1 Complex Geometry

1.1 Almost complex structures and Hermitian metrics

Let M be a real manifold and J = {J,} a smooth family of endomorphisms of tangent spaces
T.M such that J2 = —I for all z € M. Since the minimal polynomial of J is AX4+1=0,
eigenvalues of J, are +i and since each J, is a real linear transformation, the eigenvalues
occur in pairs 4. In particular, the dimension of M is even which we write as 2m. Such a pair
(M, J) is called an almost complex manifold. 1t is clear that complex manifolds are almost
complex by looking at them as real manifolds and the operator J induced by multiplication
by 7 on each tangent space.

The complexifications T,M ® C of the tangent spaces split under the action of J into
two m-dimensional complex subspaces according to eigenvalues i and —i which we denote
respectively by T1OM and T>'M. At each point z € M the fibres of these bundles are
vectors of the forms

£ —iJE,  £+41iJE, for £ €T, M, respectively.

Dually we have the decomposition of the complexification of the cotangent bundle into
T.M®C=T*1"M & T %M and the fibres are covectors of the form

¢ +1Jo, ¢ —1iJo, for ¢ € T M, respectively.

This decomposition extends to higher tensor powers. For example, the [** exterior power of
the complexification of the cotangent bundle decomposes into a direct sum

B ala o i N o Rl
p+g=l

where 7* P4M is obtained from the wedge product of p copies of Tx *°M and g copies of

G0N
On a complex manifold M the operator d has a decomposition into d = 9 + 9. For
example if f is function on M and {z1,...,2m} are complex coordinates then
m m
of B of
af = ——dz,, Of = ——dZz,
f=3 gdm Of D> 75
k=1 k=1
where for the decomposition into real and imaginary parts zx = Ty + U, 73% = %(% — ig‘%)
and % = é(%}: + z%) The extension to forms is in the obvious fashion. Therefore if
(M, T*»9M) denotes the space of sections of (p, g)-forms on a complex manifold M then
dD(M, T*PIM) C T(M, T M) @ T(M, TPatl ), (1.1)
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On an almost complex manifold we can only assert

dU(M, T**M)C Y T(M,T%M).

j+k=p+g+1

In fact we have the fundamental result

Theorem 1.1 A necessary and sufficient condition for an almost complex structure to be
the underlying one for a complex structure is

dT(M, T°M) c T(M, T**°M) & T'(M, T**' M), or
dl'(M, T M) c T(M, T*"* M) & T(M, T**2M).

The proof of this theorem (due to Newlander and Nirenberg) will not discussed at this
point and it involves subtle points of analysis. An almost complex structure satisfying the
requirements of Theorem 1.1 is called integrable.

Remark 1.1 In practise, rather than directly finding the endomorphisms J,, z € U, defining
the almost complex structure, one defines a pair of projections P; o and Py on the space A!
of C* complex valued 1-forms on M such that

1. Pig and Py, are linear relative to the A°-module structure of A', where A° is the
space of complex-valued C* functions.

‘ 2 Pl,() + P()’l = Id, and Pl,OPO,l = P0’1P1‘() = 0

3. For n € A, Py1(7]) = Pro(n).

It is clear that the annihilators of Im(P; o) and Im(Fp ;) give a decomposition of the com-
plexified tangent spaces into m-dimensional complex subspaces on which the almost complex
structure operator acts as +i. The integrability condition of Theorem 1.1 is that dn, for a
(0,1)-form n has no (2,0)-component and from this it follows that for a (p, g)-form 7, dn
has only (p+ 1, ¢) and (p,q + 1) components. This enables one to define operators 9 and 0
such that d = @ + 0 and transfer the machinery for solving du = 7 to the almost complex
case. Let 71,...,n, be 1-forms spanning Im(P; o) as an .A°-module. Then the integrability
criterion of Theorem 1.1 translates into J being closed under d where J is the ideal gener-
ated by 7y,..., 9. The essential part of the proof of Theorem 1.1 is to establish existence
of functions u,. .., U, such that du,,...,du, span Im(P; ) as an A°-module. It is in this
form that Theorem 1.1 is often used. @



