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 How to Tell when Simpler, More Unified,
 or Less Ad Hoc Theories will Provide

 More Accurate Predictions

 MALCOLM FORSTER AND ELLIOTT SOBER*

 ABSTRACT

 Traditional analyses of the curve fitting problem maintain that the data do not
 indicate what form the fitted curve should take. Rather, this issue is said to be
 settled by prior probabilities, by simplicity, or by a bacgkround theory. In this
 paper, we describe a result due to Akaike [1973], which shows how the data
 can underwrite an inference concerning the curve's form based on an estimate
 of how predictively accurate it will be. We argue that this approach throws
 light on the theoretical virtues of parsimoniousness, unification, and non ad
 hocness, on the dispute about Bayesianism, and on empiricism and scientific
 realism.
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 10 Appendix B: A Proof of a Special Case of Akaike's Theorem

 I INTRODUCTION

 Curve fitting is a two-step process. First one selects a family of curves (or the
 form that the fitted curve must take). Then one finds the curve in that family
 (or the curve of the required form) that most accurately fits the data. These two

 * Both of us gratefully acknowledge support from the Graduate School at the University of
 Wisconsin-Madison, and NSF grant DIR-88222 78 (M.F.) and NSF grant SBE-9212294 (E.S.).
 Special thanks go to A. W. F. Edwards, William Harper, Martin Leckey, Brian Skyrms, and
 especially Peter Turney for helpful comments on an earlier draft.
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 2 Malcolm Forster and Elliott Sober

 steps are universally supposed to answer to different standards. The second
 step requires some measure of goodness-of-fit. The first is the context in which
 simplicity is said to play a role. Intrinsic to this two-step picture is the idea that
 these different standards can come into conflict. Maximizing simplicity usually
 requires sacrifice in goodness-of-fit. And perfect goodness-of-fit can usually be
 achieved only by selecting a complex curve.
 This view of the curve fitting problem engenders two puzzles. The first

 concerns the nature and justification of simplicity. What makes one curve
 simpler than another and why should the simplicity of a curve have any
 relevance to our opinions about which curves are true? The second concerns
 the relation of simplicity and goodness-of-fit. When these two desiderata
 conflict, how is a trade-off to be effected? A host of serious and inventive

 philosophical proposals notwithstanding, both these questions remain
 unanswered.

 If it could be shown that a single criterion for selecting a curve gives due
 weight to both simplicity and goodness-of-fit, then the two problems
 mentioned above for traditional analyses of the curve fitting problem would
 fall into place. It would become clear why simplicity matters (and how it
 should be measured). In addition, simplicity and goodness-of-fit would be
 rendered commensurable by representing each in a common currency. In
 what follows we describe a result in statistics, stemming from the work of
 Akaike [1973], [1974], which provides this sort of unified treatment of the
 problem, in which simplicity and goodness-of-fit are both shown to contribute
 to a curve's expected accuracy in making predictions.'

 2 AKAIKE WITHOUT TEARS

 In this section, we present the basic concepts that are needed to formulate the
 curve-fitting problem and to solve it. To begin with, we need to describe the
 kinds of hypotheses that curves represent and the relationship of those curves to
 the data we have available. A 'deterministic' curve is a line in the X/Y plane; it
 represents a function, which maps values of X (the independent variable) onto
 unique values of Y (the dependent variable).2 For example, Figure 1 depicts
 two such curves; each says that Y is a linear funcion of X. Each of these curves

 1 There is a growing technical literature on the subject. Linhart and Zucchini [1986] surveys the
 earlier work of statisticians. Researchers in computer science have used the concept of 'shortest
 data descriptions' to warrant the trade-off between simplicity and goodness-of-fit. See Rissanen
 [1978], [1989], or more recently, Wallace and Freeman [1992]. While there are criteria in the
 literature that are quantitatively different from Akaike's, there is a measure of agreement in the
 way they define simplicity and goodness-of-fit. We have focused on Akaike's seminal work
 because he motivates his criterion in a general and perspicuous manner.

 2 The idea that there is just one independent variable is a simplifying assumption adopted for
 ease of exposition. The results we will describe generalize to any number of independent
 variables.
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 How to Tell when Simpler Theories will Provide More Accurate Predictions 3

 may be obtained by fixing the values of the parameters ao and a1 in the
 following equation:

 Y= O + aC X.
 The two curves in Figure 1 are equally simple, we might say, because each is a
 straight line and each is obtained from a functional form in which there are
 just two adjustable parameters. These two curves belong to a family of
 curves-namely, the set of all straight lines. We will be talking about both
 specific curves and families of curves in what follows, so it will be important to
 keep the distinction between them in mind. In fact, it will turn out that there is
 no need to define the simplicity of a specific curve; all that is needed is the
 notion of the simplicity of a family of curves, and this Akaike's approach
 provides.

 Curve 2

 Curve 1

 Curve 2's prediction of Y ------------

 The observed value of Y-------------- .

 Curve 1's prediction of Y -------------

 Observed value of X X

 FIGURE 1

 Suppose the true specific curve determined the outcomes of the observations we
 make. Then, if Curve 1 were true, the set of data points we obtain would have
 to fall on a straight line (i.e., on the straight line depicted by Curve 1 itself). But
 we will suppose that the observation process involves error. Even if Curve 1
 were true, it is nonetheless quite possible that the data we obtain will not fall
 exactly on that curve. It may be impossible to say when any particular data
 point will fall above or below the true curve-only that it should 'tend' to be
 close. To represent this possibility of error, we associate a probability
 distribution with each curve. This distribution tells us how probable it is that
 the Y-value we observe for a given X-value will be 'close' to the curve. The most
 probable outcome is to obtain a Y-value that falls exactly on the true curve.
 Locations that are further off the curve have lower probabilities (symmetrically
 above and below) of being what we observe.

 To make this idea concrete, suppose that we are interested in plotting the
 location of a planet as it moves across the sky. In this case, the X-axis
 represents time and the Y-axis represents location. The true curve is the actual,
 unique trajectory of the planet. But our observation of the planet's motion is
 subject to error. Even if Curve 1 in Figure 1 describes the planet's true
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 4 Malcolm Forster and Elliott Sober

 trajectory, it nonetheless is possible that we should obtain data that fail to fall
 exactly on that curve.

 So there are two factors that influence the observations we make. There is

 the planet's actual trajectory; and there is the process of observation, which is
 subject to error. If the planet's trajectory is a straight line, we can combine
 these two influences into a single expression:

 (LIN) Y= ao + a, X+ a U.

 The last addend represents the influence of error. Here, of course, Y doesn't
 represent the planet's actual location, but represents its apparent location.3
 Now consider the data points depicted in Figure 1. If Curve 1 were true, it is

 possible that we should obtain the data before us. But the same is true of Curve
 2; if it were true, it also could have generated the data at hand. Although this is
 a similarity between the two curves, there nonetheless is a difference: the
 probability of obtaining the data, if Curve 1 is true, exceeds the probability of

 obtaining the data, if Curve 2 were true: p(Data/Curve 1) >p(Data/Curve 2).4
 Statisticians use the technical term likelihood to describe this difference; they
 would say that Curve 1 is more likely than Curve 2, given the data displayed.
 It is important to note that the likelihood of a hypothesis is not the same thing
 as its probability; don't confuse p(Data/Curve 1) with p(Curve 1/Data).
 In a sense, Curve 1 fits the data better than Curve 2 does. The standard way

 to measure this goodness-of-fit is by a curve's sum of squares (SOS). As depicted
 in Figure 1, we compute the difference between the Y-value of a data point and
 the Y-value on the curve directly above or below it. We square this difference
 and then sum the same squared differences for each data point. Curve 1 has a
 lower SOS value than Curve 2, relative to the data in Figure 1. Comparing SOS
 values is a way to compare likelihoods. Notice that if we were to increase the
 number of data points, the SOS values for both curves would almost certainly
 go up.5

 We can use the concept of SOS to reformulate the curve-fitting problem.
 Given a set of data, how are we to decide which curve is most plausible? If
 minimizing the SOS value were our sole criterion, we would almost always
 prefer bumpier curves over smoother ones. Even though Curve 1 is rather close
 to the data depicted in Figure 1, we could draw a more complex curve that

 3 Alternatively, the error term can be given a physical, instead of an epistemological,
 interpretation, if one wishes to represent the idea that nature itself is stochastic. In that case, Y
 would represent the planet's 'mean' position. This difference in interpretation will not affect our
 subsequent discussion.

 4 When random variables are continuous, the likelihood is defined in terms of probability
 densities rather than probabilities. A lower case p is a probability density, while the upper case P
 is reserved for probabilities.

 5 The SOS value for a curve cannot go down as the data set is enlarged; it would stay the same, if,
 improbably enough, the new data points fell exactly on the curve. Also note that a curve's
 likelihood will decline as the data set is enlarged, even if the new points fall exactly on the curve.
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 How to Tell when Simpler Theories will Provide More Accurate Predictions 5

 passes exactly through those data points. The practice of science is to not do
 this. Even though a hypothesis with more adjustable parameters would fit the
 data better, scientists seem to be willing to sacrifice goodness-of-fit if there is a
 compensating gain in simplicity. The problem is to understand the rationale
 behind this behaviour. Aesthetics to one side, the fundamental issue is to

 understand what simplicity has to do with truth.
 The universal reaction to this problem among philosophers has been to

 think that the only thing the data tell you about the problem at hand is given
 by the SOS values. The universal refrain is that 'if we proceed just on the basis
 of the data, we will choose a curve that passes exactly through the data points'.
 This interpretation means that giving weight to simplicity involves an
 extraempirical consideration. We thereby permit considerations to influence
 us other than the data at hand. Giving weight to simplicity thus seems to
 embody a kind of rationalism; a consistent empiricist must always opt for
 bumpy curves over smooth ones.

 The elementary framework developed so far allows us to show that this
 standard reaction is misguided. Let us suppose that the curve in Figure 2 is
 true. Now consider the data that this true curve will generate. Since we assume
 that observation is subject to error, it is overwhelmingly probable that the data
 we obtain will not fall exactly on that true curve. An example of such a data
 set, obtained from the true curve, also is depicted in Figure 2. Now suppose we
 draw a curve that passes exactly through those data points. Since the data
 points do not fall exactly on the true curve, such a best-fitting curve will be
 false. If we think of the true curve as the 'signal' and the deviation from the true
 curve generated by errors of observation as 'noise', then fitting the data
 perfectly involves confusing the noise with the signal. It is overwhelmingly
 probable that any curve that fits the data perfectly is false.

