the lectures.)

1.1 Moving Frames in Euclidean Spaces

We equip RV with the standard inner product <,>. By a moving frame in an open subset
U C R" we mean a choice of orthonormal bases {ei(z),--- ,en(z)} for all .U, z € U.
Taking exterior derivatives we obtain

dszwAeA, deA=ZwBAeB (1.1}
A B

where w4’s and wyp’s are 1-forms. Since wy and wap depend on the point z and the
choice of the moving frame {ej, - -- , ey}, their natural domain of definition is the principal
bundle F, — U of orthonormal frames on U. However, due to the functorial property
of the exterior derivative (f*(dn) = df*(n)), the actual domain is immaterial for many
calculations. One may use local parametrizations or sufficiently differentiable mappings in
the actual computations and conclusions remain valid. The orthonormality condition implies
0=d < eas,eg >=<des,ep > + < e4,deg > and consequently

wap +wpa =0. (152}

That is, the matrix valued 1-form w = (wap) takes values in the Lie algebra SO(N). From
ddz = 0 and ddey = 0 we obtain

dw.4+ZWAB Awg = 0; dw_43+2w,40/\w03=0. (13)
B C

These equations are often called the structure equations for Euclidean space or more precisely
for the group of rigid motions of Euclidean space. The second set of equations is also known as
the structure equations for the (proper) orthogonal group. These equations are & special case
of Maurer-Cartan equations for (connected) Lie groups. Fixing an origin and an orthonormal
frame at each point, the set of (positively oriented) frames on RY can be identified with the
group of (proper) Euclidean motions, and (1.3) becomes identical with what is generally
called the Maurer-Cartan equations where we have represented the (N +1) x (N +1) matrix
J=dU in the form

Wit wiN W1
W WNN WN
0 0 0



The choice of (positively oriented) frame at each point of U/ means fixing a mapping of U
into the group of (proper) Euclidean motions of RY and the structure equations are just
the pull-back of the matrix of left invariant 1-forms from the group to U. Much of basic
differential geometry can be developed by exploiting these equations.

We introduce the fundamental concepts of Riemannian geometry by first looking at Eu-
clidean space and its submanifolds, and determining which notions are dependent or inde-
pendent of the embedding. This special case, besides being of intrinsic interest, will serve
as a good example for the more abstract development of the general case. Let M C U be
a submanifold. It is no loss of generality and convenient to assume that a smooth function
F: U — RY™™ is given and the matrix of differentials DF has maximal rank everywhere so
that F~!(c) = M, is a submanifold of /. For convenience we often simply write M for the
submanifolds M, since the theory is applicable to all M,’s in a unified manner. To adapt
the moving frame to this situation, that to the submanifolds A/ (ie., all M.’s), we assume
that x ranges over M and e1(z), -, em(x) form an orthonormal basis for T=M. To simplify
notation, we make the following convention on indices:

1S A,B,C,- <N, 14,5k, <m, m+1<abpg-- <N

Since x ranges over M, wp = 0, and hence dz = > wie;. This simply expresses the fact that
T:M is spanned by ey, - - - ,€m. In a more cumbersome language this can be rephrased as
follows: If f : M - U is a submanifold, then J*(wp) vanishes identically. By writing w, = 0
we emphasize the point of view that A is regarded as the solutions to the Pfaffian system

Wimt1 =0, -+, wy =0. (1.4)
By construction this Pfaffian system is integrable with submanifolds M,.

Example 1.1 To better understand the meaning of this point of view, suppose we want to
calculate the element of arc length (ie., the Riemannian metric) ds® for the submanifolds
M. From basic Calculus we know that the arc length ds? for a curve v : I — RY is given by
the inner product < dv,dy >. Let ¢ be the parameter on the interval /. For + to be a curve
on a submanifold M is equivalent to 7V*(we) = 0. Since dy = 3 A wa( %) the arc-length on a
submanifold of the system (??) is given by

m

ds? = <dvy,dy> = D i)
i=1

Therefore we can simply say that the Riemannian metric is given by
m
2000 2 5
det = Z“’i : (1.5)
i=1
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This makes the calculation of the 1-forms w; and other quantities of geometric interest
straightforward if the Riemannian metric of an abstract manifold is given and is in diagonal
form relative to a given coordinate system. For example, for the upper half plane H = 1z —
z +1y | y > 0} the Poincaré metric is ds? = 3% and we take w; = dy—z and wy = % that
will enable one to make many calculation by efementary algebra. Similarly the metric on
the sphere of radius R in R® is ds? = R%(dy? +sin® ¢d6?) (in polar coordinates) and we take
wy = Rdy and wy = Rsinpdl. )

