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This book will help you identify and overcome prevalent, recurring roadblocks to successful
software development. AntiPatterns clearly define software mistakes that most of us make
frequently. In fact, most of us could achieve ISO 9001 with our consistency! AntiPatterns also
provide solutions: How to fix existing problems and how to avoid repeated mishaps in the
future. In short, AntiPatterns describe and solve real−world problems. The following
questions are a sample of what AntiPatterns have to offer:

1. What are the two most common software design mistakes? How can I recognize them?
See the AntiPatterns the Blob and Poltergeists in Chapter 5.

2. What can we do to fix (or refactor) bad software? See the AntiPatterns Spaghetti Code in
Chapter 5, and Stovepipe Systems in Chapter 6.

3. Our design project is going around in circles; how can we get it back on track? See the
AntiPatterns Analysis Paralysis in Chapter 7 and Design by Committee in Chapter 6.

4. How do I know when I’m being misled by a software vendor? See the AntiPatterns
Vendor Lock−in in Chapter 6, and Smoke and Mirrors in Chapter 7.

5. Is the latest standard or technology breakthrough going to solve my problems? See the
AntiPatterns Wolf Ticket in Chapter 6 and Continuous Obsolescence in Chapter 5.

6. Is our software project headed for disaster? See the AntiPatterns Death by Planning in
Chapter 7, and Mushroom Management in Chapter 5.

7. What are the “gotchas” of software reuse? See the AntiPatterns Cut−and−Paste
Programming and Golden Hammer in Chapter 5.

AntiPatterns clarify the negative patterns that cause development roadblocks, and include
proven solutions for transforming software development problems into opportunities.
AntiPatterns serve two important purposes: to help identify problems and to help implement
solutions. Understanding the problem is the first step to recovery. Solutions are of little use
without a state problem to solve. AntiPatterns have a variety of causes, with associated
symptoms and consequences. We convey these aspects of each AntiPattern to clarify the
motivation for change. We then offer proven, recurring solutions for the AntiPattern.

AntiPatterns are closely related to another important software concept: design patterns,
which document recurring solutions. A design pattern becomes an AntiPattern when it
causes more problems than it solves.

Figure E.1 Build your own nightmare.

All patterns have consequences. There are situations when a pattern is a good solution to a
problem and other situations when it becomes an AntiPattern. The context−dependent
consequences are important to understand in order to make an informed decision inclusive of
side effects. We examine this viewpoint for each pattern and describe when an AntiPattern
can actually provide benefit:

• Managerial (managing processes and people)

• Architectural (defining a technical strategy)

• Developmental (coding practices)

Managerial, architectural, and developmental AntiPatterns are defined in Chapters 5 through
7. If you are new to design patterns or AntiPatterns, we provide introductory material in
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Chapters 1 through 3. For design patterns practitioners, the AntiPatterns reference model is
explained in Chapter 2; the template is explained in Chapter 3. These introductory chapters
are instrumental for getting the most out the AntiPattern descriptions.
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Overview
AntiPatterns represent the latest concept in a series of revolutionary changes in computer
science and software engineering thinking. As the software field approaches the 50−year
mark of developing programmable, digital systems, we have yet to resolve some
fundamental problems that arise when humans translate business concepts into software
applications. Many of the most significant problems are generated from the human processes
that require shared vision, cooperation, and collaboration to realize systems. The majority of
the published works in software sciences have focused on positive, constructive solutions.
This book is different; we start by looking at the negative solutions.

Academic researchers and practitioners have developed thousands of innovative approaches
to building software, from exciting new technologies to progressive processes. Even with all
these great ideas, the likelihood of success for practicing managers and developers is grim.
A survey of hundreds of corporate software development projects indicated that five out of six
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software projects are considered unsuccessful  [Johnson 95], and approximately a third of
software projects are canceled. The remaining projects delivered software at almost double
the expected budget and time to develop as originally planned.

“Fasten your seat−belts, it’s going to be a bumpy night.”

—Joseph L. Mankiewicz

Virtually all systems delivered are stovepipe systems, systems that cannot accommodate
change. Adaptability is perhaps the most important quality of software. More than half of all
software cost is due to changes in requirements or the need for system extensions [Horowitz
93]. Some 30 percent of the development cost is due to changes in requirements during
system construction.

AntiPatterns: AntiHype
Software was supposed to make digital hardware much more flexible. Instead, software
technology has promulgated a series of failed promises. The promise that software would
make hardware flexible was only the first. What went wrong? Within our careers, we have
seen any number of software fads come and go that were successful in a limited way for
specific aspects of software development, but did not deliver the promised “silver bullet” (see
Figure 1.1). Remember some of these major trends?

Figure 1.1 There are many paths to disaster.

• Structured programming was supposed to improve software productivity and remove most
software defects.

• Artificial intelligence was supposed to make computers much more capable.

• Networking technologies were supposed to make all systems and software interoperable.

• Open systems and standards were supposed to make application software portable and
interoperable.

• Parallel processing was supposed to make computers much more powerful and scaleable.

• Object orientation was supposed to solve the problems of software productivity and
adaptability, and make software highly reusable.

• Frameworks were supposed to make software highly reusable and software development
much more productive.

These claims sound like a broken record; every new software fad makes similar promises.
History has not been written on many of today’s software buzzwords, but their claims sound
very similar to what we have heard before. Current examples include:

The Internet

Component software

Distributed objects
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Business objects

Software reuse

Scripting languages

Software agents

We promised to tell the truth about software, and it should be clear by now that we really
mean it. A goal for this book is to end the perpetual cycle of hype and disillusionment that
characterizes software technology.

And let us quickly point out, it’s not just the vendors who are at fault. There are several things
that we (application developers and managers) can do to mitigate software problems.
Regardless of the vendor hype, it’s really how you use the technology that determines your
success.

The Truth about Software Technology
Eighty−four percent of software projects are unsuccessful, and virtually all deliver stovepipe
systems. Why?

Vendors will tell you:

• Our new technology changes the whole paradigm.

• Business objects will make your ordinary developers productive (substitute any buzzword
for “business objects”).

• We’ll have all the features you need in six months.

• We make no warranty express or implied regarding our software, its merchantability, or its
fitness for any particular purpose. Vendors rarely guarantee that their software does
anything useful at all. And if it does something bad; it’s not their fault. Proprietary
technologies change every 4 to 18 months. Rapid technology changes can dominate
software maintenance costs and impact software development. After purchasing a
software license, vendors expect to make four times as much money from the same
customer for training, consulting, support, and maintenance. Is it possible that the more
difficulties application developers have, the more money vendors make?

Software gurus will tell you:

• Their new method improves upon anything they said in the past.

• Their tools fully support software development, including code generation.

• You need more tools!

• You need more training!

• You need more consultancy!

We gurus disagree with each other, and we change our minds—frequently. Gurus also sell
new ideas that contradict those they sold people in the past. Gurus’ methodologies are too
generic for any real project. The important details of their methods are hidden in their
expensive products; for example, production−quality code generation from modeling tools is
still years away. More often, they never state the important details at all.

The bottom line is, regardless of the excitement and hype, software technology is in the
Stone Age (see Figure 1.2). Application developers, managers, and end users are paying the
price.
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Figure 1.2 Software technology is in the Stone Age.

What Is an AntiPattern?
An AntiPattern is a literary form that describes a commonly occurring solution to a problem
that generates decidedly negative consequences. The AntiPattern may be the result of a
manager or developer not knowing any better, not having sufficient knowledge or experience
in solving a particular type of problem, or having applied a perfectly good pattern in the wrong
context. When properly documented, an AntiPattern describes a general form, the primary
causes which led to the general form; symptoms describing how to recognize the general
form; the consequences of the general form; and a refactored solution describing how to
change the AntiPattern into a healthier situation.

AntiPatterns are a method for efficiently mapping a general situation to a specific class of
solutions. The general form of the AntiPattern provides an easily identifiable template for the
class of problems addressed by the AntiPattern. In addition, the symptoms associated with
the problem are clearly stated, along with the typical underlying causes of the problem.
Together, these template elements comprise a comprehensive case for the existence of a
particular AntiPattern. This form reduces the most common mistake in using design patterns:
applying a particular design pattern in the improper context.

AntiPatterns provide real−world experience in recognizing recurring problems in the software
industry and provide a detailed remedy for the most common predicaments. AntiPatterns
highlight the most common problems that face the software industry and provide the tools to
enable you to recognize these problems and to determine their underlying causes.
Furthermore, AntiPatterns present a detailed plan for reversing these underlying causes and
implementing productive solutions. AntiPatterns effectively describe the measures that can
be taken at several levels to improve the developing of applications, the designing of
software systems, and the effective management of software projects.

AntiPatterns provide a common vocabulary for identifying problems and discussing solutions.
AntiPatterns, like their design pattern counterparts, define an industry vocabulary for the
common defective processes and implementations within organizations. A higher−level
vocabulary simplifies communication between software practitioners and enables concise
description of higher−level concepts.

AntiPatterns support the holistic resolution of conflicts, utilizing organizational resources at
several levels, where possible. AntiPatterns clearly articulate the collaboration between
forces at several levels of management and development. Many problems in soft ware are
rooted in managerial and organizational levels, so attempts to discuss developmental and
architectural patterns without taking into account forces at other levels would be incomplete.
For this reason, we have gone to great lengths in this book to bring together all relevant
forces at many levels to both describe and address core problem areas.

AntiPatterns provide stress release in the form of shared misery for the most common pitfalls
in the software industry. Often, in software development, it is much easier to recognize a
defective situation than to implement a solution. In these cases, where the power to
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implement an AntiPattern solution is lacking, an individual subjected to the consequences of
the AntiPattern forces can find solace in knowing that his or her dilemma is, in whole or part,
shared by many others throughout the industry. In some such cases where the AntiPattern
has severe consequences, the AntiPattern can also serve as a wake−up call for a victim to
set his or her sights on other employment opportunities in the industry and to start preparing
his or her resume.

Where Did AntiPatterns Come From?
Design pattern languages have taken the programming community by storm, and reflect an
intense desire from software professionals to improve the quality and standards of the
industry. It’s not possible to dispute the intrinsic value of design patterns, given the growing
number of projects, which attribute the use and creation of reusable design patterns for their
success. However, the current paradigm falls short of fully expressing the intended range
and scope of the intended use of design patterns, giving rise to a new literary form that flies
directly in the face of existing definitions of patterns. This new literary form is the AntiPattern.
In order to fully grasp its significance in software development, it’s important to understand its
origins and how the current design pattern phenomenom has given rise to the AntiPattern.

Portland Pattern Repository

The Portland Pattern Repository (http://c2.com/ppr/) publishes an evolving collection of
design patterns and pattern languages. Currently sponsored by Ward and Karen
Cunningham (Cunningham and Cunningham, Inc.), it is a fun and exciting place to
collaborate on design patterns with other design pattern aficionados throughout the
Internet community. The AntiPatterns reference material is available from this site.

The idea of a design pattern originated with Christopher Alexander, an architect who
documented a pattern language for the planning of towns and the construction of buildings
within towns [Alexander 77]. His pattern language clearly articulated his vision for how
architecture should be modeled, and explained why some towns and buildings provided a
better environment than others. His method of capturing expertise was innovative, as it made
explicit many of the “soft” attributes that were previously attainable only through years of
experience in planning and building towns.

In 1987, several leading−edge software developers rediscovered Alexander’s work and
applied it to documenting design decisions in developing software. Specifically, Ward
Cunningham and Kent Beck developed a design pattern language for developing user
interfaces in the Smalltalk programming language. In the years that followed, they attracted
several people who shared similar ideas about using design patterns to aid in reusing
software designs and were able to grow fledging interest in an early design pattern
movement.