 Of course, this negative remark does not provide a recipe for disentangling
 signal from noise. We know that any curve with perfect fit is probably false, but
 this does not tell us which curve we should regard as true. What we would like
 is a method for separating the 'trends' in the data from the random deviations
 from those trends generated by error. A solution to the curve fitting problem
 will provide a method of this sort.

 Yn

 H

 e- *

 X

 FIGURE 2
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 6 Malcolm Forster and Elliott Sober

 To explain Akaike's proposal, we need to introduce a precise definition of
 how successful a curve is in identifying the trend behind the data. In addition
 to talking about a curve's distance from a particular data set, we need a way to
 measure a curve's distance from the true curve. A constraint on this new

 concept is already before us: a curve that is maximally close to the data
 (because it passes exactly through all the data points) is probably not going to
 be maximally close to the truth. Closeness to the truth is different from
 closeness to the data. How should the concept of closeness to the truth be
 defined?

 Let us suppose that Curve 1 in Figure 1 is true. We want a way to measure
 how close Curve 2 is to this true curve. Curve 1 has generated the data set
 displayed in the figure, and we can use the SOS measure to describe how close
 Curve 2 is to these data points. The idea is to define the distance of Curve 2 from
 Curve 1 in terms of the average distance of Curve 2 from the data generated by
 Curve 1. So, imagine that Curve 1 generates new data sets, and each time we
 measure the distance of Curve 2 from the generated data set. We repeat this
 procedure indefinitely, and we compute the average distance that Curve 2 has
 with respect to data sets generated by the true Curve 1. Remember that this
 average is computed over the space of possible data sets. rather than actual data
 sets.6 This allows us to define distance from the truth as follows:

 Distance from the true curve T of curve C = df

 Average[SOS of C, relative to data set D generated by T] -
 Average [SOS of T, relative to data set D generated by T].

 First, note that the distance from the true curve is relative to the process of data
 generation; it depends on the method of generating the array of X-values
 whose asociated Y-values the curves are asked to predict.7 Second, note that
 the true curve, T, is the curve that is closest to the truth (its distance from the
 truth is 0) according to this definition. However, the average SOS value of the
 true curve T, relative to the data sets that T generates, is nonzero. This is
 because of the role of error; on average, even the true curve won't fit the data
 perfectly.

 We now define the concept of distance from the truth for families of curves.
 The above definition defines what it means for Curve 2 to be a certain distance

 from the true curve. But what would it mean to describe how close to the true

 curve the family of straight lines (LIN) is? Here's the idea: Let's think of two data
 sets, D1 and D2, each generated by the true curve T. First, we find the specific
 curve within the family that fits D1 best. Then we compute the SOS of that

 6 Statisticians mark this distinction by using the term 'expected value' rather than 'average value'.
 We have chosen not to do this because the psychological connotations of the word 'expected'
 may mislead some readers.

 7 The X-arrays for the predicted data do not have to be the same as the X-array for the actual
 data, but both must be generated by the same stochastic process.
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 How to Tell when Simpler Theories will Provide More Accurate Predictions 7

 curve relative to the second data set D2. Imagine carrying out this procedure
 again and again for different pairs of data sets. The average SOS obtained in
 this way is the family's distance from the truth:

 Distance from the true curve T of family F = df

 Average[SOS of LI(F), relative to data set D2 generated by T]-
 Average[SOS of T, relative to data set D2 generated by T].

 Here LI(F) is the best fitting ('likeliest') member of the family F, relative to data
 set D1.8

 Our definition of a family's distance from the truth is intended to measure
 how accurate the predictions will be that the best fitting curve in a family
 generates. Consider the family of straight lines (LIN) and the data displayed in
 Figure 1. How close is the family (LIN) to the truth? We can imagine finding the
 straight line that best fits the data at hand. The question we'd like to answer is
 how accurately that particular straight line will predict new data. The average
 distance from the truth of best fitting curves selected from that family is the
 distance of the family from the truth:

 Distance from the true curve T of family F=
 Average[Distance of best fitting curves in F from the truth T].

 Our interest in the distance of families from the truth stems from this equality.
 Families are of interest because they are instruments of prediction; they make
 predictions by providing us with a specific curve-viz, the curve in the family
 that best fits the data.9

 If the true curve is in fact a straight line, (LIN) will of course be very close to
 the truth (though the distance will be nonzero).'( But if the truth is highly
 nonlinear, (LIN) will perform poorly as a device for predicting new data from
 old data. Let us move to a more complicated family of curves and ask the same
 questions. Consider (PAR), the family of parabolic equations:

 (PAR) Y= flo+ #1X+ L2X2 + a U.
 Specific parabolas will be u-shaped or n-shaped curves. Notice that (LIN) is a
 subset of (PAR). If the true specific curve is in (LIN), it also will be in (PAR).
 However, the converse relation does not hold.

 So if (LIN) is true, so is (PAR) (but not conversely). This may lead one to

 8 The definition of distance from the truth of a specific curve C is a special case of the definition for
 a family of curves F. A family is a set of curves; when a family contains just one curve, its best
 fitting member is just that curve itself.

 9 In the kinds of example we consider, there will be a unique curve in a family that fits the data
 best when the number of data points exceeds the number of adjustable parameters.

 10 A family can be literally true (by including the true curve) and still have a non-zero distance
 from the truth because other curves in the family (including L(F)) will be closer than the true
 curve to the actual data.
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 8 Malcolm Forster and Elliott Sober

 expect that (PAR) must be at least as close to the truth as (LIN) is. However, this
 is not so! Let's suppose that the true curve is, in fact, a straight line. This will
 generate sets of data points that mostly fail to fall on a straight line. Fitting a
 straight line to one set of data points will provide more accurate predictions
 about new data than will fitting a parabolic curve to that set. For each data set,
 the best fitting parabola will be closer to the data than the best fitting straight
 line. But this leaves open how well these two curves will predict new data. (LIN)
 will be closer to the truth (in the sense defined) than (PAR) is if the truth is a
 straight line.
 Curves that fit a given data set perfectly will usually be false; they will

 perform poorly when they are asked to make predictions about new data sets.
 Perfectly fitting curves are said to 'overfit' the data. This fact about specific
 curves is reflected in our definition of what it means for a family to be close to
 the truth. If (LIN) is closer to the truth than (PAR) is, then a straight line
 hypothesis fitted to one data set will do a better job of predicting new data than
 a parabolic curve fitted to the same data, at least on average. In this case, the
 more complex family is disadvantaged by the greater tendency of its best fitting
 case, L(PAR), to overfit the data.
 The definitions just given of closeness to the truth do not show how that

 quantity is epistemologically accessible. To apply these definitions and
 compute how close to the truth a curve C (or a family F) is, one must know
 what the truth (T) is. Nonetheless we can use the concept of closeness to the
 truth to reformulate the curve-fitting problem and to provide it with a solution.
 All families with at least one free parameter are able to reduce their least SOS

 by fitting to random fluctuations in the data. This is true of low dimensional
 families as well, though to a lesser degree. For example, the data in Figure 1
 were generated by a straight line, but random fluctuations in the data enable a
 parabola to fit it better than any staight line. This shows that the phenomenon
 of overfitting is ubiquitous." Thus, there are two reasons why the least SOS
 goes down as we move from lower to higher dimensional families: (a) Larger
 families generally contain curves closer to the truth than smaller families. (b)
 Overfitting: The higher the number of adjustable parameters, the more prone
 the family is to fit to noise in the data. Our promised reformulation of the curve
 fitting problem is this: We want to favour larger families if the least SOS goes
 down because of factor (a), but not if its decline is largely due to (b). If only we
 could correct the SOS value for overfitting, then the corrected SOS value would
 be an unbiased indication of what we are interested in-viz. the distance from
 the true curve.

 " This is the same overfitting problem that plagues general purpose learning devices like neural
 networks. Moody [1992] and Murata et al. [1992] are working on generalizing the Akaike
 framework to apply to artificial neural networks. See Forster [1992b] for further details. It is
 interesting that there is such a fundamental connection between neural learning and the
 philosophy of science (Churchland [1989]).
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 How to Tell when Simpler Theories will Provide More Accurate Predictions 9

 At this point, we will simply state Akaike's theorem without attempting to
 work through the mathematical argument that establishes its correctness.
 (See the Appendix A for a non-technical explanation of the assumptions
 needed and Appendix B for the proof of the theorem in a special case. The most
 thorough, and accessible, technical treatment is found in Sakamoto et al.
 [1986].) Akaike [1973] discovered a way of estimating the size of the
 overfitting factor. The procedure is fallible, of course, but it has the
 mathematical property of providing an unbiased estimate'2 of the comparative
 distances of different families from the truth under favourable conditions (see
 Appendix A). The amazing thing about Akaike's result is that it renders
 closeness to the truth epistemologically accessible; the estimate turns on facts
 that we can readily ascertain from the family itself and from the single data set
 we have before us:

 Estimated(Distance from the truth of family F)=

 SOS[L(F)] + 2k .2 + Constant.

 L(F) is the member of the family that fits the data best, k is the number of
 adjustable parameters that the family contains, and a2 is the variance (degree
 of spread) of the distribution of errors around the true curve. The last term on
 the right hand side is common to all families, and so it drops out in comparative
 judgments.

 The first term on the right hand side, SOS[L(F)], is what we have been
 calling the least SOS for the family. It represents what empiricists have
 traditionally taken to exhaust the testimony of evidence. The second term
 corrects for the average degree of overfitting for the family. Since overfitting
 has the effect of reducing the SOS, any correction should be positive. That this
 correction is proportional to k, the number of adjustable parameters," reflects
 the intuition that overfitting will increase as we include more curves that are
 able to mould themselves to noise in the data. That the expected degree of
 overfitting also is proportional to U2 is plausible as well-the bigger the error
 deviations from the true curve, the greater the potential for misleading
 fluctuations in the data. Also note that if there is no error (a2 = 0), then the
 estimate for the distance from the truth reduces to the least SOS value. The

 12 'Unbiased' means that its average performance will centre on the true value of the quantity
 being estimated. Note that an unbiased estimator can have a wide or narrow variance, which
 measures how much the estimate 'bounces around' on average. Unbiasedness is only one
 desideratum for 'good' estimators.