The first set of structure equations becomes

d&)i + Zwij AN Wy = 0, pri Aw; = 0, on M. (16)
E) %

It is convenient to decompose the matrix (w4p) in the form

o= ((w,,) ()

The m x m matrix w = (w;;) is called the Levi-Civita connection for the induced metric on
M C U. Let us see how the connection w transforms under a change of orthonormal frame.
Let A = (A;;) be an orthogonal matrix, and the frames {e;} and {f;} be related by the
orthogonal transformation e; = ), A;; fi. Setting f, = e, for m + 1 < p < N, and denoting
the connection form relative to the f4’s by w’, we obtain after a simple calculation

w=A"WA+AdA (1.7)

Notice that because of the additive factor A~'dA, the connection w is not a tensor but
a collection of 1-forms transforming according to (1.7). As noted earlier, because of the
dependence of w on the choice of frame, its natural domain of definition is the principal
bundle of orthonormal frames, however, we shall not dwell on this point. The matrix-valued
function A effecting a change of frames is generally called a gauge transformation. Since the
entries of A'dA contain a basis for left invariant 1-forms on the special orthogonal group,
for every point p € M there is a gauge transformation A defined in a neighborhood of p such
that w’ vanishes at p € M. In general, one cannot force w’ to vanish in a neighborhood of
pEM.

Before giving the formal definition(s) of curvature, let us give some general motivation
for the approach we are taking. In analogy with the definition of the curvature of a curve
in the plane, it is reasonable to try to define the curvature of a hypersurface in R™*+!, or
more generally of submanifolds of Euclidean spaces, by taking exterior derivatives of the



normal vectors e,. We shall show below that the exterior derivative de, determines an
m X m symmetric matrix H, = (HE;) for every direction e,. The matrix H, depends also on
the choice of the frame ey, - - , €n for the tangent spaces T.M and therefore the individual
components Hfj are not of geometric interest. However, the eigenvalues of H, and their
symmetric functions such as trace and determinant are independent of the choice of frames
€1, ,em. Our first notions of curvature will be the trace and determinant of the matrices
H,. For the case of surfaces M C R?, Gauss made the fundamental observation (Theorema
Egregium) that det(Hs) (there is only one positively oriented normal direction e3) curvature
is computable directly in terms of the coefficients of the metric tensor ds? which is only
the necessary data for calculating lengths of curves on the surface M. Gauss’ theorem was
taken up by Riemann who founded Riemannian geometry on the basis of the tensor ds’
thus completely freeing the notion (or more precisely some notions) of curvature from the
embedding. To achieve this fundamental point of view, we make use of the fact, which is far
from obvious without hindsight, that the structure equations dwap +5" wacAwep = 0 express
flatness (vanishing of curvature which will be elaborated on below) of Euclidean spaces, and
the 2-forms dws;+ Y i Wik AWk;j (recalll < 4,5 < m) which quantify the deviation of structure
equations from being valid on M, contain much of the information about the curvature of
the submanifold M C RY. The 2-form dwy; + D5 Wik A Wkj reduces to dwi, for surfaces in
R? and it will be demonstrated shortly that

dww = = det(Hg)wl N\ Wa. (18)