What was the attraction in applying Christopher Alexander’s work to software development?
The answer must be addressed in the context of the contemporary crisis in software
development. Even in the ’80s, it was readily apparent that the number of talented architects
in object−oriented software development were far too few to support the industry.
Furthermore, the academic community failed in providing the detailed knowledge in problem
solving and in engineering dynamic software solutions that could cope with the changing
requirements, which were commonplace in the industry. Such knowledge took years of
industry experience to gain, and the immediate demands of the industry limited the ability of
many architects to spend time mentoring less experienced colleagues. Also, rapid industry
turnover left many employers reluctant to invest large amounts of their senior personnel’s
time in mentoring others, rather than solving their own mission−critical software problems.
This created an urgent and compelling need for a reusable form of capturing the expertise of
experienced developers to be used repeatedly to train the less experienced. In addition, the
design patterns could be used at the industry level to open dialog for creating industrywide
design solutions to enable domain frameworks to interoperate at the industry and even global
level.

Christopher Alexander believed that while most processes involved in designing physical
structures were variable, there was always a single common invariant process underlying all
other processes, which precisely defined the principles of the structure’s design and
construction. Such invariant processes are the holy grail of software development, as they
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provide a common framework of knowledge, and expert software solutions can be built
upon—rather than contributing to—the current morass of custom, noninteroperable stovepipe
solutions.

It wasn’t until 1994 that design patterns entered the mainstream of the object−oriented
software development community. In mid−1994, the Hillside Group hosted the first, and now
historic, industry conference on software design patterns, Pattern Languages of Program
Design (PLoP), which featured several patterns and pattern languages for developing
software applications. Of special note was Jim Coplien’s paper titled “A Development
Process Generative Pattern Language” which was the first example of design patterns
applied to organizational analysis [Coplien 94]. Coplien’s paper immediately helped to set the
stage for the patterns movement to incorporate not just software design patterns, but
analysis, organizational, instructional, and other issues as well.

This preceded the launching of the now−classic text on software design patterns, Design
Patterns: Elements of Reusable Object−Oriented Software [Gamma 94]. Object−oriented
software architects rallied behind the book because it presented several common, practical
software design constructs that could be easily applied to most software projects. Of greater
note, the patterns it contained were recognized by many as describing constructs that they
had already applied in previous software projects.

Initial industry reaction was universally positive, as the vocabulary and design focus was
elevated from the level of data structures and programming idioms to the architecture level,
and facades, adapters, and visitors became well−known terms in the design discussions.
Software developers frequently organized grassroots groups that applied design patterns in
their software development projects and championed their use by others. Design pattern
study groups were organized around the world to discuss using software design patterns as
the basis for improving software quality. Consultants arose to aid organizations in mining
design patterns within their own organizations to aid less experienced developers in adopting
the techniques of their more experienced counterparts. For a brief shining moment, it
appeared that design patterns were a step toward revolutionizing the entire software industry
to focus on design reuse and engineering software for more effectively dealing with changing
requirements.

How to Kill a Software Project

• Show the same demo twice to the same audience.

• Focus on the technologies, not the problems and scenarios.

• Fail to maximize return on investments; for example, developing proof−of−concept
prototypes is more effective than adding additional content to an existing prototype.

• Change project focus from the larger scale to the smaller scale.

• Don’t maintain consistency between releases.

• Isolate team efforts from other groups within an organization.

• Rewrite existing clients, servers, and applications.

• Change the purpose of the system, so that the models describe the wrong focus and
objects.

Since 1994, there has been exponential growth in the publication of design pattern literature.
This growth has both a bright and a dark side. To the skilled object−oriented architect, there
is now a large and growing base of reusable designs that can be evaluated and applied to a
software development effort. Furthermore, there is a wealth of papers and seminars to assist
an architect in documenting his or her own domain knowledge into design patterns so they
can be more readily used by other professionals in the industry. The dark side is that many of
the people who use design patterns fail to properly evaluate how applicable a particular
design pattern or pattern language is to their specific set of design concerns. In addition,
some developers, armed with their packaged knowledge, eagerly rush in to classify
everything as a design pattern or solvable by a specific set of design patterns before
attempting to perform and complete their domain analysis.
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Along comes Michael Akroyd, who prepared a presentation for the 1996 Object World West
conference entitled “AntiPatterns: Vaccinations against Object Misuse” [Akroyd 96]. His
presentation was based upon a detailed analysis of the object−oriented literature in the
industry and was an attempt to define a convergence of ideas about object orientation. The
presentation focused on recognizing harmful software constructs, which were reoccurring
across several software projects. This is the antithesis of the “Gang of Four (GoF)” patterns
that emphasize the use of proven good designs, which can be applied in constructing new
software.

Prior to Akroyd were others who mentioned the notion of AntiPatterns in hallways and around
water coolers, but he was the first with a formal model. The discussion of the usefulness of
AntiPatterns began almost in parallel with the introduction of patterns. Similar work on
providing software guidance based on identifying dysfunctional behavior and refactoring a
solution has been documented by Fred Brooks [Brooks 79], Bruce Webster [Webster 95],
James Coplien [Coplien 95], and Andrew Koenig.

Because AntiPatterns have had so many contributors, it would be unfair to assign the original
idea for AntiPatterns to a single source. Rather, AntiPatterns are a natural step in
complementing the work of the design pattern movement, and extending the design pattern
model. Our AntiPatterns attempt to bridge the gap between the academic formalisms of the
GoF design patterns and the fledging software developers who need more contextual
information in order to evaluate and determine whether a particular technique is appropriate
to their particular situation.

AntiPatterns Research
“The study of AntiPatterns is an important research activity. The presence of ‘good’
patterns in a successful system is not enough; you also must show that those patterns
are absent in unsuccessful systems. Likewise, it is useful to show the presence of certain
patterns (AntiPatterns) in unsuccessful systems, and their absence in successful
systems.”

—Jim Coplien

The concept of AntiPatterns is the first major software research initiative to focus on negative
solutions. Given the frequency of software defects and project failures, negative solutions are
probably a much richer field to study (a so−called target−rich environment). In AntiPatterns
research, we are attempting to categorize, label, and describe recurring negative solutions.
We do not stop there. With each AntiPattern, we attach one or more design patterns that
provide constructive alternatives for resolving the root causes.

We present AntiPatterns from three perspectives: developer, architect, and manager:

• Development AntiPatterns comprise technical problems and solutions that are
encountered by programmers.

• Architectural AntiPatterns identify and resolve common problems in how systems are
structured.

• Managerial AntiPatterns address common problems in software processes and
development organizations.

These three viewpoints are fundamental to software development, and many problems exist
in each.

AntiPatterns: The Book
This chapter delineated the evolution of AntiPatterns and how they relate to improving the
software industry. AntiPatterns provides an effective way to describe the problematic
development and organizational issues found in software development, and details a course
for resolution. To that end, the remaining chapters of the book are as follows:

• Chapter 2 introduces the AntiPatterns reference model. The reference model defines all of
the common concepts used to define the AntiPatterns in the descriptions found in Part II.

• Chapter 3 presents AntiPatterns in two forms: the mini−AntiPattern template and the full
AntiPattern template. Mini−AntiPatterns appear as shaded sidebars.
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• Chapter 4 explains the implications of AntiPatterns in the software organization. This
chapter provides essential guidance and etiquette for AntiPattern usage. We also describe
the process for writing your own AntiPatterns.

• Part II presents the specifics of AntiPatterns and mini−AntiPatterns.

• Chapter 5 defines software development AntiPatterns.

• Chapter 6 defines software architecture AntiPatterns.

• Chapter 7 defines software project management AntiPatterns.

• Part III, comprising the Appendices, provides resources, including acronyms and a
glossary, AntiPatterns summaries, and a bibliography.

Chapter 2: AntiPatterns Reference Model

Overview
This chapter overviews the reference model and template used for the AntiPatterns
contained in Chapters 5 through 7, and presents the common definitions and concepts for
the AntiPatterns in this book.

Patterns and AntiPatterns are related concepts, as shown in Figure 2.1. The essence of a
design pattern is a problem and a solution. The problem is usually elaborated in terms of its
context and applicable design forces. The role of the solution is to resolve the design forces
in a way that generates some benefits, consequences, and follow−on problems. These new
problems lead to the applicability of other patterns. Patterns are commonly occurring
solutions that are frequently observed in practice. To be considered a pattern, the solution
needs to be observed at least three times. Because no three occurrences can be identical,
the design pattern is an abstraction of these experiences.

Figure 2.1 Design pattern and AntiPattern concepts.

What distinguishes a design pattern from other forms of software knowledge is the use of a
template, a consistent outline for the pattern documentation that ensures consistent and
adequate coverage of the solution, design forces, and other consequences. The template
contains useful, prewritten arguments that justify the application of the pattern and predict its
consequences.

The essence of an AntiPattern is two solutions, instead of a problem and a solution for
ordinary design patterns. The first solution is problematic. It is a commonly occurring solution
that generates overwhelmingly negative consequences. The second solution is called the
refactored solution. The refactored solution is a commonly occurring method in which the
AntiPattern can be resolved and reengineered into a more beneficial form. Ralph Johnson,
one of the primary proponents of patterns, has led much of the work in this area. For further
information, try the URL, st−www.cs.uiuc.edu/users/droberts/tapos/TAPOS.html.
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Patterns and AntiPatterns are related. Design patterns can often evolve into an AntiPattern.
A popular pattern, such as procedural programming, can be the popular paradigm of one era,
and fall out of favor in the next as its consequences are better understood. The difference
between patterns solutions and AntiPatterns solutions is that of context: An AntiPattern is a
pattern in an inappropriate context. When a pattern becomes an AntiPattern, it is useful to
have an approach for evolving the solution into a better one. This process of change,
migration, or evolution is called refactoring. In refactoring, we change one solution to another
solution with an improved structure, a structure that provides increased benefits.

One of the key issues in patterns is readability. Pattern write−ups often begin with a tedious
description of the context and design forces. The solution often seems rather obvious
compared to the lengthy discussion of forces preceding its introduction. In our book, CORBA
Design Patterns, we addressed this issue by organizing the pattern template for rapid
understanding of the pattern purpose and solution concept. This was made possible through
the use of a reference model, defining a conceptual framework and common concepts across
all patterns in the language.

AntiPatterns take this concept several steps further. In an AntiPattern, the problem is
depicted as a commonly occurring mistake. The mistaken solution maximizes the
catastrophe that may underlie a fundamental problem. This maximization of the problem is
an essential step in many fields of endeavor. For example, in software testing, the tester
often maximizes a bug to the level of a system crash in order to gain the attention of
developers [Beizer 97].

Since the first step toward recovery is admitting that you have a problem, the AntiPattern
problem helps readers to clarify the problem in dramatic terms. They can then assess the
applicability of the problem’s symptoms and consequences to their own situation. Many
people also find AntiPatterns entertaining. To err is human. We all laugh at our mistakes and
the mistakes of others when no insult is intended.

Both design patterns and AntiPatterns are written by starting with the solution. The context,
problem, and forces in a design pattern are written to lead uniquely to one solution. In order
to ensure a unique mapping to one solution, design patterns often contain lengthy
explanations of design forces. AntiPatterns are based on a different rhetorical structure.
AntiPatterns begin with a compelling, problematic solution, then offer an alternative solution
that refactors the problem. The refactored solution is not guaranteed to be unique; it is an
effective way to resolve the forces that ensure more benefits. Any significant variations of the
solution are included in a separate template section.

In practice, we have found AntiPatterns to be a much more powerful and effective form for
describing recurring solutions than design patterns. We hope that you will too. An AntiPattern
starts with an existing solution (or legacy approach), where most patterns assume a
green−field problem (from−scratch programming). We find situations with legacy and existing
problems to be more commonplace in practice. The AntiPattern amplifies the problem in a
way that helps organizations to recognize the problematic structure, symptoms, and
consequences. It then presents a common solution that refactors the system toward
improved benefits and minimized consequences.