Let M be an almost complex manifold with the almost complex structure defined by a
tensor J. By an Hermitian metric h on M we mean the smooth assignment of Hermitian inner
products relative to the complex structure defined by J on each tangent space. Therefore

h(JE, Jn) = h(§,n), (1.2)

where £, € T,M and all z € M. Consequently, the transformation J is a proper orthogonal
transformation in each tangent space, and there are local frames ey, ..., €m and coframes
wi, . .., wam for the tangent and cotangent spaces of M relative to which

Q=1
h=w?+... +wi,, JZ(I 0).

The matrix representation of J is relative to ey, . . ., €2m, and its transpose describes its action
on the coframe.

The metric h, regarded as a Riemannian metric, admits of a (unique) Levi-Civita con-
nection (w;;). In general, the corresponding operator of covariant differentiation does not
commute with the action of J and our immediate goal is to investigate when this condition
holds. In view of the defining relation dw; + Y wik Awp =0 for the Levi-Civita connection,
the condition of commutativiy of J (or its transpose) with the covariant derivative reduces

. . A ol :
to the commutativity of the matrices (wj;) and J. Now a matrix ( c D> commutes with

(_AB ﬁ) (1.3)

To put this commutativity condition in a more useful form technically, we note that an
Hermitian metric decomposes into real and imaginary parts, with its real part symmetric
and imaginary part skew-symmetric. For example for the standard Hermitian inner product
on C™ we have

J if and only if it is of the form

m m
<zZ,w>= Z(l’jﬂj + ijj) +i2(1'jvj 5 yjuj)'
j=1 J=1

It follows easily that for the Hermitian metric h = wa (Hermitian relative to J) the
imaginary part of h is

m
j=1
We refer to ¢ as the Kahler form associated to the Hermitian metric h. We have
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Proposition 1.1 Let (M, J) be an almost complex manifold and h an Hermitian metric on
M. The covariant derivative relative to the associated Levi-Civita connection commutes with
J if and only if the associated Kdhler form is closed.

Proof - This is a straightforward computation. In fact calculating the coefficients of w; Awy,
Wi AWgtm 80d Wjpm AWgktm in the 3-form dy using the defining relation dw; + > wjx Awg =0
one sees easily that dp = 0 is equivalent to the skew-symmetric matrix (w;x) being of the

form ( g 6). [ ]
-0 7

An (almost) complex manifold (M, J) with an Hermitian metric h satisfying the condition
de = 0 of Proposition 1.1 is called an (almost) Kdhler manifold, and the corresponding
Hermitian metric a Kdhler metric. Note that the condition of commutativity of J and the
covariant derivative is equivalent to parallelism of J | i.e., D(J) = 0. In fact, for a vector
field £ we have

D(J&) = D(J)¢ + JDE,
from which the claim follows.

Example 1.1 Kéhler manifolds exist in abundance. Consider C™ with the standard Her-
mitian <, >. Clearly this is a Kéhler metric. Let A be a lattice in C™ so that the quotient
space is C™/A is a complex torus. In view of the translation invariance of <, >, there is
an induced Kahler metric on the complex torus C™/A. A more sophisticated example is
the Fubini-Study metric on the complex projective space. More generally, regarding the
Grassmann manifold Gy n—x (k-linear subspaces of C*) as the homogeneous space G/K with
G =U(n) and K = U(k) x U(n — k), there is a unique, up to multiplication by a constant,
G-invariant Hermitian metric on it. Identifying the the tangent space at eK with the space
M of skew-hermitian matrices of the form

0 S
—5'.0)

G-invariant Hemitian metrics on Gg,_j are in natural bijection with Ad(K)-invariant Her-
mitian inner products on M. There is a unique, up to multiplication by a constant, such
inner product and is given by < &,7 >= —Tr(£n), where £,7 € M. The Kéhler form ¢
is a G-invariant 2-form and dy = 0. In fact, note [M, M] C K, where K is the set of
skew-hermitian matrices of the form <g 3,) (i.e., the Lie algebra of U(k) x U(n — k). The
expression dy(&1, &2, €3), where &;’s are left invariant vector fields on G, consists of sums of
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terms of the form &¢ (&, &) and ¢([&;, &), &). The former term vanishes since by invariance
of v, (&, &) is a constant, and the latter term vanishes since [€i,€;] € K. The Hermitian
metric in question is in fact Kahler. @