The point is that once a Riemannian metric is specified, one can calculate the quantities
w; and wy; although they depend on the choice of frames for the tangent spaces T;M (see
subsection on Levi-Civita Connection below). Therefore (1.8) contains Theorema Egregium.
Tt should be pointed out that Tr(H;) is not computable from the data ds? alone, and it
contains siginifcant geometric information which will be discussed in this chapter. In view
of these facts, any quantity which is expressible in terms of w;’s and wy;’s is called intrinsic
to a Riemannian manifold M, and quantities which necessarily involve wy’s or wap's are
called eztrinsic in the sense that they depend on the embedding. Our immediate goal in
this subsection is to make mathematics out of these remarks and specialize them to the
case of surfaces in R®. Various notions of curvature, based on the above comments, will be
introduced in the following subsections. We begin with the following algebraic lemma:

Lemma 1.1 (Cartan’s Lemma) - Let vy, -+, Um be linearly independent vectors in a vector
space V, and wy, -+, Wn be vectors such that

111/\-w1+---+vm/\urm:0.

Then w; = S Hijvi with Hi; = Hji. The converse is also true.
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Proof - Let {v1,-- , vy, -+ ,ux} be a basis for V, and set w; = Y. Hijv; +Zp Hpjvp. Then

m m m N
E v ANw; = E (Hji 5T Hl-j)vi A vy + E E Hpi'Ui A Up.
i=1 ij=1 i=1 p=k+1

Therefore H;; = Hj; and Hy; = Hy,. The converse statement is trivial. i
Applying Cartan’s lemma to the second equation of (1.6), we can write

Wip = ZHZ&JJ, (19)
7

where (H7;) is a symmetric matrix. The Second Fundamental Form of the submanifold M
in the direction e, is the quadratic differential given by

Hp = Z HY wiw; (1.10)
iJ

This means that the value of H, on a tangent vector £ € T, M is i Hbwi(§)w;(€). The rea-
son for regarding H, as a quadratic differential (i.e., a section of the second symmetric power
of T*M) is its transformation property which descibed below. (The First Fundamental Form
is the metric ds?.) Clearly H, may also be regarded as the symmetric linear transformation,
relative to the inner product induced from R¥, of 7T,M defined by the matrix (Hf;) with
respect to the basis {e;,--- ;e,}. Note that there is a second fundamental form for every
normal direction to M.

Let us see how the second fundamental form transforms once we make a change of frames.
First assume that e,,41,- - , ex are kept fixed but €1, ,€n are subjected a transformation
A € O(m). From the transformation property of the matrix (wap) we obtain the transfor-
mation

Wip Wip
— A’
g Winp
It follows that for fixed epy1,-- - , ey the symmetric matrix H, = (Hfj) transforms according
Hp — A'H,A. (1.11)
This transformation property justifies regarding the second fundamental form as a quadratic
differential on M. Similarly, if we fix ey, - - - , €m and subject e, 11, - -, en to a transformation
A € O(N —m), then the matrices H, transform according as
Hp — D AgH,. (1.12)
g
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While the matrix (H;) depends on the choice of the orthonormal basis for 7 M, the
symmetric functions of its characteristic values depend only on the direction e, and not on
the choice of basis for 7, M. For example, the mean curvature in the direction e, defined by
H, = &trace(H;) = }_, H, expresses a geometric property of the manifold M C R" which
we will discuss later especially in the codimension one case for surfaces. For a hypersurface
M C R™ ! there is only one normal direction and we define the Gauss-Kronecker curvature
at x € M as K(z) = (—1)™! det(H;;) (in case m = 2 one simply refers to K as curvature).
The eigenvalues of H are called the principal curvatures and are often denoted as k; =
%, adest i 'le If the eigenvalues of H are distinct, then (locally) we have m orthonormal
vector fields on M diagonalizing the second fundamental form. The directions determined
by these vector fields are called the principal directions, and an integral curve for such a
vector field is called a line of curvature. Note that in the case of hypersurfaces the second
fundamental form can also be written in the form

H=— <dz,dens > . (1.13)

Example 1.2 Consider the sphere S* C R™™! of radius r > 0. Taking orthonormal frames
as prescribed above, we obtain z = re,;, and consequently wi,+1 = %wi, Hi; = —%wi, and
Il = —1% w? Therefore the Gauss-Kronecker curvature of ¢ is K(z) = %. @

Example 1.3 A simple case of a submanifold of codimension one is that of a surface M C
R3. In this case the Levi-Civita connection is the matrix

I 0 W12
ey

The symmetric matrix (H;;) in the definition of second fundamental form is defined by
wiz = Hyjwy + Hipws, wes = Hipwy + Hasws.