Viewpoints
This book presents AntiPatterns from three major viewpoints: the software developer, the
software architect, and the software manager (Figure 2.2). Development AntiPatterns
describe situations encountered by the programmer when solving programming problems
(Chapter 5). Architectural AntiPatterns focus on common problems in system structure, their
consequences, and solutions (Chapter 6). Many of the most serious unresolved problems in
software systems occur from this perspective. Management AntiPatterns describe common
problems and solutions due to the software organization (Chapter 7). Management
AntiPatterns affect people in all software roles, and their solutions directly affect the technical
success of the project.
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Figure 2.2 Principal AntiPattern viewpoints.

We use a reference model for terminology common to all three viewpoints. The reference
model is based upon three topics that introduce the key concepts of AntiPatterns:

• Root causes.

• Primal forces.

• Software design−level model (SDLM).

Root causes provide the fundamental context for AntiPatterns. Primal forces are the key
motivators for decision making. The relative importance of these forces varies significantly
with architectural scale. The architectural scales are defined by the SDLM. An understanding
of the architectural levels defines the different scales for pattern applicability. Each pattern
has a most−applicable scale, where it is presented in Chapters 5–7, but may also have
applicability to other scales (also described in each pattern). The pattern template provides
the outline for pattern definition.

Root Causes
Root causes are mistakes in software development that result in failed projects, cost
overruns, schedule slips, and unfulfilled business needs [Mowbray 97]. The root causes
identified here are pervasive: One−third out of all software projects are canceled; five out of
six software projects are unsuccessful [Johnson 95]. Unfortunately, object−oriented
technology has not changed this overall prognosis. In fact, each new technology wave (such
as client/server) tends to increase software risk and the likelihood of falling prey to these root
causes. The root causes are based upon the “seven deadly sins,” a popular analogy that has
been used successfully to identify ineffective practices [Bates 96].

Haste
Hasty decisions lead to compromises in software quality, as shown in Figure 2.3. Software
projects are often subjected to severe schedule−related stress. At project inception,
managers are pressured to trim budgets and schedules to make unrealistic targets. As
successive project deadlines are missed, anything that appears to work is considered
acceptable, regardless of quality. The usual victim of a slip in project delivery is testing.
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Figure 2.3 Haste makes waste.

• Unit test coverage for each component.

• Repeated testing of success paths and error states for integrated components.

• Regression testing.

In this environment, long−term architectural benefits are sacrificed for expedience.

Quality, object−oriented architecture is the product of careful study, decision making, and
experimentation. At a minimum, the object−oriented architecture process includes farming of
requirements, architecture mining, and hands−on experience. Ideally, object−oriented
architecture comprises a set of high−quality design decisions that provide benefits
throughout the life cycle of the system.

Significant domain experience for the architect is essential as object−oriented architectures
are competently defined and defended. With appropriate domain experience and design
patterns, quality object−oriented architectures are defined rapidly. However, it’s always a
mistake to make object−oriented architectural decisions hastily.

Apathy
Apathy is not caring about solving known problems. That is not to say that all solutions are
known or fully achievable, but apathy is a basic unwillingness to attempt a solution (Figure
2.4). Apathy about object−oriented architecture leads to a lack of partitioning. A key aspect of
object−oriented architecture is proper partitioning. For example, object−oriented architecture
partitions the system into class categories and defines their interfaces and connections.

Figure 2.4 Apathy is the worst form of flattery.
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The critical partitioning decision in OO architecture is between stable reusable design and
replaceable design. The stable design remains with the system throughout its life cycle, as
individual software modules are modified, replaced, and added. Replaceable design details
are best allocated to profiles, vertical specializations, and metadata.

Neglecting the critical partitioning means that the core of the architecture must change in
response to subsystem level changes. This means that subsystem−level changes impact all
of the modules in the entire system. Thus, the sin of apathy leads to poor support for change.
In addition, poorly partitioned architectures make application interoperability and reuse
difficult.

Narrow−Mindedness
Narrow−mindedness is the refusal to practice solutions that are otherwise widely known to be
effective (Figure 2.5). An example of this is the use of metadata in software systems.
Metadata is self−descriptive information in a software system that enables the system to
change dynamically.

Figure 2.5 The Unteachables.

Many object−oriented systems are built with virtually no metadata. Without metadata, the
application software contains hard−coded bindings, relationships, and assumptions about
system configuration. For example, the number of servers or clients and their locations can
be made transparently variable with straightforward use of metadata services. CORBA
standards include various public metadata services, such as the Naming Service, the Trader
Service, and the Interface Repository.

Sloth
Sloth is the “healthy sign” of a lazy developer or manager, who makes poor decisions based
upon an “easy answer” (Figure 2.6). Distributed object technology enables application
developers to define system−level interfaces quickly using the ISO Interface Definition
Language (ISO IDL). Automatically generated interface stubs and skeletons make the task of
constructing a distributed system relatively easy. The ease of creating and changing
interfaces leads to the deadly sin of sloth—lack of configuration control.
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Figure 2.6 Sloth usually ends with sudden clarity.

Although sloth is more commonplace in small−scale, object−oriented projects, the habit of
frequent interface change is difficult to overcome. The more interfaces change, the more the
interface semantics become unclear to developers. Ultimately, developers and maintainers
spend more than half of their time performing system discovery—trying to understand how
the system works. The system loses any notion of architecture long before this point is
reached.

Proper configuration control starts with the first phase of prototyping. Ideally, system−level
interfaces are kept stable during active software development and modified only infrequently.
Stable interfaces enable parallel development, effective documentation, and reduced
software obsolescence.

Avarice
Greed can take many forms, but it leads to inappropriate software development decisions.
Architectural avarice means the modeling of excessive details, which results in excessive
complexity due to insufficient abstraction (Figure 2.7).

Figure 2.7 Addicted to complexity.

Excess complexity leads to many software problems and project challenges. Overly complex
systems are expensive to develop, integrate, test, document, maintain, and extend. In some
cases, development steps are skipped (such as testing) in order to make up for the lost time
and money. This can lead very quickly to project failure.

Ignorance
Ignorance is intellectual sloth. It’s the result of failing to seek understanding. It keeps people
stupid (Figure 2.8), and eventually leads to long−term software problems. The sin of
ignorance (implementation dependency) often occurs in the migration of applications to
distributed architectures. In ignorance, one assumes that system−level interfaces are
extracted from fine−grain definitions of existing application objects. For example, when an
IDL interface is reverse−engineered from existing C++ header files,
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implementation−dependent interfaces are created and promulgated throughout a system and
its subsystems.

Figure 2.8 Some people are too ignorant to change.

If an object’s interface is unique and there are no other implementations that support the
same interface, then the interface is implementation−dependent. Every client or object that
uses this interface is dependent upon unique implementation details. When this occurs
repeatedly on a systemwide scale, a brittle system is created. This sin is also evident when
vendor−proprietary interfaces are used without proper layering and wrapping for isolation.

Pride
The sin of pride is the not−invented−here syndrome (Figure 2.9). Object technology supports
many reuse opportunities through the integration of commercial packages, freeware, and
wrappered legacy applications.

Figure 2.9 Pride goeth before the fall.

Often, developers unnecessarily invent new designs when knowledge from preexisting
systems, products, and standards are readily applied through architecture mining.
Reinvention involves many unnecessary risks and costs. New software must be designed,
coded, debugged, tested, and documented. New architecture must be prototyped and
evolved before it is proven to provide software benefits.

Primal Forces
Software design involves making choices. For example, some of the key choices that present
themselves when designing software architecture include:
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• Which details to expose and which details to abstract.

• Which features to include and which features to exclude.

• Which aspects to make flexible and extensible.

• Which aspects to constrain and guarantee.

Software design choices are often complex, with numerous issues (or forces) to consider,
such as security, cost, adaptability, reliability, and so on. In order to make good choices, it’s
very important to clarify the context of the decision. Choices are clarified in several ways,
such as:

• Separation of concerns.

• Establishing priorities.

To separate concerns, we need to limit the scope of each choice. Partitions in a software
architecture are used to allocate and delineate the boundaries of concerns. Each partition is
responsible for resolving a limited set of issues, which simplify decision making. The
architecture represents the union of the partitions and provides coverage of all the relevant
issues. This separation of concerns is a fundamental role of architecture.

Decisions are also clarified by an understanding of priorities. If we know what is important
and what is not, it’s much easier to choose what to include and what to exclude in a design.
Decisions are difficult because they include some items and exclude many others, and we
must be able to justify such choices. This is another fundamental role of architecture, to
explain significant decisions and design choices.

Risk is a force that is always present in software decisions. Software projects are amazingly
prone to failure. As noted, approximately one−third of all software projects are canceled, and
approximately only one−sixth of software projects are considered successful. The remaining
projects are typically over−budget and over−schedule by factors of two or more. The
unsuccessful projects are also incapable of delivering the desired features. Once the
systems are delivered, there is high risk involved in changing the system. Correction or
extensions are likely to cause new software problems.

Considering these statistics, five out of six software projects are destined to fail. These
figures are essentially unchanged by new technologies and approaches such as client/server
and object orientation. As software professionals, the outlook is grim, unless something
significant changes. We believe that significant changes are necessary in the way that
software systems are architected and the way that risks are managed.

We see risk as a generalized force, which is an underlying factor in most other forces. To
various degrees, management of risk is a universal force that motivates the patterns and
solutions described here.

What Is a Primal Force?
Forces are concerns or issues that exist within a decision−making context. In a design
solution, forces that are successfully addressed (or resolved) lead to benefits, and forces that
are unresolved lead to consequences. For any given software problem, there are a number
of forces that can influence a given solution. The application of a design pattern leads to a
solution that resolves the forces in a particular way. In the solution, some forces are resolved
more completely than others. The choice of a design solution establishes a priority on the
forces, to the extent that the highest−priority forces are resolved the most completely.

Some forces are domain−specific. Domain−specific forces (called vertical forces) are unique
to a particular situation due to the domain or problem addressed. Since vertical forces are
unique (or local) to one software situation, resolution of vertical forces usually results in
unique solutions for each software problem.

Another class of forces, horizontal forces, are applicable across multiple domains or
problems. Horizontal forces are those that influence design choices across several software
modules or components. With horizontal forces, design choices made elsewhere may have a
direct or indirect impact on design choices made locally. For example, if the horizontal force
is “design consistency,” it is necessary to coordinate software designs across multiple
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software modules to ensure such consistency.

A certain class of horizontal forces are pervasive in software architecture and development.
These are the primal forces, and are present in nearly all design situations, and should be
considered part of the contextual forces driving most solutions. One role of the primal forces
is to keep architecture and development on track. For example, a software decision that
seems to be local can have a cumulative impact when there are other software groups
making conflicting choices elsewhere in the same enterprise. The primal forces represent the
pervasive forces, which arise from the interrelatedness of software decisions.

The primal forces are an important part of the guidelines presented in this pattern language.
Each primal force is horizontally applicable across many domains of software architecture
and development. The primal forces represent the common−sense basic considerations,
which are necessary for successful software architecture and development. Primal forces
comprise a fundamental value system for software architects and developers that are
independent of particular situational forces.

The primal forces include:

• Management of functionality: meeting the requirements.

• Management of performance: meeting required speed of operation.

• Management of complexity: defining abstractions.

• Management of change: controlling evolution of software.

• Management of IT resources: controlling use and implementation of people and IT
artifacts.

• Management of technology transfer: controlling technology change.

The primal forces have different relative importance at different scales. Functionality and
performance are critical forces at application−level and finer grains, whereas management of
IT resources and technology transfer are enterprise and global in scope. Before we can
discuss these fully, we need to define the scales through the scalability model.