It is an elementary but useful observation that the imaginary part of an Hermitian form
determines it. In fact if a skew symmetric non-degenerate bilinear form @ is given then the
Hermitian metric is given by

h(§,m) = ©(JE,n) +ip(€,n).

It is quite useful and enlightening to obtain local coordinate expressions for the Fubini-Study
metric on CP(n).

Example 1.2 Let [z,,... z,] denote homogeneous coordinates for CP(n), and set
@ = —4i801og (|22 + ... + |2, ]?).

Then ¢ is a real 2-form on CP(n) (regarded as a real manifold) since it is invariant under
the multiplication of z;’s by a non-zero complex number \. It is clearly invariant under the
action of the unitary group U(n + 1) and is non-degenerate. Therefore ¢ is the Kéhler form
of the Hermitian metric associated to it, namely, ds?(€,7) = h(€,n) = (i€, ) +ip(€,n). To
obtain local expressions, let U, be the open subset defined by 2z, # 0. Set u; 5 = fﬁ, then
U;,'S With j # « form local coordinates on U; and we set uy, = 1. Define

Jo = Z ]uj,al2~
=0

In view of the transformation property f, = f8lusal? on U, N Uz we have
d0log f, = 90 log Ja on. U, NlUg

so that the expression —4i90f, is the local expression on U, of a globally defined 2-form on
CP(n). Clearly it is the 2-form ¢ (associated to A) defined above. The corresponding metric
has the expression

(1+ =) (e oty ) — ( Tioytadua) (i s,
2 3
(1 5 Zzzl Iuai2>

ds? =

onU,.



Example 1.3 The local description of the U(n + 1)-invariant metric can be extended to
the complex Grassmann manifold G ,—x. We will indicate briefly how this is done. A linear
k-dimensional subspace of C"can be described (non-uniquely) by a set of k column vectors

T 0 k

Poa e

s R

ki W T .
159 k

2ri o

Then it is easily verified that
¢ = —4i00log det(Z*Z),

where Z* denotes the conjugate transpose of Z, is a well-defined real non-degenerate (1, 1)-
form on on Ggp—k. It is clearly invariant under the action of U(n), and the associated
Hermitian form is the required Kéahler metric. §

Remark 1.2 The local expressions for the Kéhler metric as 9 f for projective spaces and
Grassmann manifolds is not accidental. In fact, since dp = 0 and ¢ is a (1, 1)-form, dp = 0
and dp = 0. The former equation implies ¢ = 97 (locally) for a (0, 1)-form 7. Now

0= 0¢ = 00y = —90n.

Therefore dn = du for a (0, 1)-form u. But the left hand side is a (0, 2)-form while the right
hand side is a (1,1)-form. Hence 0n =0 and n = dh and ¢ = 90h locally. ©

So far we have shown that complex tori and complex projective and Grassmann manifolds
are examples of compact Kahler manifolds. The following simple observation provides many
more examples of Kahler manifolds:

Lemma 1.1 Let (M, J) be an almost Kahler manifold with hermitian metric h, and N C M
a submanifold on which J induces an almost complex structure. Then (N, J) is an almost
Kdhler manifold.

Proof - The hypothesis means that the tangent spaces to N are invariant under the action
of J. Since the metric is given by A(£,n) = ©(JE,n) + iv(€,n), the metric A induces a
hermitian metric Ay on N, and the restriction ¢x of ¢ to N is the imaginary part of hy.
Clearly dpn = 0 and (N, J) with the metric hy is almost Kéhler. §§




Lemma 1.1 in particular implies that all complex submanifolds of complex projective
spaces are Kahler. However there are many Kahler manifolds which are not complex sub-
manifolds of any complex projective space. The determination of when a Kahler manifold
is a submanifold of a complex projective space (in other words, it is algebraic) is a deep
problem which will be discussed later.