Therefore
dwu = —Wj3 A Wyg = (H11H22 b= H%Z) 755} A Wy. (114)

Therefore the measure of the deviation of the quantity dw;; + > wix A wg; from vanishing,
which we had alluded to earlier, is the curvature K. It should be emphasized that the second
fundamental form was obtained by restricting w, to M and therefore (1.14) is valid as an
equation on M. Note that we have arrived at the curvature K of the surface via two different
routes. The intrinsic approach where it is defined by dwys = Kw; A wy (or the deviation of
dwyy from vanishing), and the extrinsic approach as the determinant of the matrix H of the
second fundamental form.



We have emphasized that the 1-form w;; depends on the choice of the frame and therefore
is naturally defined on the bundle of frames PM. By fixing a frame (locally) we can express
wiz as a 1-form on M. We can use this fact to advantage and deduce interesting geometric
information as demonstrated in the following example:

Example 1.4 Consider a compact surface M C R? without boundary and assume that ¢
is nowhere vanishing vector field on M. From £ we obtain a unit tangent vector field e;
globally defined on S% and let e; be the unit tangent vector field to M such that e, e, is
a positively oriented orthonormal frame. Let wis be the Levi-Civita connection expressed
relative to the moving frame e;, e, which is a 1-form on M. Since dM = (), Stokes’ theorem
implies

d(;J]Q = (0
M

On the other hand, dwys = Kw; A wy, and therefore

le Awy = 0. (115)
M
If we let M = S? be a sphere, then K is a positive constant and therefore (1.15) cannot
hold. Therefore S? does not admit of a nowhere vanishing vector field £. On the other hand,
it is easy to see that the torus 7% admits of a nowhere vanishing vector field, and therefore
no matter what embedding of 7% in R® we consider, still relation (1.15) remains valid. We
shall return to this issue in the next chapter. |

The intrinsic description of the Gauss-Kronecker curvature K via the formula dw;y =
Kw; A wsy reduces the computation of K to straightforward algebra once the metric ds? is
explicitly given. In fact, we have

Exercise 1.1 (a) - Let ds®* = P*(u,v)du® + Q*(u,v)dv®. Show that the connection and
curvature are given by

19P 10Q 1 -9 1P a1 .06
: —du —d K = +
T TR 050 TPt
(b) - Let M C R? be a surface, and L be a line of curvature on M. Show that the surface
formed by the normals to M along L has zero curvature.

In more sophisticated language, the frame ey, €5 is a global section of the bundle of frames PM and w12,
which is naturally defined on it, is pulled back to M by this section.
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In view of the above considerations it is reasonable to define the curvature matriz Q =
() of a submanifold M C RY as

m
Qij = dwi]- G i Z Wik N Wiy«
k=1
For hypersurface M C R™"!| the curvature matrix ( is then related to the second funda-
mental form by the important relation

Qi = —Wim+1 A Wity (1.16)

for a M C R3. This formula follows immediately from the structure equations and the
definition of €;;. The definition of the curvature matrix will be extended and discussed in
the following subsections.

Related to (1.16) is the concept of Gauss mapping which will be used exensively. Let
M C R™*! be a hypersurface and consider the mapping G : M — S™ given by G(z) =
ems+1(z) called the Gauss mapping. Since depi1 = Y wimt1€i, We easily obtain

G*(d'l)sm> = Wim+1 FASTERIVAN Wmm+1 = (—1)m det(H)w1 FAVCE T /\wm (117)