Table 2.1 identifies the degrees of impact of forces at the different levels of scale:

• Critical. The impact is fundamental, as it affects all of the software.

• Important. The impact must be seriously considered, as it affects a significant amount of
the software.

Table 2.1 Degrees of Impact

Global Industry Enterprise System Application

Management of
Functionality

unimportant marginal important critical 

Management of
Performance

important important critical critical 

Management of
Complexity

important critical important marginal 

Management of
Change

unimportant critical critical important 

Management of
IT Resources

unimportant critical important marginal 

Management of
Technology
Transfer

critical important important marginal 

• Marginal. The impact can often be ignored, as it affects a minimal portion of the software.

• Unimportant. The impact should not be considered.
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• Management of functionality is a force best addressed at the application level. Developers
are better able to effect functionality at its lowest level in response to (functional)
requirements.

• Management of performance is best addressed at both the application and the system
levels. Frequently, performance at the system level involves performing coarse−grained
optimizations within a domain model. The domain model is used by application models,
which contain localized, finer−grained optimizations.

• Management of complexity is important at all levels; however, complexity becomes
exponentially worse at the higher scalability levels. In any case, it never becomes an
unimportant consideration at any level.

• Management of change is critical at the enterprise and system levels, where the rate of
change of individual products is moderate. Applications and external concerns change
quite rapidly, generating new requirements and alterations in existing implementations.
Therefore, it is important at the system and enterprise levels to plan an adaptable system
capable of managing change. While, admittedly, change is even more rapid at the global
level, it is less of a concern as there is little an organization can do about it.

• Management of IT resources is critical at the enterprise level because of the need for
strategic planning. This includes people, time, hardware and software artifacts. It’s also
important at a system level to ensure that major software developments are successful.

• Management of technology transfer is important at the global industry level so as to stay
abreast of technology advancements and be able to reuse experience and knowledge
across organizational boundaries. It is important at the enterprise level to make the most
of the available resources within an organization and at a system level to gain tactical
advantages of software advancements.

Table 2.2 identifies the roles in the software development and the level of their responsibility
for each scale. Each role has a critical impact because that is the scale where they can be
most effective, as Table 2.3 illustrates.

Table 2.2 Level of Responsibility

Global Industry Enterprise System Application

CIO critical critical marginal unimportant

Project Manager unimportant critical important marginal

Architect marginal important critical important

Developer unimportant marginal important critical

TABLE 2.3 Scale of Effectiveness

Global Industry Enterprise System Application

Management of
Functionality

architect developer 

Management of
Performance

architect developer 

Management of
Complexity

project manager architect

Management of
Change

project manager architect developer

Management of IT
Resources

CIO project manager 

Management of
Technology Transfer

CIO 

A developer is primarily concerned with optimizing functionality and performance. However, if
a software project is going to be successful, the primal force of management of change must
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also be dealt with at this level. At the architect level, the same concerns are shared as the
developer level, with the additional force of managing the complexity of the overall system.
The architect must design the system such that the system interfaces are manageable,
regardless of the complexity of its parts. A project manager has to aid the architect in the
management of complexity and change and successfully deal with the management of IT
resources, such as people, time, and budgets. Finally, at the CIO level, a plan must be in
place for managing internal IT resources and for managing the technology transfer to and
from other organizations in the industry.

Management Of Functionality

Managing functionality is making sure that software meets end−user requirements. Software
provides a mapping from the world of end−user objects to the world of computer technology
objects. The functionality of the software provides the mechanism for this mapping and for all
of the operations performed on technology objects.

Interoperability is an important part of management of functionality, comprising the exchange
of information and services between software modules. Interoperability enables multiple
software modules to collaborate to provide functionality.

Management Of Performance

The second primal force, and the one sometimes overlooked by software architects, is the
management of performance. It is not sufficient for software to meet only its functionality
requirements; the system must also meet performance needs. End users have changing
perceptions throughout the lifetime of a system, which can impact these needs. A system is
implicitly required to perform at least as fast as comparable systems developed using other
technologies.

In the case of CORBA, the performance of an ORB product out of the box is only as good as
the underlying technologies used to implement it. The ORB’s built−in client−service
decoupling enables the astute developer to perform many performance enhancements
without changing application software. Because the performance enhancements are
transparent to application software, they may be phased in over time, or added as needed as
determined by the growth of the system. This results in a high degree of scalability in CORBA
systems, which has been proven in the success of companies migrating from prototypes to
enterprisewide operational implementations. The best−known performance enhancement
supported by CORBA is load balancing. Since CORBA uses dynamic binding to connect
clients with services, it is possible to insert algorithms in the binding process to ensure that
the services are used optimally. Since many implementations can support an interface,
services are often replicated to optimize load balancing.

Managing performance also involves application software optimizations. Application
implementations control the details of processing, which is where the greatest amount of
flexibility is available to tune the performance of the application. The majority of performance
issues involve compute−bound application bottlenecks, not I/O−bound or network−bound
performance. Specifically, an application developer controls the application’s data structure
selection, algorithms, and often, language implementation. Performance optimization is an
expensive and time−consuming activity, and few projects are willing to incur the additional,
often considerable, costs associated with application speed−up.

Management Of Complexity

In developing systems, it is important not to lose sight of the value of good software
abstractions. Abstraction leads to simpler interfaces, uniform architectures, and improved
object models. It is the lack of effective abstractions that results in excessive system
complexity. Commonality between components is often not recognized and sufficiently
exploited. Without proper design abstraction, needless component differences are created,
resulting in redundant software and multiple points of maintenance for fundamentally similar
code.

Managing complexity is a matter of analyzing a design and properly identifying the hot spots
and problem areas that may be most affected by future changes; for example, the
anticipation of changes that have the potential for a performance bottleneck in an
implementation. Once hot spots have been correctly identified, a recursive process of
redesign revision is appropriate, to provide simplicity and robustness. Developing
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abstractions that simplify individual interfaces provides cost savings across the overall
system design. This can result in savings in the internal implementation of a software
component, and in each of the clients that access the component services.

Management Of Change

Adaptability is a highly desired but elusive software characteristic. Most organizations would
prefer to have adaptable systems, but few realize the full implications of what it means to
develop a flexible system. When developing a distributed system, it is not sufficient to simply
include adaptability as a goal; rather, the system architect must consider the evolution of the
system and decide how and where the system needs to be adaptable. When the system
architect designs interface specifications, he or she is making decisions about where the
areas of greatest adaptability exist and which are the areas of greatest stability. IDL can be
used to define the software boundaries. If properly specified, it is the set of interfaces that
provide decoupling between components in the system. A good set of IDL interfaces
specifies the exposed functionality of a software component in order to make multiple
implementations capable of satisfying the constraints of the interfaces. It is in the software
interfaces where system stability and adaptability are realized. A system that can support
component implementation changes and still maintain stability is much more adaptable than
one whose interfaces must constantly be modified to support new component
implementations. Minimizing the dependency of clients to particular component
implementations is the role of the software architect. This is accomplished by abstracting the
key functional elements of categories of components and defining them in an
implementation−independent manner. IDL is an ideal notation because it is
language−independent. With an ORB, the IDL interfaces can support location and platform
independence as well.

Portability is an important aspect of management of change, for it is the ability to migrate
application software from one product or platform to another. Many standards reduce risk by
facilitating portability. Unfortunately, the portability provided by COTS products is imperfect,
as vendors increase and decrease other COTS and platform support.

Management Of It Resources

Management of information technology (IT) resources concerns the ability to manage the
assets of the enterprise on a large scale. A typical large−scale enterprise would have many
different kinds of hardware (hardware heterogeneity), many different software products
(software heterogeneity), and multiple releases of each technology. Managing the large
volume of machines and software in a changing organization becomes a major issue in its
own right. The management of IT resources involves many aspects, such as
hardware/software acquisition, inventory, training, maintenance, upgrade, and support.

The majority of end users are incapable of providing their own technical support, so this
support burden falls on the enterprise. If the support burden is unresolved, significant costs
are associated with lost time and productivity, estimated by Information Week to be $40,000
per end−user PC per year (April 1996).

Security is an important aspect of management of IT resources. The secure control of
information and services is becoming more important as systems become increasingly
networked and interoperable.

Management Of Technology Transfer

Management of technology transfer comprises some of the key forces at the external
boundary of the enterprise. It includes the formal and informal relationships established by
the use and transfer of software and other technologies. Management of technology transfer
is also an issue impacting many software developers because of the popularity and the
availability of the Internet. It is relatively easy to disseminate technology information globally
across enterprise boundaries through e−mail, the World Wide Web, and other services.
These information exchanges impact the control of intellectual property and the changing
dependencies of internal systems on external technologies.

Management of technology transfer also includes the possibility of creating and influencing
standards. In essence, standards are technical agreements between enterprises; they
represent the minimal technology transfer that occurs between organizations in order to
establish commonality and cooperation. CORBA IDL makes the creation of interface
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specifications accessible to virtually all architects and developers. This same IDL is the
accepted notation of the formal standards community and other consortia and alliances. It is
now possible for most organizations to create technical agreements for software interfaces
as a way to manage the technology transfer environment.

Software Design−Level Model
If an attempt is made to develop a system on a piecemeal basis without an overall
architecture, the system will become increasingly unmanageable as the system evolves due
to requirements changes and new technology adoptions. One of the key benefits of
architecture is the separation of concerns, which means, rather than tackling all of the
problems at once, partitioning the problem into solvable elements. In this pattern language,
we present the scalability model that separates concerns based upon scale of software
solutions. The model clarifies the key levels inherent in software systems and the problems
and solutions available at each level.

In a typical small software system, there are two levels of scale (Figure 2.10). The first is the
external model (or application level), which directly addresses the end−user requirements.
This level includes the user interfaces and associated functionality. The applications are
typically driven by interactive user control through graphical user interfaces (GUIs) or user
commands. The applications implement the external model of the system that interacts
directly with the human organization. The applications contain the software needed to
address the functional requirements of the organization.

Figure 2.10 The existence of both external and internal models in software systems
illustrates the need for multiple levels of software concerns.

The second level is the internal model (or system level). The system level comprises the
connections between the applications; it does not directly interface with the end users, nor it
is readily observable to end users. The system level provides an architecture for the software
system. This level is charged with providing an infrastructure for the application level, and
generates interoperability, communication, and coordination between applications. Access to
data stores, auditing, and the management of interprocess resources also occur at the
system level.

A similar partition exists at several other scales of software implementation; for example,
when software solutions span multiple systems across organizations. There is another,
related set of concerns at the enterprise level. The scalability model explains the differing
priorities at each scale, and the pattern language includes a set of possible solutions. This
resolves a key guidance challenge: ensuring that appropriate solutions are applied at their
correct level so that the chances of developing an effective, maintainable system are
maximized.

The pattern language is organized by architectural levels, which define a comprehensive
framework in which to examine the patterns and principles of object−oriented architecture.
Although we have identified seven architectural levels, our focus will be on the larger−scale
levels of object−oriented architecture (Figure 2.11). The smaller−scale levels have been
covered, to various extents, by other authors. Specifically, the object level is addressed by
the current reusable component libraries and standards such as C++, Smalltalk, the CORBA
object model, and CORBAservices. At the micro−architecture level, the Gamma Pattern
Language (GPL) and additional design patterns research present the structures necessary to
develop component micro−architectures [Gamma 95]. Significant work has also been done at
the macro−component (frameworks) level. For example, Taligent Corporation was quite
active in developing software and guidelines at the macro−component level in the
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development of its OO frameworks. Until now, the higher architectural levels have been
mostly neglected, and as a result, general interoperability principles across applications,
systems, and organizational enterprises have suffered from proprietary solutions and
nonreusable, unscalable technological solutions. By defining the scalability model, the field of
design patterns can be advanced to apply to larger−scale problems, which before now have
absorbed significant resources and resulted in less reusable and extensible solutions.