 13 In our running example, (LIN) contains two adjustable parameters and (PAR) contains three.
 The number of adjustable parameters is not a merely linguistic feature of the way a family is
 represented. For example, Y=a + X+yX is one way of representing (LIN), but k is still 2,
 because there is a reparameterization (viz. o'= c,p'= (p+y), and y'= (P-y)) such that
 Y= c' + P'X. In contrast, the dimension of the family Y= = + #X+ yZ is 3 because there is no
 such reparameterization.
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 postulation of error is essential if simplicity (as measured by k) is to be relevant
 to our estimates concerning what is true.14

 We will use the term 'predictive accuracy' to describe how close to the truth
 a curve or family is. 'Accuracy' is a synonym for 'closeness to the truth', while
 the term 'predictive' serves to remind the reader that the concept is relativized
 to the process by which the true curve generates new data. Instead of using
 SOS as a measure of distance, we use the log of the likelihood to measure
 closeness to the data (the greater the log-likelihood, the smaller the distance
 from the data). Thus, we define the predictive accuracy of a curve C, denoted by
 A(Curve C), as the average log-likelihood of C per datum. The predictive
 accuracy of a family F is the average predictive accuracy of its best fitting
 curves.'5 This leads to a more general statement of Akaike's Theorem, since
 the log-likelihood applies to cases, like coin tossing examples, in which the SOS
 value is not defined. Recalling the connection between the low SOS value of
 a specific curve and its high likelihood, the general statement of Akaike's
 theorem is as follows:

 Akaike's Theorem: Estimated[A(family F)] = (1/N) [log-likelihood(L(F)) - k],

 where N is the number of data points.16 We no longer need to assume that the
 error variance, U2, is known, for the error variance may be treated as another
 adjustable parameter.'7

 14 We regard the total absence of error as radically implausible. Even if nature were completely
 deterministic, there still would be observational errors. And even then, there still would be
 lawless deviations from any 'curve' that limits itself to an impoverished stock of independent
 variables. For example, it may be that the temperature at a particular place and time is
 determined. A curve that truly captures the dependence of temperature on the time of day and
 time of year will not predict the temperature exactly because there are other relevant factors.
 The data will behave as randomly as if the world were indeterministic. From an epistemological
 point of view, this is all that matters. Forster [1988b] and Harper [1989] examine the role of
 this third kind of error (arising from the action of other variables) in the 'exact' science of
 astronomy.

 15 This average is computed as follows: Take a data set D1 generated by the true curve T, and note
 the predictive accuracy of the best curve L1 (F) in F relative to D1. Imagine that this procedure is
 repeated with new data sets D2, D3, ..., each time noting the predictive values of the curves

 L2(F), L3(F), .... Now take the average of all these values.
 16 The factor (1/N) arises from the fact that we prefer to define accuracy as the average per datum

 log-likelihood, so that the accuracy of a hypothesis does not change when we consider the
 prediction of data sets of different sizes.

 17 When a2 is treated as unknown, a curve (by itself) no longer confers a probability on the data.
 Literally speaking, a curve is afamily of probability distributions-one for each numerical value
 of a2. From now on we will understand a 'curve' to be associated with some specific numerical
 value of a2. Also note that Akaike's estimate of predictive accuracy of a family of 'curves' in
 which a2 is a free parameter is related to the least SOS value for the family by a different formula
 (Sakamoto et al. [1986], p. 170):

 Estimate[A(Family F')] = - (1/2)log[SOS(B(F))/N] - k'/N+ constant,

 where F' is the higher dimensional family obtained from F by making a2 adjustable. Here,
 SOS(B(F)) is the least SOS for the original family F, and k' is the dimension of the final family.
 For LIN and PAR, k'= k+1.

This content downloaded from 128.112.200.107 on Thu, 03 Aug 2017 14:18:56 UTC
All use subject to http://about.jstor.org/terms
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 This theorem, we believe, provides a solution to the curve-fitting problem. It
 explains why fitting the data at hand is not the only consideration that should
 affect our judgment about what is true. The quantity k is also relevant; it
 represents the bearing of simplicity. A family F with a large number of
 adjustable parameters will have a best member L(F) whose likelihood is high;
 however, such a family will also have a high value for k. Symmetrically, a
 simpler family will have a lower likelihood associated with its best case, but will

 have a low value for k. Akaike's theorem shows the relevance of goodness-of-fit
 and simplicity to our estimate of what is true. But of equal importance, it states
 a precise rate-of-exchange between these two conflicting considerations; it
 shows how the one quantity should be traded off against the other. We
 emphasize that Akaike's theorem solves the curve-fitting problem without
 attributing simplicity to specific curves; the quantity k, in the first instance, is a

 property of families.'8
 A special case of Akaike's result is worth considering. Suppose one has a set

 of data that falls fairly evenly around a straight line. In this case the best fitting
 straight line will be very close to the best fitting parabola. So L(LIN) and L(PAR)
 will have almost the same SOS values. In this circumstance, Akaike's theorem

 says that the family with the smaller number of adjustable parameters is the
 one we should estimate to be closer to the truth. A simpler family is preferable if
 it fits the data about as well as a more complex family. Akaike's theorem
 describes how much of an improvement in goodness-of-fit the move to a more
 complicated family must provide for it to make sense to prefer the more
 complex family. A slight improvement in goodness-of-fit will not be enough to
 justify the move to a more complex family. The improvement must be large
 enough to overcome the penalty for complexity (represented by k).

 Another feature of Akaike's theorem is that the relative weight we give to
 simplicity declines as the number of data points increases. Suppose that there is
 a slight parabolic bend in the data, reflected in the fact that the SOS value of
 L(PAR) is slightly lower than the SOS value of L(LIN). Recall that the absolute
 value of these quantities depends on the number of data points. With a large
 amount of data our estimate of how close a family is to the truth will be
 determined largely by goodness-of-fit and only slightly by simplicity. But with
 smaller amounts of data, simplicity plays a more determining role. Only when
 a nonlinear trend in the data is 'statistically significant' should that regularity
 be taken seriously. This is an intuitively plausible idea that Akaike's result
 explains.

 3 UNIFICATION AS A SCIENTIFIC GOAL

 It is not at all standard to think that the curve fitting problem is related
 18 Thus, the problems of defining the simplicity of curves described by Priest [1976] do not

 undermine Akaike's proposal.
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 12 Malcolm Forster and Elliott Sober

 intimately to the problem of explaining why unified theories are preferable to
 disunified ones. The former problem usually is associated with 'inductive'
 inference, the latter with 'inference to the best explanation'. We are inclined to
 doubt that there really are such fundamentally different kinds of nondeductive
 inference (Forster [1986], [1988a], [1988b]; Sober [1988b], [1990a],
 [1990b].19 In any case, Akaike's approach to curve fitting provides a ready
 characterization of the circumstances in which a unified model is preferable to
 two disunified models that cover the same domain.21

 It is always a substantive scientific question whether two data sets should be
 encompassed by a single theory or different theories should be constructed for
 each. Should celestial and terrestrial motion be given a unified treatment or do
 the two sets of phenomena obey different laws? In retrospect, it may seem
 obvious that these two kinds of motion should receive the same theoretical

 treatment. But this is the wisdom of hindsight; individual phenomena do not
 have written on their sleeves the other phenomena with which they should be
 coalesced.

 Traditional approaches to this problem make the allure of unification
 something of a mystery.21 Given two data sets D1 and D1, a unified model Mu

 19 William Whewell [1840] described the process of curve fitting as a special case of a process of
 conceptualization called the 'colligation of facts' (Forster [1988b]). He then referred to the
 process that leads to the unification of disparate curve fitting solutions as the 'consilience of
 inductions'. On our view, both of these processes are seen as aspects of a single kind of
 inferential procedure. Bogen and Woodward [1988] argue that the inferential relationship
 of observation to theory has two parts: of observation to phenomena and of phenomena to
 theory. Again, it is not clear to us that these relationships are fundamentally different in kind.

 20 We will follow statistical practice and reserve the term 'model' for a family of hypotheses, in
 which each hypothesis includes a specific statement about the distribution of errors (so that
 likelihoods are well defined). A model leaves the values of some parameters unspecified. In
 applying the term to astronomy, we need only assume that some assumption about the form of
 the error distribution is included (e.g. that the distribution is Gaussian, as was assumed in
 Gauss's own application of the method of least squares to astronomy-see Porter [1986]). The
 variance of the distribution may be left as an adjustable parameter. The important point to
 notice is that distinguishing models from curves, or from abstract 'theories', is now critical to
 the philosophy of science, since Akaike's framework only provides a way of defining the
 simplicity of models.

 21 Friedman [1983], like some of the authors he cites (p. 242), describes unification as the process
 of reducing the number of independent theoretical assumptions. Of course, a model that
 assumes principles A, B and C is made more probable if these assumptions are whittled down to
 just A and B. However, as Friedman realizes, head counting will not deliver this verdict when
 the postulates of one model fail to be a subset of the postulates of the other.

 Friedman suggests (e.g., pp. 259-60) that a unified model receives more 'boosts' in
 confirmation than a model of narrower scope. If model Mu covers domains D1 and D2, whereas
 model M, covers only domain Di, then Mu can receive a confirmational boost from both data
 sets, whereas M, can receive a boost only from DI. Two points need to be made about this
 proposal. First, although Mu receives two boosts whereas M1 receives only one, the
 conjunction M, and M2 receives two boosts as well. Here M2 is a model that aims to explain
 only the data in D2. The conjunction M1 and M2 is a disunified model. If one wishes to explain
 the virtues of unification, one should compare Mu with this conjunction, not Mu with M1. The
 second point is that 'boosts' in probability are increases in probability, not the absolute values
 thus attained. The fact that Mu receives two boosts while M1 receives only one is quite

This content downloaded from 128.112.200.107 on Thu, 03 Aug 2017 14:18:56 UTC
All use subject to http://about.jstor.org/terms
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 might be constructed that seeks to explain them both. Alternatively, a
 disunified pair of models M1 and M2 also might be constructed, each theory

 addressing a different part of the total data. If M1 fits D1 at least as well as Mu

 does, and if M2 fits D2 at least as well as Mu does, what reason could there be to
 prefer Mu over the conjunction of M1 and M2? The temptation is to answer this
 question by invoking some consideration that lies outside of what the evidence
 says. One might appeal to the allegedly irreducible scientific goal of unification
 or to the connection of unification with simplicity.