1.2 Levi-Civita Connection and Curvature

The Levi-Civita connection (w;;) for a submanifold M C R" is an anti-symmetric matrix
with the property dw; + Y wi; Aw; = 0 (1.6). In general, for 1-forms 6y,--- ,0r, spanning
the cotangent spaces to M, we can only assert the existence of a matrix of 1-forms (6;;) such
that df; + " 6;; A6; = 0. A remarkable consequence of an inner product on RY was that if
we set 6; = w; then the matrix (6;;) can be replaced by the anti-symmetric matrix (w;;), i.e.,
a matrix of 1-forms taking values in the Lie algebra of SO(m). The following proposition
shows that the existence of a Riemanniann metric on M (and not an embedding) is all
that is needed to ensure the existence and uniqueness of the matrix (w;;) with the required
properties®:

Proposition 1.1 Let wy, - ,wy, be a basis of one forms reducing the Riemannian metric
to the identity matriz, i.e., ds®> = Y ,w?. Then there is a unique skew-symmetric matriz
w = (w;;) (called the Levi-Civita connection for the given Riemannian metric) such that

dwi + Zwij A Wj = O

¥

2The remarkable property of the Levi-Civita connection becomes more evident when one studies geometric
structures corresponding subgroups other than the orthogonal groups.
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Proof - We have

d&)i = E AjjpW5 /\wk.
.k
where the coefficients a,;; satisfy the anti-symmetry condition
aijk -+ Aikj = 0.

Since aji; + akj; 18 symmetric in the indices (4, k), we have

E wji N\ (ajki + akji)wk =0,

jk
and consequently

dw,' = E wj A (aijk + Qjk; + akji)wk.
7.k

Now set
wij = E (@ijk + ajki + agji)wi
k

/

i;) be another
- Applying Cartan’s lemma to 3" w; A 6;; = 0, we obtain

which satisfies the requirements of the proposition. To prove uniqueness, let (w,

such matrix, and set 6;; = w;; — Wi

bi; = Zbkijwk: brij = baxj.
k

On the other hand by anti-symmetry of 6;;, we have brij = —byji: It follows easily that
biji = 0 thus completing the proof of the proposition.

Exercise 1.2 For the metric ds? in the diagonal form ds? = > 9idx?, show that the Levi-

Civita connection is given by

oot Oleo
V9% 0z,

V3
'Uij

- dlog Vi
\/@ 6;1:‘2' e

Lol =

where w; = /gudz;.



The connection w enables us to differentiate vector fields. More precisely, let €1, - , e,
be an orthonormal frame on the Riemannian manifold M, and (w;;) be the Levi-Civita
connection for the Riemannian metric g. Define

Vei = Zwﬁej, (118)
J

and we extend V to a vector field { = ) b;e; by
V. Z b,vei = Z wjibiej + Z dbiei. (119)
i ij i

The quantity V¢ is called the covariant derivative of the vector field £. For a vector field n
VaE =Y wi(nbie; + Y _ dbi(n)e;,
ij i

is the covariant derivative of £ in the direction 7. It is not difficult to verify that V,£ and
V¢ are independent of the choice of orthonormal frame ey, - , .
Another very useful operation on tensor is contraction. For every pair (4,5), with 1 <
i <m and 1 < j <n the contraction operator
Cz.j : V@...@V@l/*@...@[/* —>l/®---®V;®l/*®--~®Vj

A
m times n times m—1 times n—1 times

is defined by
Cij(1 ® - ®un®E B ®E) =)@ ®HQ  QUn®E® - RE® - B n,

where 0; means v; is omitted.
We now can extend covariant differentiation to a derivation on the space of tensors by
the requirements

1. Vf = df for a smooth function f;
2. V commutes with contractions.
An immediate consequence is
0 =dg(ei,e5) = V(g)(ei, ;) + 9(V(ei), €5) + gles, V(ez)) = V(9)(eis &) + wyi + wyg = V(g)(es €;)-