Figure 2.11 Software design−level model.

Figure 2.11 shows the seven architectural levels: global, enterprise, system, application,
macro−component, micro−component, and object. The global level contains the design
issues that are globally applicable across all systems. This level is concerned with
coordination across all organizations, which participate in cross−organizational
communications and information sharing. The enterprise level is focused upon coordination
and communication across a single organization. The organization can be distributed across
many locations and heterogeneous hardware and software systems. The system level deals
with communications and coordination across applications and sets of applications. The
application level is focused upon the organization of applications developed to meet a set of
user requirements. The macro−component levels are focused on the organization and
development of application frameworks. The micro−component level is centered on the
development of software components that solve recurring software problems. Each solution
is relatively self−contained and often solves just part of an even larger problem. The object
level is concerned with the development of reusable objects and classes. The object level is
more concerned with code reuse than design reuse. Each of the levels is discussed in detail
along with an overview of the patterns documented at each level.

Design Reuse versus Code Reuse

Design patterns are focused on providing reusable design guidance for developing
large−scale systems. The reusability of design itself has a significant effect on the
overall development cost of a system, far greater than the reuse of individual software
components [Mowbray 95]. To illustrate this, Figure 2.12 shows a system on the left
that is able to take advantage of several reusable components at the framework and
micro−architectural levels. Note that the overall design of the system still has to occur
and that the bulk of the overall tree is in the nodes in the nonleaf node parts of the
design. Reducing components does effectively save time in that the prefabricated “leaf
nodes” can be plugged into the design rather than custom constructed, but there is still
a large outlay required to build the overall system. The right side of Figure 2.12 shows
a system that is able to reuse much of the design of an existing system. Although the
system is constrained to the domain of the previously built system, the level of reuse is
far greater [Yourdon 93]. By reusing the design, any pieces that are identical to the
previous system may be plugged in with minimal modifications. Still, there are many
leaf nodes that must be customized to the new base of users to meet their specific
requirements. Note that the cost of changing the leaf nodes is far less than the cost of
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changing the higher−level design. Therefore, optimizing the amount of design that is
reused in a system provides a framework for minimizing the overall system costs far
more than if the emphasis is on reusing individual components.

Figure 2.12 Software reuse versus design reuse.

Object Level
The finest−grain level is the object level. Here, a software developer is concerned with the
definition and management of object classes and object instances. Decisions made at this
level include selection of specific object attributes and proper signatures for each operation.
At this level, the goal is to build primitive functionality to address application requirements.
Secondary goals include reuse of existing software and documentation for the decisions
used in making the decisions about what is included or excluded from the class description.
Typically, discussions on the object level are so specific and detailed that they are used only
to describe the specifics of a system’s implementation.

At a business level, an object may represent the behavior and data of an account or
customer. At an implementation level, an object may represent the methods and attributes of
a Java GUI to edit, validate, and display account or customer data.

At the object level, in the case of class libraries and programming frameworks, objects and
classes are language−dependent. Language independence is possible, for example, when
they have their class definitions expressed in OMG IDL. A standard object model defined in
CORBA defines the semantics of object interactions. Also, CORBAservices interfaces define
basic object−level interfaces for the management and control of objects.

The CORBAservices are often used as building blocks for larger−scale software
components, which may contain policy and rules as to how the services are used by a
specific set of components. Language−dependent class definitions are written in a specific
programming language, such as C, C++, Smalltalk, ADA, Java, and others, and are usually
not sharable by other programming languages. Language−dependent classes may take
advantage of shared run−time libraries so that they are capable of use by multiple
applications.

Micro−Architecture Level
The micro−architecture level involves patterns that combine multiple objects or object
classes. This might be a collection of cooperating business objects for the purpose of
calculating air miles from a month of credit card transactions. At an implementation level, this
might be the collection of cooperating objects that provide the GUI screens, business
(processing rules), and persistence and query interfaces for a customer or an account object.
This level is concerned with the development of small designs used to tackle a limited
problem with a software application. The distinguishing characteristics of this level are a
limited group of cooperating objects whose interrelationships with other objects are
well−defined and understood by the implementers of the component. The goal of patterns at
the micro−architectural level is to reuse the encapsulation of components so that they are
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isolated enough to handle future system changes. The Gamma Pattern Language was
primarily concerned with the development of effective design patterns for applications at this
level.

Framework Level
The framework level is concerned with the development of design patterns at the
macro−component level, involving one or more micro−architectures. This could be a
container−based framework used to store information on groups of customers and their
accounts. Often, the solution presupposes several architectural issues such as the presence
of object request broker (ORB) architecture, or that certain capabilities are available within a
system. At the framework level, the goal is to allow the reuse of both software code and the
design used in writing the code. Patterns, which are unique to a specific framework model or
macro−component architecture, would be included at this level. Effective patterns at this level
can reduce the cost of building applications, which share the framework’s domain, and their
maintenance costs. Many of the patterns and much of the guidance from Taligent and
Siemens are at this level [Buschmann 96]. Frameworks attempt to use large portions of
design and software when applied to solve problems within a specialized domain.

Application Level
The application level is the next scale above frameworks. Applications typically involve
numerous object classes, multiple micro−architectures, and one or more frameworks. The
application level is concerned with the design patterns used in a single application program.
Often, a single developer has control over how an application (at this level) is structured,
controlled, and managed. At the application level, the primary goal is to implement a specific
set of functionalities defined by the software requirements. Their functionality must be
conformant with performance goals. This level contains diverse arrangements of structure
and design techniques. Because the scope is limited to a single program, there is far less risk
involved in experimentation at this level than at larger scales (which impact multiple
applications, systems, or enterprises). If the higher scales are architected properly, the scope
of impact of changes within an application is limited to a single−application program and the
data on which it operates.

The application level contains programs that implement the external model of a software
system; that is, an operational model of the real world. Specifically, the external requirements
of the end user are satisfied at the application level; this includes issues relating to user
interface and visible system functionality. Application−level software activities include object
wrapping of legacy systems and new application development. Commercial off−the−shelf
(COTS) applications reside in the model at this level, as well ”as groups of collaborating
frameworks.

Since the finer−grain levels are covered adequately by other works, the pattern language is
focused only upon the problem sets that occur at the application and larger scales. The work
in design patterns at the application and higher levels has been minimal until now; however,
it is precisely at these levels where object−oriented architecture is most important.

Application patterns cover a diverse set of solutions, and innovation at the application level in
COTS software and development support environments is occurring rapidly. The chosen
application patterns in the pattern language include libraries, frameworks, interpreters,
event−driven, persistence, and others. This comprises a robust set of application patterns
that explain the principles behind most application−level architectures.

System Level
A system comprises several integrated applications, which provide the functionality; the
system level adds interoperation between the applications. The system is also responsible
for managing life−cycle issues, such as system evolution. The system−level architecture is
the enduring structure that survives the modification and replacement of component
applications over the life cycle of the system. This could be an insurance system, for
example, integrating marine, home, and automobile insurance applications, or a flight system
for the centralized control of aircraft systems monitoring, Instrument Landing System (ILS),
proximity warning, and autopilot.
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The system level is interesting because the forces vary significantly compared to the
application level. As we move to larger scales, the impact of change and complexity increase
dramatically. Within one application there may be infrequent changes; at the system level,
these application−level changes comprise cumulative changes with possible systemwide
impacts. For example, if a dozen cooperating applications were upgraded once a year on a
staggered schedule, the overall system would experience monthly upgrades, with an
associated risk of the required changes to existing software affecting the rest of the
applications.

Each application may be a complex program with hundreds of classes and thousands of
methods. As we scale to the system level, the system complexity increases faster than that
of the individual applications. From one perspective, the system resembles a large program
that is the union of the individual applications. Since the applications must communicate,
additional software implements application−to−application interconnections. If this complexity
is not managed properly, the system with N applications resembles a much larger program
with N complex modules and N ∞ N interconnections (Figure 2.13). Complexity at the system
level also includes communications mechanisms and distributed processing.

Figure 2.13 If every subsystem has a unique interface, then the system is overly
complex.

The apparent complexity also leads to a wide range of diversity in solutions. Many
system−level solutions are ad hoc, or uniquely crafted for particular application
implementations. Within an enterprise, there may be many software systems with varying
software architectures. At the system level, the goal is to provide an infrastructure that
applications may easily “plug in” in order to achieve some interoperability benefit. Here, the
goal is to reuse architecture so that applications benefit from commonality between systems,
which includes interoperability and software reuse.

At the system level, managing change and complexity are the two most important primal
forces. Managing functionality and performance have more importance at the application
level where they are directly controlled. Managing complexity is achieved through arriving at
the right amount of abstraction for system architecture. Management of change is focused on
the development of common interfaces. This defines how services are accessed. Common
interfaces allow for component replacement of applications and systems. Good architecture
is about matching the right amount of abstraction with the appropriate set of common
interfaces.

The system level implements the system’s internal model and provides the cohesiveness
needed to allow applications to interoperate effectively with one another (refer back to Figure
2.10). Three key principles at this level include horizontal interfaces, vertical interfaces, and
metadata. Horizontal interfaces are common interfaces designed for reuse across an
organization; for example, horizontal interfaces may contain generic operations for data
transfer and access. They can provide mechanisms for reuse, interoperability, and
management of applications. Vertical interfaces are customized with respect to
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domain−specific requirements and vertical forces. Providing functionality to end users and
optimizing performance are the key motivations behind vertical interfaces. Metadata is
self−descriptive information, which defines services and data available within a system.
Metadata enables system flexibility, with dynamic capabilities for managing change.
Together, horizontal and vertical interfaces, along with metadata, comprise system−level
software architecture.

Within the system level, patterns are categorized into either a structural or behavioral
patterns. Structural patterns are those that possess a specific structure or set of related
components. Structural design patterns at the system level include gateways, a repository,
and component and domain object−oriented architecture. Behavioral patterns define how a
system behaves under various conditions. The behavioral patterns are reuse categories,
client/server, multitier, and automation.

Enterprise Level
The enterprise level is the largest architectural scale within an organization. Enterprise−level
software comprises multiple systems, where each system comprises several applications
(see Figure 2.14). This could be financial services for banking, mortgages, and insurance, or
underground railway systems for ticketing, accounting, signaling, and track control. Unlike the
global level, within the enterprise level, an organization has control of its resources and
policies. The enterprise is responsible for establishing policies and procedures that are in
place throughout an organization. The enterprise−level patterns include guidance for making
architectural design decisions that affect the structure, style, and future growth of enterprise
software. The patterns help define the necessary policies that need to be in place at the
enterprise level, balanced with autonomy at lower levels. The enterprise level is also
differentiated from the global level by being limited to a definable scope of influence. The
goal of the enterprise level is to provide software access and minimize costs through a
consistent set of polices and services usable throughout the organization. By establishing
organizational procedure in accordance with the design patterns, many typical enterprise
problems in organizations can be minimized. For example, an organization that establishes a
policy for particular file formats or network standards can avoid many related problems of
procurement flexibility for state−of−the−art products and product incompatibilities without a
means of data transfer between them.

Figure 2.14 The enterprise architecture defines the technology utilization policies,
including the standards reference model, the common operating environment, and
the application profiles.

At the enterprise level are four categories of software information management to consider:
the organizational operating environment, distributed interprocess communications, resource
management, and organizational profiles. In addition, certain decisions must be made at this
level that are unique for a particular organization type. Some general characteristics of
enterprise−level decisions will be presented as a guide toward identifying and applying some
of these less common patterns.
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Included at the enterprise level are the various organizational models, which direct an
organization as to how to utilize various standards, for example, organizational policies,
security and data access policies, and organizational infrastructures issues, such as the
available communication protocols or the location of shared resources.