 The problem posed by the question of goodness-of-fit is a real one, since the
 combined data set D1 and D2 often will be more heterogeneous than either
 subpart is on its own. This engenders a conflict between unification and
 goodness-of-fit; a unified theory that encompasses both data sets will fit the
 data less well than a conjunction of two separate theories, each tailor-made to
 fit only a single data set. However, just as in the curve fitting problem, this
 conflict can be resolved. Once again, the key is to correct for the fact that
 disunified theories are more inclined to overfit the data than their unified

 counterparts are.
 For example, consider the two data sets represented in Figure 3 and the

 following three models:

 (M,) The X and Y values in D1 and D2 are related by the function

 Y= oo) + -x1 X+ O2 X2 +a- U.
 (M1) The X and Y values in D1 are related by the function

 Y= Ao + #1 X+ a U.

 (M2) The X and Y values in D2 are related by the function

 Y= yo + 71 X+ a U.

 Since each data set is close to collinear, M1 will be more likely than Mu with
 respect to D1 and M2 Will be more likely than Mu with respect to D2. However,
 what happens when we use Akaike's Theorem to compare Mu with the
 conjunction M1 and M2, relative to the combined data? Notice that Mu has four
 free parameters, whereas the conjunction M1 and M2 has five. If its

 consistent with Mu's remaining less probable than M1. Friedman (pp. 143-4) recognizes this
 problem. His solution is to argue that deriving M1 from a unified theory Mu renders M1 more
 plausible than it would be if M1 were not so derivable. We note that this claim, even if it could be
 sustained, does not show why Mu is more plausible than M1 and M2, where the unified model
 and its disunified competitor are incompatible. In addition, the fact that M1 is more plausible in
 one scenario than it is in another does not bear on the question of how plausible Mu is.

 In addition to these specific problems with Friedman's proposal, we also wish to note that its
 basic motivation is contrary to what we learn from Akaike's framework. Friedman seeks to
 connect unification with paucity of assumptions; as we will see in what follows, unified models
 impose more constraints than their disunified counterparts.
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 assumptions apply (see Appendix A), Akaike's Theorem entails that Mu may be
 more predictively accurate even though its best case is less likely than the best
 case of M1 and M2. The best fitting case of the disunified theory would have to
 have a log-likelihood at least 1 unit greater than the best fitting case of the
 unified model if the disunified model were to be judged predictively superior.
 This is not true for the data in Figure 3. We conclude that estimated accuracy
 explains why a unified model is (sometimes) preferable to its disunified
 competitor. At least for cases that can be analyzed in the way just described, it
 is gratuitous to invoke 'unification' as a sui generis constraint on theorizing.

 The history of astronomy provides one of the earliest examples of the
 problem at hand. In Ptolemy's geocentric astronomy, the relative motion of
 the earth and the sun is independently replicated within the model for each
 planet, thereby unnecessarily adding to the number of adjustable parameters
 in his system. Copernicus's major innovation was to decompose the apparent
 motion of the planets into their individual motions around the sun together
 with a common sun-earth component, thereby reducing the number of
 adjustable parameters. At the end of the non-technical exposition of his
 programme in De Revolutionibus, Copernicus repeatedly traces the weakness of
 Ptolemy's astronomy back to its failure to impose any principled constraints on
 the separate planetary models.

 In a now famous passage, Kuhn ([1957], p. 181) claims that the unification
 or 'harmony' of Copernicus' system appeals to an 'aesthetic sense, and that
 alone'. Many philosophers of science have resisted Kuhn's analysis, but none
 has made a convincing reply. We present the maximization of estimated
 predictive accuracy as the rationale for accepting the Copernican model over
 its Ptolemaic rival. For example, if each additional epicycle is characterized by
 4 adjustable parameters, then the likelihood of the best basic Ptolemaic model,
 with just twelve circles, would have to be e20 (or more than 485 million) times
 the likelihood of its Copernican counterpart with just seven circles for the
 evidence to favour the Ptolemaic proposal.22 Yet it is generally agreed that
 22 If the log-likelihood is penalized by subtracting k, then the likelihood is penalized by multiplying

 it by a 'decay factor' e-k.
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 these basic models had about the same degree of fit with the data known at the
 time. The advantage of the Copernican model can hardly be characterized as
 merely aesthetic; it is observation, not a prioristic preference, that drives our
 choice of theory in this instance.23

 4 CAUSAL MODELLING

 Newton's first Rule of Reasoning in Philosophy in Principia was that 'we are to
 admit no more causes of natural things than such as are both true and
 sufficient to explain their appearances'. Here Newton gives voice to a version of
 Ockham's razor-explanations that postulate fewer causes should be preferred
 over explanations that postulate more. Although this injunction is often
 thought to be quite separate from the criterion of evidential support, some
 everyday applications of the rule can be given a simple representation in
 Akaike's framework.

 The entries in the following table represent the probabilities that an event C
 has, given the four combinations of the putative causes A and B:

 P(C/ -)

 A -A

 B w+a+b+i w+b
 -B w+a w

 Next we define a characteristic function XA:

 XA = 1 if A occurs

 XA= 0 if A does not occur.

 Ditto for the definition of XB.
 We now can formulate three hypotheses about the probability that C has in

 these four possible circumstances:

 (INT) P(C/XA = XA, XB = XB) = + axA + bXB + iXAXB

 (ADD) P(C/XA = XA, XB = XB) = W + axA + bXB

 (SING) P(C/XA = XA,XB = XB) = W + axA.

 (SING) says that only a single cause (namely A) makes a difference in whether
 C occurs. (ADD) says that two causes play a role and that their relationship is
 additive. (INT) says that there are two causes whose contributions are
 interactive (i.e., nonlinear or nonadditive). The hypotheses are listed in order of
 increasing parsimoniousness--one cause is simpler than two, and an additive

 23 Forster [1988b] and Harper [1989] argue that the subsequent impact of Kepler and Newton
 may be understood in the same terms.

This content downloaded from 128.112.200.107 on Thu, 03 Aug 2017 14:18:56 UTC
All use subject to http://about.jstor.org/terms
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 model with two causes is simpler than an interactive model for those two
 causes.

 As in the curve fitting problem, it is standard to understand causal modeling
 as a problem with two parts. First one selects a hypothesis about the form the
 causal relationship is to take; then one finds the best hypothesis of that form by
 estimating parameter values. Rather than solving the first problem by appeal
 to simplicity, our approach shows how estimated predictive accuracy can be
 brought to bear from the beginning. Suppose one has a large and equal
 number of observations for each of the four treatment cells. Let the empirical
 frequencies of C in those four cells be:

 P(C/ -)

 A -A

 B 0.5 0-2
 -B 0-5 0-2

 The three hypotheses now have the same best case, namely one in which
 w= 02, a= 0-3, b= 0, and i= 0. Recall that the estimated predictive accuracy
 of each model is 1/N times its maximum log-likelihood minus k/N. This means
 that when one model is a special case of another and they have the same best
 case, the model of lower dimensionality has greater estimated predictive
 accuracy. If follows that (SING) has greater estimated predictive accuracy than
 (ADD) and (ADD) has greater estimated predictive accuracy than (INT). For
 the data just given, predictive accuracy explains why it is vain to postulate
 more causes when fewer suffice.24 And as in our discussion of unification, it is

 possible to adjust the data set so as to provide a rationale for favouring a
 hypothesis of greater complexity.

 5 THE PROBLEM OF AD HOCNESS

 The bugbear of ad hoc hypotheses has traditionally been raised within the
 framework of a hypothetico-deductive philosophy of science. Predictions can
 be deduced from theories only with the help of auxiliary hypotheses. On this
 view, we test a theory by observing whether its predictions are true. However,
 the Quine-Duhem thesis states that the core theory may always be shielded
 from refutation by making after-the-fact adjustments in the auxiliary
 hypotheses, so that correct predictions are deduced. The classic example of this
 is Ptolemaic astronomy, where the model may always be amended in the face

 24 In this example, it is not just that fewer causes are preferable to more; in addition, we have
 shown why an additive model for two causes is preferable to an interactive model of those two
 causes. Counting causes is a special case of the more general consideration of dimensionality.
 Forster [1988b] argues that Newton was sensitive to this wider conception.
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 of potential refutation by adding another circle-so much so that the
 expression 'adding epicycles to epicycles' has become synonymous with 'ad
 hocness'. Although we reject the hypothetico-deductive picture of science, we
 do accept the usual conclusion that there is an important distinction to be
 drawn between reasonable revision and ad hoc evasion.

 Philosophers of science have recognized that protection of the core theories
 by post hoc revision is not always bad. The example usually cited is Leverrier's
 postulation of Neptune's existence to protect Newtonian mechanics from the
 anomalous wiggles in Uranus' orbit. The problem is to understand the
 epistemological grounds for distinguishing good from bad revisions of
 auxiliary hypotheses (which Lakatos [1970], refers to as the protective belt). As
 is customary, we reserve the term 'ad hoc' for revisions of the bad kind, but
 reject the ad hominem or historicist construal of the term. Ad hocness, if it is
 relevant to questions of evidence, has nothing to do with the motives of the
 person advocating the hypothesis, or with historical sequences of theories and
 their evidence.25

 Lakatos [1970] notes, with approval, that Leverrier's amendment of the
 prior Newtonian planetary model produced novel predictions; he introduces the
 derogatory term 'degenerating' for research programmes that fail to do this.
 But there are at least two problems with this approach. Musgrave [1974]
 warns that a careless reading of the term 'novel' may tempt us into a view of
 confirmation in which historical contingencies are given undue emphasis. The
 second defect in Lakatos's idea is that it fails to distinguish estimated predictive
 success from predictive power. It is obvious that predictive power is important,
 for without it there can be no predictive success. But predictive power is not
 enough to indicate that model revisions are of the good kind. For example, the
 continued addition of epicycles in Ptolemy's astronomy is not degenerate in
 Lakatos's sense. Each addition leads to novel predictions about the future
 positions of the planets. What we need is a measure of the predictive success
 that these additions can be expected to bring, and this is what Akaike's idea of
 estimated predictive acuracy provides.

 Our proposal is that a research programme is degenerative just in case loss in
 simplicity is not compensated by a sufficient gain in fit with data. Of course, the
 fit will always improve, but the improvement may not be enough to increase
 the estimated predictive value.