The volume element associated to a Riemannian metric played an important role in
differential geometry of real manifolds. From the moving frame expression of the volume
element of a Riemannian metric we immediately obtain the following:

Lemma 1.2 Let M an almost Kdahler manifold of real dimension 2m relative to the Her-
mitian metric h. Then the volume element associated to h is the m-fold wedge product of
with itself, that is p A ... A\ .

=~



1.2 Holomorphic Vector Bundles

Let 7 : E — M be a smooth complex vector bundle on a manifold M, and let [ be the
(complex) dimension of a fibre. By an Hermitian metric h on E we mean the smooth
assignment of Hermitian inner products on the fibres E, for all z € M. A complex vector
bundle together with an Hermitian metric is called an Hermitian vector bundle. The bundle is
locally trivialized by the choice of a frame €e$, ..., e on U, where U = {U,} is a sufficiently
fine covering of M. Then on U, the Hermitian metric & is a smooth mapping h, from

U, into the space of | x | Hermitian matrices. Furthermore the family {h,} satisfies the
transformation property

ho = QQ:thﬁ(Paﬂ,
where * denotes the conjugate transpose of the matrix and ¢,z is the matrix valued function
on U, N Uz describing the change of frames.

In order to develop the differential geometry of vector bundles it is necessary to generalize
the notion of connection from (co)tangent bundle of a manifold to that of a (complex) vector
bundle. The key property of the connection that we need to adapt to the new situation is
that the connection matrix w (in the Riemannian case) enabled us to calculate, in principle,
the (exterior) derivative of the basic 1-forms ws, ..., w, which constituted local frames for
the cotangent bundle. Instead of basic 1-forms here we have local frames for the bundle
s¢,...,8¢ for the vector bundle 7 : E — M for each open set U, of (sufficiently fine)
covering U = {U, }. Now suppose we are given [ X [ matrices of 1-forms (w$,) defined on the
open sets U,. Since exterior differentiation of sections of a vector bundle has no meaning in
general we define the covariant derivative of the frames s¢,..., s as

!
o __ a
Ds} = E WjkS;
j=1

Furthermore for any local section s* = ) ¢s§, where ¢,’s are complex valued smooth
functions, we extend the definition of D by the requirement of the Leibnitz rule

l

l
Ds* =) “(déx)sy + > o Dsg.

k=1 k=1
With no condition on (w$;) there is no reason for Ds® to be well-defined. Let A : U —
GL(l,C) be a smooth mapping describing the change of frame on an open set U (e.g. U =
U, NUpg). In fact assume the frames s§ and sf are related by

l
a _ B
8y = E Ajis; .
=1
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Applying the covariant differentiation operator D and substituting (w$;) on the left hand
side and (wfk) on the right hand side we immediately obtain the [ X | matrix equation

(wh) = A7 wh)A + ATNA. (1.4)

It is also immediate that if the equation (1.4) is satisfied then the operator D of covariant
derivative is well-defined. Henceforth by a connection on a complez vector bundle we mean
either the operator D or equivalently a collection of locally defined matrices of 1-forms (W)
such that (1.4) is fulfilled. It is customary and sometimes useful to regard the connection as
defined on the corresponding bundle of frames P — M since the matrices (w$,) depend on
the choice of the frame.

While the (Levi-Civita) connection enabled one to differentiate tensors on a Riemannian
manifold, the key geometric object was the curvature form ) associated to the Levi-Civita
connection, and was defined as the failure of the validity of the structure equations for
Euclidean space, namely, 2 = dw + w Aw. A similar definition is possible in the case of a
vector bundle. In fact, observe that as in the Riemannian case we have (we write w® for the

matrix (w,))

dw®* + w* Aw®* = —AYdANATIWPA + A7 dWPA
—ATPAWP AdA — ATHdA)AT A dA
+AWPANATIPA+ ATWWPAN ATVA
+ATYdANATIWPA + ATI AN ATNA

= A1 <de + WP A wﬁ) A.