Global Level
The global level is the largest scale of the architectural levels, comprising multiple
enterprises. The boundaries of global systems are difficult, if not impossible, to define, and
include a mixture of de facto and formal standards that are actively in use by the multitude of
organizations throughout the world. The key issues addressed involve the impact of software,
which cross enterprise boundaries. The global level includes languages, standards, and
policies that affect multiple enterprises. Global systems are those that bridge enterprises, and
can be jointly controlled by multiple enterprises. The goals of the global level are the joint
goals of multiple enterprises. For example, the global level may provide a set of leveragable
standards and protocols that benefit organizations by allowing a general means of
interoperability and communicating across different enterprises.

The best example of a global system is the Internet, which is defined through a collection of
related standards and policies that exist throughout the world to enable the sharing of
information. An important aspect of the Internet is the collection of standards that can be
supported by anyone who wishes to share and access information in other organizations.
The usage is beyond the control of any particular organization and is open to any person or
group who wishes to participate.

Also included at the global level are the software standards. There are four major categories
of standards in the computer industry: formal, de jure, de facto, and consortium standards.

1. Formal standards are those advocated by accredited formal standards bodies such as
the International Standards Organization (ISO), ANSI, and IEEE.

2. De jure standards are mandated by law and endorsed by a government authority,
including such standards as Ada95 and GOSIP.

3. De facto standards are those that enjoy the status through popular use. Currently,
popular de facto standards include Microsoft Windows and Office, TCP/IP, and the
various Internet protocols (IIOP).

4. Consortium standards are created by a wide variety of groups such as OMG and the
Open Group. Typically, formal and de jure standards are specifications only, whereas de
facto and consortium standards may also include an implementation.

Level Summary
A summary of the levels that are the focus of the pattern language is presented in Figure
2.15. The application level is where the functionality and performance that meet user
requirements occurs. At the next larger scale, the system level defines the software
interconnections between applications. The development of vertical interfaces and horizontal
interfaces for interoperability between applications occurs at the system level. Along with the
horizontal and vertical interfaces, metadata is defined for run−time flexibility to allow many
types of system modifications without requiring changes to application software. The next
larger scale is the enterprise level where organizational level policies, guidelines, and
procedures are defined. At this level, the enterprise controls reference models and operating
environments and makes choices to further the needs of the organization. At the global level,
standards are generated as technology agreements are reached through consensus with
other enterprises.
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Figure 2.15 The software design−level model shows the levels addressed in the
AntiPatterns found in Chapters 5–7.

Architectural Scale and Primal Forces
The primal forces are persuasive concerns that influence most software choices. The
trade−offs between these concerns will affect the overall quality of software architecture at all
levels. In order to simplify decision making and clarify the separation of issues, we have
estimated the relative importance of the primal forces at each architectural scale (Figure
2.16).

Figure 2.16 The primal forces have varying relative priorities at each architectural
scale.

On an application level, software developers are concerned primarily with managing
functionality and performance when developing software to meet the functional needs of their
user base. The system level is focused on developing an infrastructure that can effectively
manage complexity and change in order to reduce the overall life−cycle costs of developing
and maintaining an organization’s software system. The system−level architect is responsible
for providing adaptability and ensuring that the overall system design is sufficient to adapt to
the evolving needs of an organization.

On the enterprise level, the emphasis is on managing resources, as large−scale systems
often involve thousands of interacting components and services. Additionally, the
management of change overshadows other primal forces that are addressed at lower levels.
The management of resources becomes a major concern as the enterprise scale increases.

At a global level, the emphasis is on leveraging existing standards and effectively utilizing the
existing knowledge base to enhance enterprise−level development. However, the
enterprise’s control over solutions is reduced as an organization has limited influence of
external technologies. Keeping up to date on new technologies and use of IT resources are
the primary concerns at the global level.
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The pattern language will examine the recurring structures at each level and present detailed
solutions for the major problems inherent at each architectural scale. Design patterns excel in
establishing reusable architectural designs that balance the primal forces. A natural side
effect of good object−oriented architecture, which effectively balances the forces, is that
overall software development costs are reduced as maintenance costs are reduced, and
services can be used during a major portion of the life cycle.

Chapter 3: Templates for Patterns and
AntiPatterns

Overview
The use of templates is what makes design patterns and AntiPatterns different from other
forms of technical discussion. The template assures that important questions are answered
about each pattern in a pattern language, pattern catalog, or pattern system. Without a
template, a pattern is just somebody’s unstructured prose, or someone saying, “It’s a pattern
because I’m an expert and I say so.” We don’t buy this argument and neither should you.
Without structure, it’s difficult to determine what is a pattern and what is not. This is because
there is no recognizable form or distinction between ordinary technical discussion and
patterns literature.

A pattern language (or catalog) is a collection of interrelated patterns. Each pattern has a
consistent, rhetorical structure—a pattern template. By rhetorical structure, we mean that
there is a well−conceived logic to the pattern descriptions. This consistent, logical structure is
a direct result of the use of the template. Each section of the template has a rhetorical
purpose. It’s part of a technical line of reasoning, and each section answers some key
questions about the pattern involved.

The intent and extent of the rhetorical structure varies between pattern catalogs. The
structure of the template is chosen to match the audience’s need and authors’ resources.
Some of the major template forms are described in the following sections.

Degenerate Form
Degenerate patterns are without discernible templates. Compared to templated patterns, a
degenerate pattern contains only a single content section. Here is an example of a
degenerate pattern form.

Degenerate Pattern Form
Technical Discussion: What does the author have to say about this set of concepts?

Is it a pattern? It’s a subjective judgment. One can call it a pattern because the author has
chosen to do so. We choose not to believe it’s a pattern solely based upon the author’s
reputation or other subjective assessments.

Degenerate form provides no particular conventions or guidance upon which practitioners
can rely. The readers have to analyze the author’s prose to determine what is problem,
intent, context, forces, solution, benefits, consequences, examples, and so forth. In practice,
it is likely that one or more of these elements are missing.

Alexanderian Form
Christopher Alexander’s traditional template comprises three sections: name, problem, and
solution. The word THEREFORE partitions the discussion. THEREFORE appears between
the discussion of issues and the discussion of a design approach. Here is an example of an
Alexanderian pattern form.

Alexanderian Pattern Form
Name: What does the author call this concept?

Technical Discussion: What are some related issues?
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THEREFORE

What is a common solution for resolving these issues?

The Alexanderian form contains an essential partitioning between motivations and actions.
By convention, a diagram is included in the Alexanderian form. This is an important spatial
abstraction of the ideas presented in prose. The Alexanderian form is the minimum one
should expect for the description of any design pattern.

Minimal Template (Micro−Pattern)
The minimal, rhetorical structure of a software−engineering design pattern includes name,
problem, and solution. The name defines unique terminology; the problem lists the context,
forces, and/or applicability; and the solution is the pattern content (what to do about solving
the problem). This structure is appropriate for low−overhead pattern documentation such as
workshop−pattern development or on−site consulting, where expedience and content are
key, and formality is not necessary. It’s also concise, which is a requirement of some
publication media. Here is the standard template for a micro−pattern.

Micro−Pattern Template
Name: What shall this pattern be called by practitioners?

Problem: What is motivating us to apply this pattern?

Solution: How do we solve the problem?

Mini−Pattern Template
A mini−pattern decomposes the problem or solution to expose the teaching elements. The
next most important rhetorical aspects of a pattern are the “teaching” elements. In particular,
the context and forces and/or the benefits of consequences. Most important, these sections
answer the why questions about the solution, as well as provide information about when to
use the pattern. Here are two examples of mini−pattern templates.

Inductive Mini−Pattern
Name: What shall this pattern be called by practitioners?

Context: What are the assumed environment or a priori assumptions for applying this
pattern?

Forces: What are the different design motivations that must be balanced?

Solution: How do we solve the problem?

Deductive Mini−Pattern
Name: What shall this pattern be called by practitioners?

Problem: What is motivating us to apply this pattern?

Solution: How do we solve the problem?

Benefits: What are the potential positive outcomes of applying this pattern?

Consequences: What are potential shortcomings and consequences of applying this
pattern?

We describe two template forms for mini−patterns: inductive and deductive. The inductive
mini−pattern focuses on the applicability of the pattern. The deductive mini−pattern focuses
on the outcomes of the solution—benefits and consequences.

Formal Templates
There are many other potential sections added to a pattern and AntiPattern write−up.
Citations that include reference to other related patterns and nonpattern technical concepts
are also useful and necessary for a full formal treatment. Some of the formal templates used
in publications are summarized here. Note that the following are paraphrased summaries of
the authors’ original template definitions. The Gang−of−Four (GoF) template is a formal
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template appropriate for micro−architecture−level patterns [Gamma 94].

Gang−of−Four Pattern
Pattern Name: What is the pattern called?

Pattern Classification: Is the pattern creational, structural, or behavioral?

Intent: What problem does this pattern solve?

Also Known As: What are other names for this pattern?

Motivation: What is an example scenario for applying this pattern?

Applicability: When does this pattern apply?

Structure: What are the class hierarchy diagrams for the objects in this pattern?

Participants: What are the objects that participate in this pattern?

Collaborations: How do these objects interoperate?

Consequences: What are the trade−offs of using this pattern?

Implementation: Which techniques or issues arise in applying this pattern?

Sample Code: What is an example of the pattern in source code?

Known Uses: What are some examples of real systems using this pattern?

Related Patterns: What other patterns from this pattern collection are related to this
pattern?

System of Patterns Template
The system of patterns template is a formal template appropriate for multiple levels of
patterns, such as idioms level, application level, and system level [Buschmann 96].

Name: What is this pattern called?

Also Known As: What are other names for this pattern?

Example: What is an example of the need for this pattern?

Context: When does this pattern apply?

Problem: What is the problem solved by this pattern?

Solution: What is the underlying principal underlying this pattern?

Structure: What objects are involved and related (structural diagram)?

Dynamics: How does this object collaborate (interaction diagram)?

Implementation: What are some guidelines for implementing this pattern?

Example Resolved: Show how the previous example is resolved using the pattern.

Variants: What are important variations of this pattern?

Known Uses: What are real−world systems using this pattern?

Consequences: What are the benefits and liabilities of using this pattern?

See Also: What are related patterns and how do they differ?

Rethinking the Design Pattern Template
Many practical experiences with formal templates were less than satisfactory for early pattern
readers and practitioners. Patterns usually convey a fairly simple idea. However, many
readers found the write−ups to be overly concerned with verbose details, issues, and
preliminary discussion. This is an interesting reaction, given that pattern templates have
come a long way from the enigmatic “degenerate templates.”

What was needed was a way to convey the information quickly and conveniently. One key
approach that we used was to leverage the templates upon a robust reference model.
Instead of having each pattern be completely independent (in terms of context and forces),
the CORBA Design Patterns reference model allowed us to define the horizontal (common)
context and forces that occur at each scale of software design. By addressing this
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commonality in a separate reference−model chapter, we eliminated several pages of verbose
preliminary discussion from virtually every pattern.

In addition, we wanted to structure the template for quick comprehension. Given that there
are many patterns to learn and assimilate, and most practitioners are under extreme time
pressures on the job, we organized the template sections to enable readers to learn a great
deal about a pattern, before being subjected to a rambling, free−text discussion.

The CORBA Design Patterns template is organized so that the most concise
information−packed sections are first and the free−form sections are last. The template
begins with keywords defined in the reference model, followed by a summarized intent and a
diagram abstraction of the solution. Applicability is a priority−ordered, bulleted list that quickly
covers the most important motivations for using the pattern. The solution summary explains
the patterns’ technical approach crisply. Sections following the solution summary make this
feasible.