 Established research programmes often achieve considerable predictive
 success, so why do some researchers put their money on an undeveloped
 programme? First note that on our proposal there is no impediment for new
 programmes to take over the predictive successes of old ones. There is no
 'problem of old evidence' (Glymour [1980], Eells [1985]), since estimated

 25 We do not rule out the possibility that historical or psychological circumstances may
 sometimes be a reliable indication of ad hocnes. Our only point is that these circumstances do not
 make a theory ad hoc, anymore than a barometer makes it rain.

This content downloaded from 128.112.200.107 on Thu, 03 Aug 2017 14:18:56 UTC
All use subject to http://about.jstor.org/terms



 1 8 Malcolm Forster and Elliott Sober

 predictive accuracy does not depend on the historical sequence of discovery.
 But further, it is perfectly understandable that researchers may decide where
 to invest their energy by formulating a judgment about projected predictive
 success, and the degree to which current programmes are degenerating is thus
 a relevant consideration.26

 6 THE SUB-FAMILY PROBLEM

 While this explication of Lakatos' notion is a point in favour of our approach,
 there is another type of ad hocness that is a threat to Akaike's programme. A
 literal reading of Akaike's Theorem is that we should use the best fitting curve
 from the family with the highest estimated predictive value. However, for any
 such family, it is possible to construct an ad hoc family of curves with the same
 best fitting curve, with yet higher estimated predictive accuracy: Fix one or
 more of the adjustable parameters at their maximum likelihood values. Each
 sub-family, so constructed, will have the same best case. At the end of the
 procedure, we obtain a zero dimensional family whose only member is the best
 fitting curve of the original family. The Akaike's estimate of the predictive
 accuracy of this singleton family is just the log-likelihood of the curve. If this is
 allowed, then we are pushed back towards selecting complicated curves that fit
 the data exactly. We call this the sub-family problem.27
 Our resolution of this problem returns us to an idea described in Section 2: If a

 curve fits the data so well that it looks 'too good to be true', then it probably is.
 In order to spell this out, we now describe a theorem (stronger than Akaike's)
 that characterizes the behaviour of the error in estimating the predictive
 accuracy of families. The error of the estimated predictive accuracy of family F,
 or Error[Estimated(A(F))], is defined as the difference between Akaike's
 estimate of the predictive accuracy of family F and the true predictive accuracy
 of that family. Notice that the true predictive accuracy is constant-it does not
 depend on which hypothetical data set generated by the truth happens to be
 the actual data set. On the other hand, the estimated predictive accuracy of F
 does depend on the actual data-it is what statisticians call a random variable.
 So Error[Estimated(A(F))] also depends on the data, and the following theorem
 describes this dependence by decomposing it into the sum of three errors:28

 26 The Akaike approach also finesses the problem of 'Kuhn loss': Superceding theories do not
 always carry over all the successes of their predecessors. For example, Cartesian vortex theory
 'explains' why all planets revolve around the sun in the same direction, whereas Newton's
 theory dismisses this as a mere coincidence. Within Akaike's framework, the losses are weighed
 against the gains in the common currency of likelihoods.

 27 The reader should not be misled into thinking that the subfamily problem is a problem for
 Akaike's criterion alone; it arises for any proposal that measures simplicity by the paucity of
 parameters.

 28 The result we are about to describe is close to, but not identical with, equation (4.55) in
 Sakamoto et al. ([1986], p. 77). Similar formulae were originally proven in Akaike [1973]. See
 Forster [1992a] for further explanation.
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 The Error Theorem:

 Error[Estimated(A(F))] =

 Residual Fitting Error + Common Error + Sub-family Error.

 It is important to remember that these errors are not errors of prediction-they
 are errors in the estimation of predictive accuracy. This is why the Error
 Theorem might be called a 'meta-theorem'-it is a theorem about the
 'meaning' of Akaike's Theorem. However, it rests on the same assumptions as
 Akaike's Theorem (see Appendix A).

 Akaike's Theorem states that the average of Error[Estimated(A(F))] over all
 possible data sets generated by the truth is zero, which is to say Akaike's
 estimate of predictive accuracy is statistically unbiased.29 'Statistically
 unbiased' means that its average performance will centre on the true value of
 the quantity being estimated; it is a minimal requirement for 'good' estimators.
 Akaike's estimate conforms to this standard, but sometimes fails to meet
 another desideratum, which we will refer to as epistemic unbiasedness. We shall
 now explain the distinction in terms of an example.

 First, consider a standard example of a statistically unbiased estimate: the
 measurement of the mass of an object. For this measurement, the deviation
 from the true mass value is determined by a symmetrical error distribution
 centred on the true mass value, so that it is just as probable that the measured
 value is below the true value as it is above the true value. The measured value

 of mass is a statistically unbiased estimate of the true mass. But now suppose
 that we modify this estimate by ading + 10 or - 10 depending on whether a
 fair coin lands heads or tails, respectively. Suppose that the measured value of
 mass was 7 kg, and the fair coin lands heads. Then the new estimate is 17 kg.
 Suprisingly, this new estimate is also a statistically unbiased estimate of the
 true mass! The reason is that in an imagined series of repeated instances, the
 + 10 will be subtracted as often as it is added, so that the value of the average
 value of the modified estimate will still be equal to the true mass value.
 However, we know that the modified estimate is an overestimate in this
 instance, because we know that the coin landed heads. If the coin had landed

 tails, then the estimate would have been - 3 kg, and would have been known
 to be an underestimate. In either case, we say that the modified estimate is
 epistemically biased. In sum, the unmodified measurement value is a statisti-
 cally and epistemically unbiased estimate of the mass, while the modified
 estimate is statistically unbiased, but epistemically biased. Other things being
 equal, we prefer an estimate that is epistemically unbiased.

 With this distinction in hand, the Error Theorem is able to explain the
 limitations of Akaike's method. Here is a brief overview of our analysis: First,

 29 Statistical unbiasedness is really a property of the formula for obtaining the estimate, rather
 than the particular value of the estimator.
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 the common error is the same for all families (hence its name); it cancels out
 when we make comparisons, and has no effect on model selection. It will not be
 mentioned again. Second, the Residual Fitting Error is statistically and
 epistemically unbiased. But the Sub-family Error has a peculiar property. It is
 statistically unbiased (as is required by Akaike's Theorem); however, it is not
 always free of epistemic bias. Sometimes Akaike's estimate displays an
 epistemic bias, and this bias is highlighted by the subfamily problem. A careful
 analysis of the Sub-family Error will reveal the source and nature of the
 problem.

 We begin by filling in some background. One of the assumptions of these
 theorems is that there is some complex K-dimensional family of hypotheses
 (curves) that includes the true hypothesis, and that every family F that we may
 wish to consider is a sub-family of this superfamily (which we will call K).
 Every hypothesis under consideration may be represented as a point in the
 parameter space of K. This space may be treated as a K-dimensional vector
 space. So, if we imagine that our coordinate frame is centered on the Truth
 (where else?), then various hypotheses may be located in different directions,
 as shown in Figure 4. The two vectors shown are particularly important
 because the sub-family error is equal to the dot product, or scalar product, of
 these two vectors. The first vector is the one to L(K), the best fitting curve in K.
 Clearly this vector will move around when we consider different data sets
 generated by the truth. In fact, its tip falls just as probably on one point as on
 any other on the circle shown, although its length will vary as well. The other
 vector is fixed. It is the vector from the truth, T, to the hypothesis in the family F

 that is closest to T (viz. the most predictively accurate hypothesis in F). Now,
 the dot product is the product of the lengths of these two vectors times the
 cosine of the angle between them. The cosine factor is + 1 if the vectors are
 parallel, 0 if they are orthogonal, - 1 if they are anti-parallel, and in between
 for in between angles.

 The Akaike estimate for a low dimensional family whose best fitting case is
 close to the data (and such families are the dangerous 'pretenders', for they
 'unfairly' combine high log-likelihoods with small penalties for complexity)

 L(K), representing the data
 in parameter space

 The hypothesis in F
 closest to T

 FIGURE 4
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 exhibits an epistemic bias, as we now explain. The most predictively accurate
 hypothesis in such small families will also be close to the data, and therefore
 close to L(K). The danger is that the tips of the two vectors (whose dot product
 is equal to the subfamily error) will be close together. Then the cosine factor is
 close to + 1 and the subfamily error is large and positive. To illustrate this aspect
 of the relationship of Akaike's Theorem and the Error Theorem, consider
 the following example. Suppose we have a very large data set that exhibits
 strong linearity. We wish to estimate the predictive accuracies of L(LIN) and
 L(POLY-n), where POLY-n is the family of n-degree polynomials with n
 parameters free, and L(F) is obtained by using the data to single out the best
 fitting curve in family F.3" We may apply Akaike's Theorem to (LIN) and
 (POLY-n) directly, or we can apply it to the singleton families containing just
 L(LIN) and L(POLY-n), respectively. The surprising fact-that the ad hoc
 Akaike's estimate for L(POLY-n) is surely an overestimate of the predictive
 accuracy of L(POLY-n)-may have been anticipated from the fact that
 unreliable ad hoc comparisons of L(POLY-n) and L(LIN) will always favour
 L(POLY-n), because it is always closer to the data. In sum, both the direct and
 the ad hoc method of accuracy estimation are statistically unbiased (as required
 by Akaike's Theorem), but the ad hoc application of Akaike's method yields an
 estimate that we know is too high. The ad hoc application yields an estimate
 that is epistemically biased.31

 We have now unpacked our slogan about a curve's looking 'too good to be
 true' to provide deeper insights into the source and solution of the subfamily
 problem: The Akaike estimates of the predictive accuracy of L(F) obtained by
 viewing L(F) as the best fitting case in the ad hoc hierarchy of subfamilies of F
 tend to be too high. Indeed, that is exactly what we observe-the Akaike
 estimate of L(F) increases steadily as we move down the hierarchy towards the
 singleton subfamily. In sum: We have good reason not to trust the Akaike
 accuracy estimates for ad hoc subfamilies constructed by fixing adjustable
 parameters at their maximum likelihood values. We emphasize that this has
 nothing to do with when subfamilies are constructed, or who constructs them.