Therefore if we emulate the Riemannian case and define the curvature matrix (relative to a
fixed frame on U,) as Q% = dw® + w® A w®, then the matrices Q% of 2-forms have similarly
the (nice) transformation property

Qe = A"108A. (1.5)

The entries of the matrices 2 are 2-forms and therefore they commute (under wedge prod-
uct). Therefore it makes sense to think of symmetric functions of the characteristic roots
of the matrices 2% and these symmetric functions are expressible as polynomials in the
entries of the matrices 2% and are independent of the choice frame on U,. In particular
these symmetric functions are globally defined forms on the manifold M and since they are
independent of the choice of frame, it is reasonable to surmise that they contain essential geo-
metric information about the vector bundle £ — M. This idea is central to the development
of complex geometry of vector bundles and will be exploited in the sequel.
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There is a different way of looking at the connection and curvature which is useful. Let
A"(E) (resp. AP9(E)) denote the bundle obtained by the tensor product of E - M and
ATT*M (resp. T*P9M) and I'(E, M) or simply ['(E) the space of sections of E — M. Then
elements of [(A™T*M) (resp. T'(AP9M)) are finite sums of terms of the form w®s or simply
w.s where w is an r-form (resp. (p,q)-form). Then just as in the case of sections of E — M
a connection extends to mapping

D : T(A"(E)) — A™TY(E),

by the signed Leibnitz rule (that is, D(w.s) = dw.s + (—1)9e“w A Ds). For M a complex
manifold we furthermore have

D : T(AP9(E)) — T(APTLIM) @ T(APH(E)). (1.6)
In particular, D : I'(E) — A'(E) and
Do D:T(E) — I'(A%(E)).

Let R = DoD. Regarding '(E) and I'(A%(E) as modules over the ring A of smooth complex
valued functions on M, we note that R is a map of A-modules. In fact,

R(fs) = D(df.s + f.Ds) = (—df.Ds + df .Ds + f.D o Ds) = fR(s).

Let s¢,...,s® be a local frame on an open set U,. Then
z
o - a .o
e = D E WiS3)
=1

MN

!
eas Coenl Q@ fo "
<du)jk.8j E cujk/\wm-.sn>
n=1

1

<.
Il

[
MN

(dw® + w™ A w*)nk-Sq-

3
Il
p—t

Therefore R = D o D is simply the curvature matrix as defined earlier, which can also be
expressed by saying that R (or curvature) is a 2-form on M with values in End(E). The
fact that explicit differentiation does not appear in R = D o D explains the validity of the
relation R(fs) = fR(s).

An important property of the Levi-Civita connection in Riemannian geometry is the fact
the metric tensor is parallel relative to the connection. This means D(g) = 0 or equivalently
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dg(&,m) = g(DE,n) + g(&, Dn). In analogy with the Riemannian case we call a connection
(on a Hermitian vector bundle) Hermitian if

dh(&,n) = h(DE,n) + h(§, Dn),
where h denotes the Hermitian inner product on the vector bundle. We have

Lemma 1.3 For an Hermitian connection, the connection form and the curvature matriz
are skew-Hermitian matrices when expressed relative to an orthonormal frame.

Proof - Let e;,...,¢; be an orthonormal frame, then dh(e;, ex) = d;x and consequently
h(wkjex, ex) + h(e;, wjke;) = 0,

from which the skew-Hermitian character of the connection matrix follows. That the curva-
ture matrix is skew-Hermitian now follows from that of w the defining equation Q) = dw+wAw
of curvature.

So far we have made no use of the holomorphic structure. By (1.6) we can decompose
the operator of covariant differentiation D into D = D’ + D" and then the curvature R
decomposes into three components

R—_-DIODI"i‘(D/OD”“{"D”OD,)+DHOD”.

On a holomorphic vector bundle we have connections D with a particularly simple D"-part.
But first note that for (local) sections s of a holomorphic bundle £ — M, 9s is well-defined
and is a section of 7' ® E — M (or element of A%!(E). We have

Lemma 1.4 Let E — M be a holomorphic vector bundle and M be a complex manifold.
Then there is a connection D on Pg — M such that D" = 0.