In practice, we found that discussion of variations in the solution section really confuses
some readers. A separate section is dedicated to the variations of the solution, so that the
solution is explained without the confusing appearance of ambivalence or caveats. Another
section that covers alternative software scale describes the patterns’ differences when
applied at another level of software design.

CORBA Design Pattern Template
Solution Name:

Solution Type: Is it a software pattern, technology pattern, process pattern, or role
pattern (keyword only)?

Intent: What is this pattern all about, in 25 words or less?

Primal Forces: Which of the horizontal forces from the reference model are best
resolved by this pattern?

Applicability at this Scale: When does this pattern apply; what are the significant
motivations behind this pattern (ordered bullet list)?

Solution Summary: What is the pattern solution and approach (stated clearly, without
verbose embellishment)?

Benefits: What are the primary positive results of applying this pattern (bulleted list)?

Other Consequences: What are the primary negative consequences of applying this
pattern (bulleted list)?

Rescaling this Solution to Other Levels: How does this pattern differ if applied at other
software scales?

Related Solutions: Cross−references and citations to other patterns (including other
patterns from other pattern publications) and other technology examples, publication
citations, and resources. Basically, point to anything outside this pattern write−up that
may be of use to the reader.

Example: A practical example of this pattern in an application context, with source code
listing if applicable.

Background: Any other relevant information?

AntiPattern Templates
AntiPatterns are a new form of patterns. A fundamental difference between a pattern and an
AntiPattern is that with an AntiPattern a solution has negative consequences. Some
consequences may be apparent now (the symptoms) and some may be anticipated (the
consequences). There are basic forms of AntiPatterns.

To be useful, AntiPatterns also include a solution. So another way to differentiate between a
pattern and an AntiPattern is that there are two solutions (instead of a problem and a
solution). The first solution generates negative consequences (forces that must be resolved).
The second solution is a migration (or refactoring) from the first solution that provides
dramatically improved benefits and much−reduced consequences.
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In an ordinary design pattern, the convention is that at least three known uses of the solution
must exist. Because there are two solutions, the “rule of three” for AntiPatterns is different
from patterns. Since no three solutions are identical, the pattern solution is a best−practices
abstraction of the known uses.

AntiPatterns are different because they have two solutions. The first solution, “the
AntiPattern,” must conform to the rule−of−three occurrences just as with ordinary patterns.
Unfortunately, it’s very unlikely that each of these known occurrences of the AntiPattern were
resolved in exactly the same way. The second solution is a best−practices solution, based
upon the known solutions to the AntiPattern, if multiple solutions are known to exist. They
can be identified in the template as well.

Pseudo−AntiPattern Template
This is a form of degenerate template in which the author describes a bad solution in
disparaging terms. Some of the earliest AntiPatterns posted on the Internet had this form.
This is not a particularly useful form, because it’s subjective and quite one−sided in its
pejorative tone.

Name: What is the AntiPattern called?

Problem: What are its derogatory characteristics?

Mini−AntiPattern
As we discussed, an AntiPattern template differs from a pattern in that it presents two
solutions. The first solution is called the AntiPattern problem; the second solution is called
the refactored solution. This minimal form can be extended with other template sections as
appropriate.

Name: What shall this AntiPattern be called by practitioners (pejorative)?

AntiPattern Problem: What is the recurrent solution that causes negative
consequences?

Refactored Solution: How do we avoid, minimize, or refactor the AntiPattern problem?

A mini−AntiPattern can include a cartoon or an anecdote in a sidebar format, along with a
discussion of how the AntiPattern is resolved. It’s similar in purpose to micro−patterns and
mini−patterns that provide a concise pattern description with a little less formality.

Full AntiPattern Template
The following AntiPattern template is used throughout the remainder of this book to fully
document AntiPatterns. A number of simpler AntiPatterns are contained in sidebars in a
minimal format called a mini−AntiPattern (previous template). The full AntiPattern template
comprises a number of required and optional sections. The core sections are the general
form of the AntiPattern and the refactored solution. They provide the solution/solution pair
that comprises an AntiPattern.

• AntiPattern Name. The AntiPattern name is a unique noun phrase. It’s intended to be
pejorative. The solution name of the pattern introduces new terminology. The name is
used for future reference to the principles contained in the AntiPattern. It’s important that
every AntiPattern have a name, in order to uniquely identify it. Names are critical as they
form the basis for an organization’s terminology when members discuss and document
software and architectures.

• Also Known As. This identifies additional popular or descriptive names and phrases for
this AntiPattern.

• Most Frequent Scale. Scale is indicated via a keyword from the reference model. This
section identifies where this AntiPattern fits into the software design−level model (refer
back to Figure 2.7). Each pattern is logically placed where the AntiPattern is most
applicable. A secondary consideration for placement concerns the scale of the resulting
solution. You can choose from idiom, micro−architecture, framework, application, system,
enterprise, or global/industry. Scale also scopes the dimensions of the solution. Some
patterns define useful solutions at several scales. The form of the rescaled solutions is
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also described in the AntiPattern template.

• Refactored Solution Name. This identifies the refactored solution pattern.

• Refactored Solution Type. This section contains keywords from the reference. From
SDLM, it identifies the type of action that results from the AntiPattern solution. You can
choose from software, technology, process, or role. Software indicates that new software
is created by the solution. Technology indicates that the solution entails acquisition of a
technology or product. Process indicates that the solution entails pursuing a process. Role
indicates that the solution entails assigning responsibility to an individual or group. These
four different kinds of solution types are detailed as follows:

1. Software patterns comprise the overwhelming majority of the patterns included in the
AntiPatterns catalog. Software patterns involve the creation of new software. The vast
majority of the design patterns currently available in the industry are software patterns.

2. Technology patterns solve software problems through adoption of a technology such as
Java, as opposed to programming the capability from scratch. Technology patterns are
also design patterns in that they result in software design and implementation, although
the method of acquisition is different. Technology patterns may involve some
programming, for example, creating an object wrapper for a commercial software
module.

3. Process patterns provide the definition of activities that are consistently repeatable for a
given solution.

4. Role patterns solve software problems by allocating clear responsibilities to
organizational stakeholders. Process and role patterns are included because of the
significant effect that communication and the human organization have upon software
problem solving. Occasionally, we have found that a simple process or clarification of
responsibilities provides the most effective action lever for solving a technical problem.

• Root Causes. This section contains keywords from the reference model. These are the
general causes for this AntiPattern. Derived from the section on root causes in Chapter 2,
choose from: haste, apathy, narrow−mindedness, sloth, avarice, ignorance, pride, or
responsibility (the universal cause).

• Unbalanced Forces. This section contains keywords from the reference model, and
identifies the primal forces that are ignored, misused, or overused in this AntiPattern. The
choices include management of functionality, management of performance, management
of complexity, management of change, management of IT resources, and management of
technology transfer. Risk is an underlying force for all of these options. Note that
management of IT resources pertains to general resource tracking and allocation issues,
including finances.

• Anecdotal Evidence. This is an optional section. Often−heard phrases and comedic
material associated with this AntiPattern appear in this section.

• Background. This is an optional section. The background can contain further examples of
where problems occur or general background information that is useful or interesting.

• General Form of this AntiPattern. This section often includes a diagram, which identifies
the general characteristics of this AntiPattern. This is not an example, but a generic
version. A prose description explains the diagram (if any) and gives the general
description of this AntiPattern. The refactored solution resolves the general AntiPattern
posed by this section.

• Symptoms and Consequences. This is a bulleted list of symptoms and consequences that
result from this AntiPattern.

• Typical Causes. This is a bulleted section in which the unique causes of this AntiPattern
are identified (in addition to the root cases identified previously).

• Known Exceptions. AntiPattern behaviors and processes are not always wrong, and often
there are specific occasions when this is the case. This section briefly identifies the
primary exceptions to each full AntiPattern.

• Refactored Solutions. This section explains a refactored solution that resolves the forces
in the AntiPattern identified in the general form section. This solution is described without
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variations; those are addressed in the variations section. The solution is structured in
terms of solution steps.

• Variations. This is an optional section that lists any known major variations of this
AntiPattern. In addition, if there are alternative solutions, they are described here as well.
The variations section exists partly in order to enhance clarity in the general form and
refactored solution sections. The solutions are explained clearly, without caveats about
major options and alternative design points. The variations section includes these
extensions, which expand upon the capabilities of the solution.

• Example. The example demonstrates how the solution is applied to the problem by
paralleling the details of the solution. This section typically includes the following
elements: problem diagram, problem description, solution diagram, and solution
description. This section includes one or more examples of the AntiPattern abstracted
from experience.

• Related Solutions. This section identifies any citations or cross−references that are
appropriate. Any AntiPatterns that are closely related to this one are listed and the
differences are explained. Relationships with design patterns from other pattern
languages are identified and explained. Detailed citations are contained in the
bibliography in the back of the book. The references to related patterns are an important
aspect of the AntiPatterns. Each AntiPattern resolves some forces and creates new ones.
The new forces can be resolved by related patterns, either at the same or another level.
This section also highlights differences between similar patterns.

This section also includes related terminology, references, and resources. Related
terminology is explained for two reasons: to distinguish our definitions from other terms using
similar names, and to connect related concepts referred to by different names. These two
ambiguities are the source of much confusion in software engineering circles. References
include well−known terminology, example technologies, and relevant research. The
references are particularly useful to experts who can use this information to rapidly relate this
pattern to other known work. If an expert reviewer fully understands one or more of the
references, then the core ideas of the pattern are already known by a different terminology.
(We have encountered this effect in the use of other pattern languages.It sometimes takes
significant time to resolve these terminology differences without this useful section.) This
section serves as both a reference list and as an “also−known−as” list of synonyms with
respect to other work. Resources include pointers to other kinds of information and
organizations that address the problem.

• Applicability to Other Viewpoints and Scales. This section defines how the AntiPattern
impacts the remaining viewpoints: managerial, architectural, or developer. It also
describes the relevancy of the pattern to other levels. If a pattern assumes a different
“name” at different levels, then it should be mentioned here. Some key questions
addressed in this section include: What happens when the AntiPattern is applied at
different levels? How effectively does it resolve the forces at the other scales? What new
forces are introduced, and are they resolved as well? How do the key forces influencing
the design patterns change with scale? How do the roles of the key design elements
change with scale?

The AntiPatterns in Chapters 5–7 utilize this template to document the common dysfunctional
practices in the software industry and suggests practical solutions that have been proven
effective on at least three known occasions. These chapters discuss software development
AntiPatterns, architectural AntiPatterns and managerial AntiPatterns. These levels were
chosen to provide a comprehensive coverage of the critical issues involved in software
projects.

Chapter 4: Advice for Using AntiPatterns

Overview
There is a danger in using AntiPatterns to change existing organizational practices. Some
early adopters used AntiPatterns in a destructive manner. Although they identified similarities
with several of the AntiPatterns discussed in this work, rather than serving as a catalyst for
change, these anti−social practices resulted in early retirement or reassignment to distant
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corporate offices. While assigning blame and pointing fingers may provide a temporary rush
of satisfaction, this is not the intended use of software AntiPatterns.

It’s important to remember that every company may be suffering from several AntiPatterns at
any given moment. However, the absence of AntiPatterns does not guarantee that an
organization will be successful. In fact, many organizations are successful despite repeated
violations of common sense—that is, AntiPatterns. Certainly, resolving an AntiPattern can
result in software improvement, but you don’t have to address every AntiPattern to be
successful. AntiPatterns are most appropriate for resolving chronic problems, especially
when they must be proactively addressed in order to meet the organizational goals. Heed the
advice: “If it’s not broken, don’t fix it; leave well enough alone.”