 Our analysis of the Error Theorem has been brief and necessarily incomplete.
 Much more research is needed on the management of errors in Akaike's method
 of model selection. Our aim has been to give the reader a taste for the heuristic
 power of Akaike's framework in addressing such foundational questions. We
 close by pointing out that the resolution we have sketched depends (like
 Akaike's Theorem) on the existence of prediction errors, for otherwise the

 30 Remember (from Section 2) that we are interested in estimating the predictive accuracy of a
 family only because it also provides an estimate of the predictive accuracy of its best fitting
 curve.

 31 Although the estimate is known to be too high, given the data at hand, the Akaike estimate of
 the predictive accuracy of that same singleton family relative to other data sets generated by the
 true 'curve' will be too low. On average, of course, the estimate will be centred on the true
 value.
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 vector to L(F) would be 0 and there would be no sub-family errors for any
 family.

 7 THE BEARING ON BAYESIANISM

 The fundamental principle behind Akaike's method is that we should aim to
 select hypotheses that have the greatest predictive accuracy. Since the truth
 has the maximum possible predictive accuracy and accuracy is a measure of
 'closeness', Akaike's recipe aims to move us towards the truth. In contrast, the
 central thesis of the kind of Bayesianism we will criticize here is that
 hypotheses should be compared as to their probability of truth.32

 In this section, we examine the possibility that Akaike's method might be
 recast in a Bayesian framework. Since our argument is many-faceted, we
 provide a brief summary here. We criticize two different Bayesian proposals
 that promise to yield a solution to the curve fitting problem. The first Bayesian
 strategy is to focus on families-show that the best families by Akaike's
 standards are the most probable families, and then give a Bayesian justification
 for selecting the best fitting case. The second approach is to bypass families,
 and show how the most accurate individual hypotheses end up with higher
 posterior probabilities. After criticizing these suggestions, we end the section
 by suggesting that Bayesian methods may be useful for assessing the risks in
 applying Akaike's criterion.

 The key element of any Bayesian approach is the use of Bayes' Theorem,
 which says that the probability of any hypothesis H given any data is
 proportional to its prior probability times its likelihood: p(H/Data) ocp(H) x
 p(Data/H). However, it is an unalterable fact about probabilities that (PAR) is
 more probable than (LIN), relative to any data you care to describe. No matter
 what the likelihoods are, there is no assignment of priors consistent with
 probability theory that can alter the fact that p(PAR/Data) > p(LIN/Data). The
 reason is that (LIN) is a special case of (PAR). How, then, can Bayesians explain
 the fact that scientists sometimes prefer (LIN) over (PAR)?33

 32 The problems we will enumerate for Bayesianism in what follows apply with equal force to
 what might be called incremental Bayesianism. This doctrine has no interest in assigning
 absolute values to prior and posterior probabilities, but seeks only to make sense of differences
 or ratios that obtain between these quantities. If H1 and H2 are both confirmed by the data, both
 P(H1/Data)/P(H1) and P(H2/Data)/P(H2) are greater than unity. To compare these ratios to find
 out which hypothesis received the larger boost, we need to evaluate the likelihood ratio P(Data/
 H1)/P(Data/H2). When the hypotheses are single curves, the better fitting hypothesis
 automatically receives the higher boost. When the hypotheses are families, evaluating this
 ratio leads to the problems we will describe in connection with Bayesian approaches to defining
 the likelihood of families.

 3 One might seek to evade this conclusion by saying that (LIN) and (PAR) are embedded in
 different theoretical contexts, that this difference gives rise to differences in meaning between
 their respective theoretical parameters, and that it follows from this that (PAR) is not entailed
 by (LIN). Although we are prepared to grant that this might be plausible in certain special
 cases, we doubt that this is an adequate response in general.
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 Bayesians might propose to address this problem as follows. Instead of (LIN)
 and (PAR), let us consider (LIN) and (PAR*), where (PAR*) is some subset of
 (PAR) from which (LIN) has been removed. Since (LIN) and (PAR*) are
 disjoint, nothing prevents us from ordering their prior probabilities as we see
 fit. In response, we note that this ad hoc maneuver does not address the problem
 of comparing (LIN) versus (PAR), but merely changes the subject. In addition, it
 remains to be seen how Bayesians can justify an ordering of priors for the
 hypotheses thus constructed and how they are able to make sense of the idea
 that families of curves (as opposed to single curves) possess well defined
 likelihoods.

 Rosenkrantz [1977] and Schwarz [1978] independently argued for a
 proposal of the first kind-ignoring the problems of logical entailment, they
 seek to compare the likelihoods of families of curves.34 So consider some family
 of curves F with dimension k. The idea is to define the average likelihood of
 the family in terms of some prior weighting of the members of the family,
 p(Curve/F).35

 If p(Curve/F) is strictly informationless, then it is easy to see that
 p(Data/F)= 0. Almost every curve in the family will be very far from the data.
 This means that if we accord equal weight to every curve in F, the average
 likelihood of F will be zero. What if we let p(Curve/F) be 'almost' information-
 less? This means that we divide the curves in the family into two subsets-
 within one subset (which includes curves close to the data points), we let the
 weights be equal and nonzero; outside this volume, we let the weights be zero.
 We illustrate this proposal by returning to the examples of (LIN) and (PAR),
 where the error variance U2 is known. For (LIN), we specify a volume V1 of
 parameter values for ao and a within which the likelihoods are non-negligible.

 For (PAR), we specify a volume V2 of parameter values for o(), PI, and /33 with
 the same characteristic. If we let boldface a and f range over curves in (LIN)
 and (PAR) respectively, the average likelihoods of those families then may be
 expressed approximately as follows:

 p(Data/LIN) = (1/V1) .... p(Data/m,LIN) da

 p(Data/PAR) = (1/V2) ... .p(Data/#,PAR) df,

 where the integration is restricted to the subsets of curves with non-zero
 weights. Note that as larger and larger volumes are taken into account, the
 average likelihoods approach zero (as the weighting become more strictly
 informationless).

 How are these two likelihoods to be compared? The volume V1 has two

 34 They ignore the entailment problem by comparing only the likelihoods of families; they bracket
 the Bayesian comparison of posterior probabilities.

 35 Here, the 'average likelihood' is an average over the members of a family of curves, and the Data
 are fixed. In contrast, the 'average log-likelihoods' we discussed in previous sections were
 averages of the log-likelihood of a single curve with respect to many (hypothetical) data sets.
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 dimensions in parameter space; the volume V2 has three. Although Rosen-
 krantz [1977] and Schwarz [1978] do not formulate their analysis in terms of
 the volumes V1 and V2, their proposal is equivalent to setting V1 = V2. This is
 one way to render commensurable the volumes of different dimensionality

 that appear in the likelihood expressions.36
 The trouble is that the proposal is not invariant under reparameterization.

 Consider the following pair of equations:

 (LIN) Y= o + a1X+ aU
 (LIN') Y= (oto')/3 + (~1'/2)X+ aU.

 These equations define exactly the same family of straight lines. Yet, the
 proposal entails that the latter has 6 times the average likelihood of the
 former.37

 Let us now turn to another strategy that Bayesians might pursue in finding a
 solution to the weighting problem. This is to let p(a/LIN) be equal to some
 informative probability p(a/LIN,Eo). Here the weighting scheme is a posterior
 probability, constructed on the basis of some evidence Eo that was acquired
 before the Data. The difficulty with this proposal is that it only pushes the
 problem back a step. One still has to make sense of the average likelihood
 p(Eo/LIN). This requires us to evaluate quantities of the form p(ox/LIN).
 Eventually, this must lead the Bayesian back to the quest for informationless
 (or almost informationless) priors, which we have discussed already.38 In light

 36 The ad hocness of any such assumption is noted by Aitkin [1991], who refers his readers to
 Lindley [1957].

 37 The reader can most easily grasp this result by considering the problem of integrating a
 function f(x), where f(x) = 1 between the limits 0 and 1, and f(x) = 0 elsewhere. Clearly,

 f f(x)dx = 1.

 Yet if we transform coordinates such that x'= 6x, while equating g(x') and f(x) for
 corresponding values of x and x', we obtain

 J g(x')dx' = 6.

 38 Nevertheless, Schwarz [1978] has pressed ahead and derived an interesting asymptotic
 expression for the average likelihood (with the V term omitted). Under conditions similar to
 those for Akaike's Theorem,

 Log(Average Likelihood of F) = log p(Data/L(F)) - (logN)k/2 + other terms,

 where L(F) is the maximum likelihood hypothesis in F, N is the number of data, and k is the
 dimension of F. The 'other terms' are negligible for large N. The resulting recipe for model
 selection is often referred to as the Bayesian Information Criterion, or BIC for short. We will not
 evaluate the criterion here. But we deny that it is securely grounded in the Bayesian
 framework, for the reasons we have given. In that regard, it is interesting to note that the same
 criterion has been independently derived from quite different principles by Akaike [1977] and
 Rissanen [1978], [1989].
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 of these considerations, we think it is highly questionable that this first
 Bayesian approach-in which families of curves are the objects of investiga-
 tion-can provide a satisfactory treatment of the curve fitting problem.39

 So let us consider a Bayesian who compares the probabilities of particular
 curves. The problem here is that there seems to be no principled way for
 estimated predictive accuracies to affect the estimated probability of their
 truth. For such a Bayesian is bound by Bayes' Theorem, which says that the
 posterior probability of such a particular hypothesis is proportional to the prior
 probability times the likelihood relative to the total evidence:

 p(Curve/Data) =p(Curve)p(Data/Curve)/p(Data).

 The likelihood term, p(Data/Curve), simply measures the goodness-of-fit, so
 the only vehicle for including any estimate of the predictive value of the curve
 is in the prior probability, p(Curve). In order to replicate the Akaike results, we
 would need

 p(Curve) =p(Data)e-k

 where p(Data) is merely a normalization factor. But we do not see how a
 Bayesian can justify assigning priors in accordance with this scheme.

 The problem is not avoided by adopting a subjectivist approach that eschews
 the need for objective justification. The problem is deeper than that. The
 trouble is that a particular curve, as opposed to a family of curves, cannot be
 assigned a value of k on a priori grounds. After all, any curve is a member of
 many families of different dimensions. While this problem for Akiake arises in
 the guise of the sub-family problem, the proposed solution was to distruct sub-
 families that have a special relationship with the data. However, no comparable
 solution is available to Bayesians because the determination of k must be
 made independently of the data. Thus, Bayesians must find an entirely

 39 However, Aitkin [1991] has a different 'average likelihood' proposal, which allegedly solves the
 curve fitting problem. He computes the average by weighing each curve in the family by its
 posterior probability p(Curve/Data), given all the available data. A theorem based on the same
 assumptions as Akaike's Theorem shows that:

 Log(Aitkin Average Likelihood of F) = Log-likelihood(L(F)) - (k/2)log2.