Therefore
Vg =0, orequivalently dg(&,()(n) = g(Vs&, () + 9(§, V(). (1.20)
This equation expresses a fundamental property of the Levi-Civita connection.
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Remark 1.1 We have followed the mathematical tradition of only considering Riemannian
rather than indefinite metrics by which we mean the condition of positive definiteness of the
symmetric matrix g = (g;;) is replaced by that of nondegeneracy. We shall see in subsections
on spaces of constant curvature and homogeneous spaces that indefinite metrics, besides
being of intrinsic interest in physics, are useful in understanding the behavior of Riemannian
metrics. For an indefinite metric ds* with r positive and m — r negative eigenvalues we
consider frames (also call them orthonormal) with the property

dsz(ei, Ej) = :f:(;ij,

where + or — sign is chosen according as i < r or r +1 < i < m. The definition of
Levi-Civita connection w;; is the same except that instead of skew symmetry we require
(wij)J + J(wi;) = 0 where J is the diagonal matrix whose first » diagonal entries are 1, and
the remaining diagonal entries are —1. In other words (w;;) takes values in the Lie algebra
of the orthogonal group of J. The existence and uniqueness of the Levi-Civita connection is
the same as in the Riemannian case. §§

We stated earlier that the deviation of the quantity dwi; + Y wik A wy; from vanishing
reflects the curvature of the space, and can be calculated from the metric ds? alone. We set
Qij = dwi; + Y wir A wyj, and call the matrix = (€4;) the curvature form. € is a skew
symmetric matrix and depends on the choice of frame. Therefore it is defined on the bundle
Fg of orthonormal frames and its individual entries are not of geometric interest. From &7
it follows easily that the dependence of ) on the choice of frame is given by

Q=A"'0A (1.21)

Since the entries of Q) are 2-forms, and 2-forms commute, we can manipulate the matrix Q
as if it were a matrix of scalars. Thus, for example, the various symmetric functions of the
characteristic roots of €2, which are polynomials in s, are independent of the choice of the
frame and are defined on the manifold M. This observation plays an important role in the
differential geometry of Riemannian manifolds and understanding the connection between
geometry and topology.

The identity dd = 0 implies certain relations among w;, wi; and §;;. Indeed ddw; = 0
implies the first Bianchi identity:

ZQU /\LUj =0 (122)
= .
Similarly the relation ddw;; = 0 implies the second Bianchi identity:

inj = Z Wik N ij - Z Qi A Wi - (123)
k k
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We set

QQij = E Rijklwk A Wi.
k1l

The scalar Rj;; is called the sectional curvature of the plane determined by the vectors e;, e;.
Rijw is called the curvature tensor. The curvature tensor satisfies the relations

Rijui + Rikij + Ruje =0, Ryjr = —Rjirt = Rjik, Rijtn = R (1.24)

The first identity is a consequence of (1.22), the second and third equations are trivial and
the last equality follows from the preceding ones by simple manipulations.

The curvature of a Riemannian manifold may be interpreted as an endomorphism in
more than one way. The endomorphism of 7,M, for each z € M, defined by Si(e;) =
237, Quj(ex, er)e; has trace Ry (called Ricci tensor)

Rir = Tr(Six) = 2 Z < Qiler, er)ej, €1 >2= Z R

jl=1 =1

where <, >, denotes the inner product (Riemannian metric) on 7, M. Thus each component
of the Ricci tensor at x € M is the trace of an endomorphism of 7,M. Clearly the Ricci
tensor is a symmetric matrix. It is a simple exercise to see that under a gauge transformation
A, the Ricci tensor transforms according

(Rie) = A7 (R A, (1.25)

where (R},) denotes the Ricci tensor relative to the new orthonormal basis.
It is customary to define the curvature operator R as

R(ei, ej)ek =9 Z Qlk(ei, ej)el‘

=1

It is useful to regard the curvature operator R and the curvature tensor R;j;; as multilinear
functions on T, M or elements of the tensor algebra on 7, M. For instance, if v = Y v;e; and
w = ) w;e;, then

R(v,w) = Z vw; Rie;, e;).
i"j

Similarly if v' = > vle; and w’' = ) wie;, then

Rv,w,v',w') = E VW, VW) Rijkr.

1,9, kil
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With this interpretation it is immediate that the sectional curvature can be regarded as the
assignment of a number to each 2-plane in 7,M. If V C T, M is a 2-plane, and e, - - , e, iS
a basis for 7,M with e;, e; spanning V', then

R(Ul; V2,1, Uz)
92 (v1,v1) g2 (v2, v2) — (gz(v1,v2))?’