Remark 1.3 The statement D” = § means that relative to a (local) holomorphic frame the

connection matrix (w;x) is a matrix of (1, 0)-forms. Thus if s;,..., s, is a local holomorphic
frame, then for s = }_ f;s; we have

Ds = Z fjwkjsk T Z 8fj.5j o= Z 5fj.8j.
Jk J J

The first two sums are (1, 0)-forms (the term D’s) and the third sum consists of (0, 1)-forms
(the term D"s). ©
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Proof - Let U = {U,} be a locally finite covering of M such Ey, — U, is holomorphically
trivial for every «, and fix a holomorphic trivializing frame s¢, ..., s? on each U,. Let {¢}
be a partition of unity, set D*s§ = 0 and define the connection D as

Z 6o D*.

Let p®® : U, N Us — GL(I,C) be holomorphic transition functions for the bundle E — M
relatlve to the above holomorphic trivializations, and then p®° is the inverse of p®®. Thus

ZJ Jk J’
Dsg = Z¢.sa<pf,?>s3

- T e

n=1 B,j

Note that in view of the holomorphy condition only the (1,0) component 9p% = dp?®
appears. From this it follows that the D"”-component of Ds of a local section s = >, fisk
is simply 3°, O(fx)s§ which proves the lemma. B

If in addition we have an Hermitian metric on the holomorphic vector bundle £ — M then
we can make a unique choice for the connection, which may be regarded as the holomorphic
analogue of the Levi-Civita connection, as shown by the following:

Proposition 1.2 Given an Hermitian metric on the holomorphic vector bundle E — M
there is a unique Hermitian connection D such that D" = 0.

Proof - First we prove uniqueness. Let i = {U,} be a covering of M holomorphically
trivializing the bundle £ — M and s¢,..., sy be a holomorphic frame on U,. The matrix
of the Hermitian inner product relative to this frame is () where

R = h(s}, sk)-

Now dh$, = h*(Ds,sy) + h*(s$, Dsg) and Ds% = D's? € A(E) since D" = § and {s5}
is a local holomorphic frame. Therefore (using the convention that h(.,.) is C-linear in the
second and anti-linear in the first variable)

[0 ik [
ah]k — E h nksn
— a, .«
= 2 hjnwnk
n=1
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That is, (h*)"1(0h®) = w® which proves the uniqueness. The existence follows from the
fact that the matrices of (1,0)-forms w® = (h®)~'(0h*) and w” satisfy the transformation
property (1.5) characterizing a connection and give the desired connection. ]

The connection uniquely specified by Proposition 1.2 is called the Chern connection for
the holomorphic vector bundle E — M equipped with an Hermitian metric.

Corollary 1.1 Let E — M be a holomorphic complex vector bundle with an Hermitian
metric h, then the curvature form Q0 of the Chern connection is a matriz of (1,1)-forms.

Proof - The curvature matrix Q <> D o D has no (0, 2)-component since D” = 9. Further-
more, the Hermitian character of the connection implies that € is skew-hermitian relative
to h, i.e.,

Q*h+hQ=0.

Therefore Q has no (2,0)-component either. [§

The following theorem is an important tool in the differential geometry of complex vec-
tor bundles and its proof is an enlightening application of some of the concepts we have
introduced:

Theorem 1.2 Let M be a complez manifold and E — M a C* complex vector bundle with
a connection D such that D" o D" = 0. Then there is a unigue complez structure on E
making E — M a holomorphic vector bundle such that D" = 0.