 Since log2 is less than 1 (the logarithms are to base e), Aitkin imposes less than 1/2 of Akaike's
 penalty for complexity. This is already an uncomfortable consequence because the Error
 Theorem shows that (PAR) will be chosen over (LIN) by Aitkin's criterion more often than not
 even when (LIN) is true. But the real problem is that the criterion is just 'pulled out of a hat'.
 What will families of greater average posterior likelihood provide for us? Will they tend to bring
 us closer to the truth, or give us more accurate predictions, or what? Aitkin provides no
 answers to these questions. Given that Aitkin's proposal does not have more fundamental
 principles to fall back on, how does he cope with the sub-family problem? There is no anologue
 to the Error Theorem for Aitkin because there is no sense in which average likelihood is in error
 if it is not estimating anything. Also see the commentaries immediately following Aitkin's
 paper, including one by Akaike.
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 different kind of solution to the sub-family problem, and we fail to see how this
 can be done.41

 Our diagnosis of the problem is that Bayesianism is unable to capture the
 proper significance of considering families of curves. We work with families
 because they deliver the most reliable estimates of the predictive accuracy of a
 few curves; namely their best fitting cases. There is no reason to suspect that
 such an enterprise can be construed as maximizing the probability that these
 best fitting cases are true. Why should we be interested in the probability of
 these curves' being true, when it is intuitvely clear that no curve fitting
 procedure will ever deliver curves that are exactly true? If we have to live with
 false hypotheses, then it may be wise to lower our sights, and aim at
 hypotheses that have the highest possible predictive accuracy. Thus, the brand
 of Bayesianism most popular amongst philosophers is founded on too narrow a
 conception of the scientific enterprise.41
 Having said all that, we do not draw the rash conclusion that Bayesian

 methodology is irrelevant to Akaike's new predictive paradigm. There are
 many Bayesian solutions to practical statistical problems. However, Akaike's
 reconceptualization of statistics does recommend that the foundations of
 Bayesian statistics require rethinking.42 A positive suggestion may be that
 Bayesian methods can help determine the probability that one hypothesis is
 more predictively accurate than another. In that way, Bayesian methods
 might be usefully brought to bear on the problem of assessing the reliability of
 estimated accuracies, for that appears to be an important and open area of
 research.

 8 EMPIRICISM AND REALISM

 One virtue of our approach is that it makes clear what the simplicity of a curve
 has to do with the reasons one might have for believing it. Popper [1959]
 argued that simpler curves are more falsifiable; Sober [1975] suggested that
 simpler curves are more informative. These proposals, and others like them,43

 40 In this respect, we think it is instructive to consider the recent attempt by Jeffreys and Berger
 [1992] to provide a Bayesian rationale for Ockham's razor. We criticize their proposal in Sober
 and Forster [1992].

 41 It is easy to construct examples which show that maximizing probability of truth is different
 from maximizing closeness to the truth. A common example is the use of averages to estimate a
 discrete number, say the number of children in an American family. An estimate of 1-9
 children has less probability of being true in any case than an estimate of 2, but may be
 predictively more accurate nevertheless.

 42 Akaike [1985] shows how the rule of Bayesian conditionalization, as a method of updating
 probabilites, may be understood in terms of maximizing expected predictive accuracy.

 43 Turney [1990] demonstrates that simpler families of curves are more stable. Roughly, the
 instability of a family of curves, relative to the data, is the expected 'distance' (measured by the
 SOS) of a new best fitting curve from the old best fitting curve when the data are perturbed in
 accordance with the known error distribution. Turney's measure of instability takes one step
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 make it difficult to say why one ought to believe simpler curves rather than
 their more complex competitors. In contrast, the analysis we have proposed
 greatly simplifies the task of justification. When a simpler curve is more
 plausible than its more complex alternatives, this is because it has a higher
 estimated predictive accuracy.

 We believe that our account of curve fitting is good news for empiricism,
 although it does not accord with what has been said by many empiricists. The
 idea that some sui generis criterion of simplicity is relevant to judging the
 plausibility of hypotheses is deeply inimicable to empiricism. For empiricism,
 hypothesis evaluation should be driven by data, not by a priori assumptions
 about what a 'good' hypothesis should be like. Empiricists often take this point
 to heart and conclude that simplicity is a merely pragmatic virtue, one having
 to do with the usefulness of hypotheses, but not with their plausiblity (cf. e.g.,
 Van Fraassen [1980], pp. 87-9). The embarrassing thing about this dismissal
 of simplicity is that it applies not just to highly theoretical hypotheses, but to
 quite mundane empirical generalizations of the sort that figure in some curve
 fitting problems. In these contexts, skepticism about simplicity threatens to
 lead the empiricist down the garden path to skepticism about induction (Sober
 [1990a]). Empiricists therefore should welcome the idea that curve fitting does
 not require a sui generis criterion of simplicity. This does not show that some
 form of radical empiricism is true. Rather, we draw the more modest
 conclusion that the data tell you more than you may have thought.44

 Although our goal has been to show how the simplicity of a curve can reflect
 important facts about its predictive accuracy, we do not claim that all uses of
 simplicity and parsimony in science reduce to purely evidential considerations.
 We do not deny that scientists often have pragmatic reasons for using simpler
 curves instead of more complex ones. However, we would insist that these
 pragmatic considerations not be confused with evidential ones. Monolithic
 theories about simplicity and parsimony-which claim that these considera-
 tions are never evidential or that they are never merely pragmatic-should be
 replaced by a more pluralistic approach. At least in the context of the curve
 fitting problem, Akaike's technical result provides a benchmark that identifies
 the degree to which simplicity has evidential significance. Any further weight
 accorded to simplicity, we suspect, derives from pragmatic considerations.

 Our analysis supports the idea that the simplicity of a family of curves is an

 towards estimating the degree of overfitting, as we have characterized it. However, in our
 opinion, his paper does not show why stability should be relevant to the question of what to
 believe. We also note that Turney leaves open the justification for trade offs between simplicity
 and goodness-of-fit. Akaike's Theorem is more general than Turney's theorem in any case-it
 is not restricted to the standard curve fitting situation, and does not assume a known error
 variance.

 44 For the bearing of this thesis on traditional arguments against the existence of component
 forces in Newtonian physics, see Forster [1988b].
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 epistemic epiphenomenon.45 Sometimes simpler curves are to be preferred
 over more complicated ones, but the reason for this is not that simplicity is an
 epistemic end-in-itself. At other times, more complex curves are to be preferred
 over simpler alternatives, but this is not because the irreducible demands of
 simplicity are overwhelmed by more weighty considerations of some other
 sort. Whether a simpler curve is preferable to some more complex alternative,
 or the reverse is true, has nothing to do with simplicity and everything to do
 with predictive accuracy.

 Our brand of empiricism is not antithetical to the realist view that science
 aims at the truth,46 in the same sense that archers aim at the bull's eye even
 when they have no hope of hitting it. In the past, the curve fitting problem has
 posed a dilemma: Either accept a realist interpretation of science at the price of
 viewing simplicity as an irreducible and a prioristic sign of truth and thereby
 eschew empiricism, or embrace some form of anti-realism. Akaike's solution to
 the curve fitting problem dismantles the dilemma. It now is possible to be a
 realist and an empiricist at the same time.
 Popper [1968] initiated a realist program that takes the 'disastrous meta-

 induction' (Laudan [1984]) seriously-all of our scientific theories in the past
 have been false, so it is likely that all of our theories in the future will also be
 false. Even granting this prediction of failure, it may make sense to claim that
 our theories aim at the truth if we could (1) define a measure of closeness-to-
 the-truth, and (2) show how theory choice could be viewed as implementing
 some method that would, more often than not, take us closer to the truth.

 Proposed solutions to the problem of defining verisimilitude have never
 gained wide acceptance,47 and the second part of the programme is seldom
 discussed.

 We have already described predictive accuracy as a measure of closeness to

 45 This thesis complements the view of parsimony developed in Sober [1988b], [1990b]. It also
 might be formulated in terms of the idea of screening off: Simplicity is correlated with
 plausibility, but only because simplicity also is correlated with predictive accuracy. Once the
 estimated predictive accuracy of a hypothesis is held fixed, its simplicity has nothing futher to
 contribute to an assessment of its plausibility.

 46 We do not claim that this is the only aim of science. We agree with sociologists of science that a
 complete account of the practice of science must include an account of pragmatic and social
 values. Modern theories of decision making are well equipped to model scientific practice in
 terms of pragmatic, social, and evidential considerations, in a way that is compatible with
 realism (Hooker [1987]). However, we do oppose those extremists who believe that internal
 evidential considerations play no role in the social dynamics of science.

 47 Popper's original definition of verisimilitude was formulated in terms of the deductive
 consequences of theories; fatal flaws were detected independently by Tichy [1974] and by
 Miller [1 974]. Tichyr [1974] presents an alternative definition of his own, which Miller [1 974]
 shows to be language dependent. Miller [1975] also argues that the intuitive notion of
 accuracy of prediction is also subject to the same kind of language variance. Good's [1975]
 reply to Miller's paper contains a brief explanation of why a probabilistic definition of
 accuracy, like Akaike's, is not susceptible to Miller's objection. See Forster [1992a] for futher
 discussion.
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 the truth. To that extent, Akaike's approach revitalizes Popper's programme.48
 However, we suspect that those neo-Popperians who seek some grand
 metaphysical definition of closeness to the truth will be disappointed with a
 notion of predictive accuracy defined by reference to a specified domain of
 inquiry.49 Nonetheless, we are convinced that any definition of verisimilitude
 must be limited in this way if we are primarily interested in epistemological
 questions. In any event, the important point is that Akaike's Theorem lays the
 epistemological foundation for our progress towards the truth in this domain-
 relative sense.