(1.26)

R1212 =

where vy, v, is any basis for V and g, denotes the inner product on 7,M (the Riemannian
metric). The curvature tensor may be regarded as an element of S2(A* W) where W = TrM
(symmetric bilinear form on the second exterior power). Since a symmetric bilinear B form
is uniquely determined by its values on the diagonal, i.e.,

2B(u,v) = B(u + v,u +v) — B(u,u) — B(v,v),

the curvature tensor is determined by the sectional curvatures.

A Riemannian manifold M is called FEinstein if its Ricci tensor, when expressed relative
to an orthonormal frame, is a multiple of the identity. This condition is equivalent to the
requirement that relative to a coordinate system the Ricci tensor is multiple of the metric ds?.
In view of the transformation property (1.25), the Einstein property is independent of the
choice of orthonormal frame. It expresses an intrinsic geometric property of the Riemannian
manifold which is not as restrictive as being of constant sectional curvature.

Example 1.5 In this example we investigate the Einstein condition in the special case where
dim M = 4. We fix an orthonormal frame {e;,-- ,es}, and recall that R;; = >, Rixjx. In
particular, for an Einstein manifold we have

Z Rikir, — ZRjkjk =0,
3 %

for all 7, 7. This is a homogeneous system of three linear equations in six unknowns Rjx. It
is a simple matter to see that the solutions to this system are characterized by

R1212 = R3434: R1313 = R2424~ R1414 = R2323~

In other words, sectional curvatures of the planes determined by {e1,e2} and {e3,e4} are
equal, etc. In view of the independence of the Einstein condition from the choice of frame
and the transformation property (1.25), this conclusion can be restated as a four dimen-
sional Riemannian manifold is Einstein if and only if its sectional curvatures are identical on
orthogonal planes. B
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Exercise 1.3 By emulating the argument of example (1.5) show that for an Einstein mani-
fold of dimension 3, sectional curvatures at o point x € M do not depend on the choice of the
planes in ToM, and Rz = 0 etc. Thus Q; = R(x)w; Aw; for some function R : M — R.

The following example shows how part of exercise 1.3 generalizes to higher dimensions:

Example 1.6 Let M be a Riemannian manifold of dimension > 3 and assume that the
sectional curvatures at 2 € M do not depend on the choice of the plane (spanned by e;, e;).
We show that the symmetries of the curvature tensor imply that M necessarily has constant

curvature. Let e, - ,e,, be a moving frame for M, and set
f = cos fe; + sin fes, eg = —sinfe; + cosfes.
Then €f, €3, €5, €4, - - - is a moving frame for M, and let w?, wy, w§, wy, - - - be the dual coframe.

We denote the curvature form relative to this frame by (7). Let RY,,, denote the coefficient
of W Aws in Qf,. By 4-linearity of the curvature tensor

2 g 3
R?mz = c08° OR],5 + sin® OR303, + sin 20 R7os,.

The hypothesis implies that RY,,, = Rf,;, and is independent of 6, and consequently RSy, =
0. In other words, R = R, = 0 if exactly three of the indices i, j, k,! are distinct.
Similarly by looking at the coefficient of wf A wy in Q‘fQ and using Ris14 = 0 etc. we obtain
Rips3q + 3514 =0, oOr

This relation together with the first Bianchi identity Rgso; + R3yq5 + Rips; = 0 imply
Ring +2R{y5 = 0. (1.28)

Equation (1.27) and skew symmetry of the curvature tensor in the last two indices imply
Ryi30 = —Rs142 = —Ryo31 = Ruoz

Substituting in (1.28) we obtain Ryz3 = 0. It follows that the curvature tensor form Q;; = ij

is of the form
QU = R(.E)Ovz AN Wi (129)

Taking exterior derivative of Q;;, using the second Bianchi identity and substituting from
(1.29) we obtain

Y dRAwiAw; =0,

which implies that dR = 0 and M has constant curvature. This example is due to Schur.
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