Proof - Let U = {U,} be an open covering of M locally trivializing the bundle 7 : E — M.
We describe complex structures locally on opens sets U = U, such that their compatibility
is immediate. Let U = Uy, By ~ U X Cl, z,..., zm complex coordinates in U and wy, ..., w;
standard coordinates of the fibre C!. To obtain the required complex structure on U x C! we
exhibit an almost complex structure on Ejyy and verify the integrability criterion of Theorem
(1.1. In view of Remark 1.1 we exhibit a family of (1, 0)-forms on E and verify that the ideal
generated by these forms is d-closed which establishes the existence of the required complex
structure. Consider the m + [ 1-forms

l
dza, dwi—) wlh, a=1,...,m, i=1,..1 (1.7)
j=1

where wf; is the (0,1)-part of the connection matrix. The 1-forms in (1.7) are linearly

independent over 4° and we want to verify that the ideal generated by them is d-closed. We
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have

I
d(dw; — ijw;'i) e Z dw; A dwl; — Z w; A duwj;
=1

- Z Wy (dwfc',- + Z Wej A w}'i) mod J

= —Zwkaw,’; mod J,

where for the first = we substituted from dw; — Z;zl wjwy; = 0 and the second follows
from the hypothesis D" o D" = 0. Now the (1,1)-form Owj; is in the ideal generated by
differentials dz,’s, and therefore J is d-closed which gives a complex structure on 7=*(U) =
Ejy. Of course this calculation was local and to obtain a global holomorphic structure
on £ we must show that the subspaces defined by the forms (1.7) can be glued together
to make sense globally. To do so write w;’s as a row vector w and let w = (wj;). For
coordinates u = (uy,...,u;) defined relative to another frame related to first by an invertible
matrix A (of functions) let & be the corresponding connection form. Then w = uA and

w=A"10A + A1dA and we obtain
dw—ww = duld+udA—uA.A'0A —uA.A"VdA
= (du—ud)A.

Since w; and @} are in the ideal generated by dz,’s, the subspaces defined by (1.7) are
globally defined and we have endowed E with a global holomorphic structure. The fact that
the projection 7 (locally given by (z,w) — z) is holomorphic, i.e., E — M is a holomorphic
vector bundle follows from the fact dz,’s are in the ideal J. To show that D” = d it suffices
to prove the following:

e For every local section s : U — Ejyy such that D"s = 0 and every (1, 0)-form n on Ejy,
the pull-back s*(n) is a (1,0)-form on U.

Now writing the section s as s(z) = (z,w), the condition D”s = 0 becomes
!
Buw; — Y wjwh; = 0. (1.8)
Jj=1

Therefore for the pull-back by s of (1,0) forms we obtain
§*(dz) = dz,, s*(dw; — Z wjiwy;) = Ow;

in view of (1.8). Therefore condition e is satisfied. Since the uniqueness is clear, the proof
of the Theorem is complete. §
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Example 1.4 Consider a Kéhler manifold of (complex) dimension 2 and let (wj) be the
Levi-Civita connection relative to an orthonormal coframe wy,...,ws for T*M regarded as
a real manifold. A basis for 7* 19M is given by the complex 1-forms v; = w; + w3 and
¥y = wy+iwy. Then the defining equation dw;+ ) w;xAwy = 0 for the Levi-Civita connection
translates into the equations

dy — w1z A P14+ (w12 — iwig) A = 0; didg — (wig + iwig) A Yy — dwog Athy = 0.

—n
6
is a skew-hermitian matrix, and we obtain the complex form of the defining equation for the

Levi-Civita connection of a Kahler metric, namely,

Thus if we write the Levi-Civita connection as the 4 x 4 matrix ), then ¥ =0+ 1in

dips + Y ik At = 0. S
k

Now let A be a GL(2,C)-valued function such that ® = A is a vector function the com-
ponents of which give a local holomorphic frame for 7* *°M — M. The equation (1.9)
gives
0%; =dd; ==Y Uy AP, (1.10)
k

where (Uj.) = A7} (¢jx)A + A'dA. Since 9%, and @, are (holomorphic) (2,0) and (1,0)
forms respectively, it is seen easily that (¥;;) is a matrix of of (1,0) forms. Therefore the
D"-component of the Levi-Civita connection D is 8. This argument made little use of the
Levi-Civita connection and the conclusion D” = J is true much more generally. It should be
noted that while for simplicity of notation and explicit calculation we considered the case
dimg M = 2, the argument is valid in all dimensions essentially verbatim. {§
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