 In spite of our sympathy for Popper's quest for a concept of verisimilitude, we
 nonetheless reject hypothetico-deductivism, on which the Popperian pro-
 gramme is founded."5 The hypothetico-deductivist strategy has been to adopt
 an idealized model of science in which there are no probabilistic errors in the
 data, to use this error-free idealization to solve various philosophical problems,
 and then to add an account of error as an afterthought.5' Our analysis suggests
 that many central problems in the philosophy of science are not decomposable
 in this way. Simplicity and unification are relevant to our judgments about
 what is truth-like only to the extent that observing and inferring are subject to
 error.

 9 APPENDIX A: THE ASSUMPTIONS BEHIND AKAIKE'S THEOREM

 There are three kinds of assumption behind the proof of Akaike's Theorem.
 First, there is a 'uniformity of nature' assumption that says that the true curve,
 whatever it is, remains the same for both the old and the new data sets
 considered in the definition of predictive accuracy. The second kind of
 assumption consists of mathematically formulated conditions that ensure the
 'asymptotic normality' of the likelihood function (viz. the likelihood viewed as
 a function of parameter values). These assumptions contribute to proving
 various central limit theorems in mathematical statistics. The final assumption
 is that the sample size (the amount of data) is large enough to ensure that
 the likelihood function will approximate its asymptotic properties. It is the
 second assumption that requires the most explaining. We first say what the

 48 This perspective also is relevant to Cartwright's [1983] argument that the proliferation of
 mutually incompatible models in physics is a reason to reject realism. This is an embarrassment
 to a realist who interprets all (viable) models as true. On the other hand, our brand of realist is
 only interested in interpreting hypotheses as being more or less close-to-the-truth. A plurality
 of models is conducive to this more modest realist porogramme.

 49 We note in this connection that there are philosophical issues raised by the concept of
 prediction that are not addressed by Akaike's notion of predictive accuracy.

 50 Note that hypothetico-deductivism, as we understand it, is not rescued by the fact that
 probabilistic assertions about future data are deduced from scientific hypotheses. For
 hypothetico-deductivism demands that at least some of the deductive consequences of our
 theories are observations, but we do not observe probabilities.

 51 See Forster [1992c] for a discussion of how this bears on Hempel's raven paradox.
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 'normality' assumption is, and describe the pivotal role it has played in
 statistics.

 The normal, or Gaussian, probability distribution is easily recognized in its
 one dimensional form by its characteristic bell shape. In its more general
 multivariate form, the normal distribution has come to play a pivotal role in
 experimental and theoretical statistics. In experimental statistics, error
 distributions (in the estimation of parameter values) are found to be
 approximately normal, especially for large data sets. According to Cram6r
 ([1946), p. 231), 'Such is the case, e.g., with the distributions of errors of
 physical and astronomical measurements, a great number of demographical
 and biological distributions, etc.'. In fact, the assumption that measurement
 errors are normally distributed around a mean value is so widespread in
 science that it is often referred to as the law of errors. On the theoretical side, 'the
 central limit theorem affords a theoretical explanation of these empirical facts'.
 In a somewhat humorous tone, Cramer ([1946), p. 232) sums up by quoting
 Lippman as saying: 'everyone believes in the law of errors, the experimenters
 because they think it is a mathematical theorem, the mathematicians because
 they think it is an experimental fact', and adds that 'both parties are perfectly
 right, provided that their belief is not too absolute'.

 Mathematically, these assumptions are difficult to state explicitly, not just
 because they are mathematically esoteric, but also because there are various
 ways in which the assumptions may be weakened (see Cramer [1946]). For
 this reason, mathematical statisticians almost always vaguely refer to the
 assumptions as 'certain regularity conditions'. They would certainly not make
 the brazen claim that these conditions hold for all real scientific models, and we

 follow their lead here. However, we do wish to say that the conditions are not
 unduly restrictive. There is no need to assume that the error distributions
 associated with the observational data are themselves aproximately bell-
 shaped. The standard coin tossing example illustrates the point. The assumed
 'error' distribution is the binomial distribution (the probability getting the high
 value is p, while the probability of the low value is (1 -p)), yet the distribution
 for the p-estimates is asymptotically normal. The second point is that
 asymptotic normality is not restricted to models that are linear in their
 parameters. For example, suppose that the product 2f occurs in one of the
 equations of the model. If a and 0 are their maximum likelihood estimates and

 the values of a and f are sufficiently close to these estimates, then we may
 write: a#f= (a + Aa)(+(fl+ A#) ++ AfJ + flAa. Here, & and 4 are constants, and
 the nonlinear product is now linear in the new, transformed, parameters Aa

 and Af. This approximation will be valid because the region of non-negligible
 likelihoods becomes more narrowly concentrated around the best estimates as
 the sample size increases. The same argument applies to other sufficiently
 smooth nonlinear equations, such as Y = sin(aX+ f). and so on.

 Perhaps the most restrictive assumption is that the sample size be large. This

This content downloaded from 128.112.200.107 on Thu, 03 Aug 2017 14:18:56 UTC
All use subject to http://about.jstor.org/terms



 How to Tell when Simpler Theories will Provide More Accurate Predictions 3

 does not mean merely that the total data set is large, but that there is enough
 data within the domain of each parameter. For example, the approximate
 normality of the model M1 and M2 in Section 3 requires that both of the data
 sets D1 and D2 are sufficiently large.

 IO APPENDIX B: A PROOF OF A SPECIAL CASE OF AKAIKE'S

 THEOREM

 Suppose that we are sampling from a target population of values of a random
 variable X (e.g., the population of possible measurements of the mass of an

 object) with mean y* (the true mass) and variance a2 (the error of
 measurement), where the true probability distribution p for the values x of the
 random variable X is normal, or Guassian. That is,

 1 [ 1 -
 p(x) = exp - (x - p*)2

 Now consider a hypothesis ('curve') that (falsely) asserts that the mean is Yu.
 The hypothesis in question asserts that the probability distribution for
 measured values of X is

 1 1 1 q(x) = exp (x-)2

 Hypotheses like q(x) form afamily of hypotheses, each of which corresponds to
 a particular value of the parameter y. Thus, it is notationally convenient to
 denote the hypothesis itself by y. (It will be clear from the context when u is the
 parameter, the parameter value, or the hypothesis in the family corresponding
 to a parameter value.) The simplicity of a family of hypotheses (referred to by
 statisticians as a model) is measured by the number of adjustable parameters;
 in this case there is only one (y).
 If we accept this family of hypotheses, the next step is to find the best fitting

 hypothesis, and this is the hypothesis that confers the highest probability
 (density) on the data (i.e., has the maximum likelihood out of all the members
 of the family). We denote the maximum likelihood hypothesis (which is also

 p(x)

 p(x) q(x)

 * x

 FIGURE 5
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 the maximum log-likelihood hypothesis) by P. How will 9, obtained from past
 data, fare in the prediction of new data drawn from the same population? For
 any particular datum x, we might measure the accuracy with which it is
 predicted by its goodness-of-fit; viz. the log-likelihood, logp(x). But we are really
 interested in the 'average datum' drawn from the population, so we define the
 predictive accuracy (A for 'accuracy') of an arbitrary hypothesis P to be:

 A(y) = dfE*(logq(x)),

 where q(x) is the probability distribution in the family corresponding to the
 parameter value y, and E* is the expected value calculated with respect to the
 true hypothesis (p*). That is,

 A() = p(x)logq(x)dx.
 -00

 Note that A(y) is the expected log-likelihood per datum for a data set of arbitrary
 size N. From the diagram, it is intuitively clear that a distribution q(x) with
 central point I that is far from the true value y* is not going to do so well in
 predicting data randomly sampled from the true population. By the same
 token, p(x) is going to do the best job of fitting the data it generates. The
 following result gives this intuitive fact a quantitative representation:

 A(y) = A(p*) - (- *)2/2
 Proof: The log of

 exp - (x -  )
 is clearly equal to

 -(x - )2.2
 But,

 (x- p)2 =(X _* _ (y _*))2 = (X _U*)2 - 2(x - )( - *) + (_- p*)2.

 When we take expectations and simplify the result follows. This completes the
 proof.

 Since (1) holds for any hypothesis in the family, it surely holds for the
 hypothesis that best fits the past data. Thus,

 A(^) = A(,u*) - ?(^- p*")2/2.
 While interesting, this result is still epistemologically unhelpful because we
 don't know A(p*) and we don't know the value of p*. The second problem is
 surmounted in the following way. We may estimate A(^) by the expected value
 of the right hand side, where the expected value is taken over the maximum
 likelihood estimate r. That is,

 Estimate of A(j)= E*[A(4u*) - (A - -*)/"2].
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 But the central limit theorem tells us that the expected sum of squared deviations

 of an estimate of y from its true value is just a2/N, where N is the number of
 data in the sample from which the estimate is taken (the number of 'past data').
 Thus, we have

 Estimate of A(^) = A(p*) - /N. (2)

 The only remaining problem is to estimate A(p*). Again the qualitative facts
 are clear. If 9 is the best fitting hypothesis relative to past data, then it fits the
 past data better than any other hypothesis (by definition), and therefore fits
 better than p*. Thus, if l(P) is the log-likelihood of the best fitting hypothesis,

 then l(P) > 1(~u*) and therefore E*(I(P)/N) > E*(l(p*)/N) = df A(p*). The question
 as to how much greater is answered by the following result (without proof):

 A(u*) = E*(l(/)IN) E*(l(ft)/N- 2/N). (3)
 If we now combine (2) and (3) we get:

 Estimate of A(P)= E*(I(j) - 1)/N.

 Since 1(/) - 1 is clearly an unbiased estimate of E*(I(j) - 1), we finally arrive at
 the main result, as it applies to this example:

 Akaike [1973]: Estimate of A(P)= (1/N)[1(9) - k].
 That is, if we are interested in the predictive accuracy of the best fitting
 hypothesis from the family, we should not judge its accuracy by its goodness-
 of-fit, for that estimate is usually biased towards being too high. An unbiased
 estimate is obtained by using a corrected measure of goodness-of-fit.

 The important fact is that this result generalizes (surprisingly well) to a
 variety of conditions, and to examples of models with many adjustable
 parameters. If k is the number of adjustable parameters in a model, then we
 may state Akaike's theorem in its general form:

 Akaike [1973]: Estimate of A(P)= (1/N)[I(9) - k].

 This is the formula that quantifies the trade-off between simplicity (the number
 of adjustable parameters) and goodness-of-fit (the maximum log-likelihood).

 Department of Philosophy
 University of Wisconsin, Madison 53706
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