The purpose of AntiPatterns is not to focus on dysfunctional software practices. Rather, the
purpose is the development and implementation of strategies to fix the problems that arise.
Improvements to software projects are best done incrementally. A plan that involves the
simultaneous correction of several AntiPatterns is risky and ill−advised. By focusing on
improving processes on a case−by−case basis, according to a well−conceived plan, the
chances of successfully implementing a viable solution are markedly increased. Furthermore,
implementing a solution is feasible only when the technical staff has the necessary skills to
address the problem. When the technical knowledge is not sufficient to fully implement an
AntiPattern solution, the cure can cause problems that are as bad or worse than the original
malady.

Dysfunctional Environments
A dysfunctional work environment in the software industry is one in which discussions of
organizational politics, controversy, and negativity dominate technical discourse. We have
worked in and survived this type of environment in several software development
organizations. We hate working in dysfunctional environments, and you should, too.

AntiPatterns are not intended to exacerbate dysfunctional work environments. Quite the
contrary, the more dysfunctional an environment becomes, the less sophisticated, less
enjoyable, and less productive the technical discourse is. More sophisticated technical
discourse is necessary for software engineering to evolve. AntiPatterns are intended to
create awareness. Using AntiPatterns, you can clearly see when dysfunctional practices lead
to negative consequences. AntiPatterns give bad practices clear−cut names and
characteristics. They enable you to quickly detect their presence, avoid or resolve them, and
move on to more interesting and productive issues.

AntiPatterns cannot completely change the way you work. You are probably already
successful in your software engineering career. AntiPatterns are meant to generate new
awareness. They are intellectual tools to help you work through difficult situations and the
inherent contradictions of the software business.

AntiPatterns and Change
Obviously, change is necessary in software development. When five out of six corporate
software projects are unsuccessful, something is seriously wrong [Johnson 95]. And when
something is wrong in an organization, the reason is almost always the same: People are not
taking responsibility [Block 81]. Therefore, the most important change is to motivate people to
take responsibility for problems. To help people to recognize their responsibilities, a form of
intervention is required.

A classic intervention pattern is called Peeling the Onion. It’s an interview technique that
involves three questions (in this sequence):

1. What is the problem?

2. What are other people doing to contribute to this problem?

3. What are you doing to contribute to this problem?

This technique is used to gather information in an organization. Answering these questions
builds awareness of individual responsibilities.

The first step in intervention is for the participants to admit that there is a problem. This is
called consciousness raising. Software AntiPatterns clearly define the most common
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problems, and the descriptions of their symptoms and consequences provide the means to
detect problems and foresee their outcomes.

A key aspect of problem resolution is awareness of alternatives. Optimists will tell you there
are always alternatives, and never, never, never be negative. Understanding that there are
many alternatives to problematic practices is an important enabler in the implementation of
change. In other words, the suggested AntiPattern solutions are only some of the many
possible alternatives. Certain of the AntiPattern solutions may even be applicable to other
AntiPatterns. Therefore, it’s helpful to read all of the solutions, even if the AntiPattern’s
general form may not seem immediately applicable at first glance.

Fixed and Improvisational Responses
Patterns and AntiPatterns document some of the known alternative solutions. In response to
stimuli, there are really only two kinds of responses: improvisational and fixed. An
improvisational response involves making something up on the spur of the moment. It’s not a
pattern. A fixed response is something learned or practiced. It is a pattern or AntiPattern.
Whether the response leads to positive or negative consequences depends upon the context
and the execution of the pattern. If the context implies negative consequences, it’s an
AntiPattern. If the context implies positive outcomes, it’s a pattern.

A pattern can become an AntiPattern if applied in the wrong context. This happens all the
time in technology through built−in obsolescence terms such as “structured programming”
and “Altair 8080.” As a technology paradigm (pattern) ages, its shortcomings become well
known. Eventually, the technology paradigm is perceived by most practitioners as an
AntiPattern. This designation provides an important rationale for its replacement by new
technology.

Writing New AntiPatterns
This book establishes the field of AntiPatterns research, but it does not define all possible
software AntiPatterns. The analysis in Chapters 5–7, while reasonably comprehensive,
barely scratches the surface of the number of AntiPatterns in the software development
culture. Amazingly, some experienced people have not heard of the most basic AntiPatterns
(Spaghetti Code and Stovepipe System). This book addresses that deficiency.

Software culture is full of isolated processes, and there is a great deal to learn from.
AntiPatterns are an effective way to capture knowledge, transfer ideas, and foster
communications. It’s important that AntiPattern identification and documentation, along with a
prescribed solution, be performed by software practitioners throughout the industry. The
documentation of AntiPatterns is critical in disseminating information to others and arriving at
industry consensus regarding what constitutes a dysfunctional practice and how to effectively
engineer a solution. There are several key observations that will aid in your future work on
patterns and AntiPatterns:

1. Design patterns start with a recurring solution. Design patterns are usually written from
the bottom up; in other words, design patterns start with a recurring solution. The pattern
author later adds context and forces. These context and forces are carefully crafted to
lead you to a unique solution; the solution they started with. This explains why many
design patterns are hard to read. As a design pattern reader, your first task is to decipher
the logic behind the context and forces. Often, this logic leads you to one predetermined
conclusion, rather than a real understanding of the forces, symptoms, and consequences
of the real situation. The solution often seems obvious and simple, especially after the
detailed, in−depth examination. AntiPatterns are an attempt to discuss the material
appropriate for design patterns in a form much more palatable to the reader.

2. AntiPatterns start with a recurring problem. AntiPatterns are written from the top down.
The AntiPattern starts with a commonly recurring design or practice. In typical, current
context, the design or practice has obvious negative consequences. Select one or more
pejorative names to identify the AntiPattern; the best names are those in popular use.
The AntiPattern description includes learning elements such as symptoms,
consequences, and causes. We choose to list symptoms and consequences together.
Symptoms are in the past and present; consequences are in the future. Separating
symptoms and consequences would establish a time frame for the state of the
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AntiPattern.

3. Use study groups. It is useful to discuss a written description of the AntiPattern and its
refactored solution in a group environment; writer’s workshops are one form. We have
also found that less formal discussion groups made up of software peers, like book study
clubs, are effective forums. The group can tell you whether the write−up is really an
AntiPattern by recalling instances of the AntiPattern’s occurrence.

From our experience reviewing many design patterns and AntiPatterns in group
situations, we find AntiPatterns much more fun! (than ordinary patterns) A good
AntiPattern gets people involved in the discussion. Good AntiPatterns tend to inspire
people to contribute their experiences and ideas.

4. Become an AntiPattern author. New AntiPattern authors can focus on recurring problems
that are observed in several distinct contexts (at least three, similar to the rationale for
describing software design patterns). To fully describe an AntiPattern, it’s important to
supplement the AntiPattern problem description and solution with a discussion of causes,
symptoms, and one or more concrete examples to provide a clear context. In the
solution, one of the examples should discuss the successful refactoring of a situation that
uses the guidance given in the solution. This does not necessarily have to be from a
current project, but it can relate to experience on other projects and in other companies,
even when there was no direct involvement. The refactored solution does not have to be
a unique solution, but it should be highly relevant.

Descriptions of related AntiPatterns and alternative solutions are included in the Variations
section of each AntiPattern. In CORBA Design Patterns [Mowbray 97c], we found it useful to
separate the variations in order to clarify the solution; in this way, the refactored solution is
presented without caveats that can cause confusion.

Summary
Software AntiPatterns comprise a new research area, which is a derivative of design
patterns. When this research began, it was assumed that it would be difficult to identify
software AntiPatterns. But AntiPatterns were already commonplace in the software industry;
in fact, the industry had created and employed AntiPatterns since the invention of
programmable computers.

We believe AntiPatterns are a more effective way to communicate software knowledge than
ordinary design patterns because:

• AntiPatterns clarify problems for software developers, architects, and managers by
identifying the symptoms and consequences that lead to the dysfunctional software
development processes.

• AntiPatterns convey the motivation for change and the need for refactoring poor
processes.

• AntiPatterns are necessary to gain an understanding of common problems faced by most
software developers. Learning from other developers’ successes and failures is valuable
and necessary. Without this wisdom, AntiPatterns will continue to persist.

Part II: AntiPatterns

Chapter List
Chapter 5: Software Development AntiPatterns

Chapter 6: Software Architecture AntiPatterns

Chapter 7: Software Project Management AntiPatterns

Chapter 5: Software Development AntiPatterns

Overview
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Our first exposure to software development AntiPatterns was through the presentations of
Mike Akroyd, a hands−on software consultant to Motorola and other major firms [Akroyd 96].
The Akroyd AntiPatterns define classic problems in object−oriented software design. Some
of the development AntiPatterns in this chapter are extensions of his concepts (see
references). One attractive feature of all Akroyd AntiPatterns is the inclusion of a refactored
solution, the incorporation of which gives AntiPatterns a valuable purpose: Not only do they
point out trouble, but they also tell you how to get out of it.

Proper AntiPatterns define a migration (or refactoring) from negative solutions to positive
solutions. AntiPatterns that describe only the negative solution are called
pseudo−AntiPatterns. Think of pseudo−AntiPatterns as flaming e−mail diatribes. After
working with the Akroyd AntiPatterns, we discovered examples of AntiPatterns and
pseudo−AntiPatterns on the Internet. The Pattern Languages of Program Design (PLoP)
conference also discussed some AntiPattern−related papers, such as the “Big Ball of Mud”
[Foote 97].

Software Refactoring
A key goal of development AntiPatterns is to describe useful forms of software refactoring.
Software refactoring is a form of code modification, used to improve the software structure in
support of subsequent extension and long−term maintenance. In most cases, the goal is to
transform code without impacting correctness.

Good software structure is essential for system extension and maintenance. Software
development is a chaotic activity, therefore the implemented structure of systems tends to
stray from the planned structure as determined by architecture, analysis, and design.
Software refactoring is an effective approach for improving software structure. The resulting
structure does not have to resemble the original planned structure. The structure changes
because programmers learn constraints and approaches that alter the context of the coded
solutions. When used properly, refactoring is a natural activity in the programming process.
For example, the solution for the Spaghetti Code AntiPattern discussed later in this chapter
defines a software development process that incorporates refactoring.

Refactoring is strongly recommended prior to performance optimization. Optimizations often
involve compromises to program structure. Ideally, optimizations affect only small portions of
a program. Prior refactoring helps partition optimized code from the majority of the software.

Formal Refactoring Transformations
Formal refactoring transformations include superclass abstraction, conditional elimination,
and aggregate abstraction. These formal refactorings originated in Opdyke’s PhD thesis
[Opdyke 92]. They are called formal refactorings because implementations can be proven not
to affect program correctness. It’s also possible to automate these transformations. The
following refactorings involve changes to object classes, implementations, and relationships.

• Superclass abstraction. This refactoring applies to two or more similar classes. A
superclass abstraction creates an abstract class that merges the common
implementations of several concrete classes. To perform a superclass abstraction, the
program transformation involves: (a) transformation of similar method signatures to
common method signatures, (b) creation of an abstract superclass, (c) code modification
to merge selected implementations, and (d) migration of common methods to the abstract
superclass.

• Conditional elimination. This refactoring applies when the structure and behavior of a
class is heavily dependent upon a conditional statement. The steps are: (a) create new
subclasses corresponding to each condition, (b) migrate the action code from the
conditional to the new subclasses, and (c) redirect class references to refer to the
subclass types as appropriate. This last change can affect constructors, type declarations,
and invocations of overloaded methods. The modified references should maintain the
original logical states from the conditional, as invariant assertions on the new classes.

• Aggregate abstraction. An aggregate abstraction reorganizes class relationships to
improve their structure and extensibility. This transformation can take several forms: (a)
conversion of inheritance relationships to aggregate relationships, (b) migration of
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aggregated classes to component relationships, or (c) migration of component
relationships to aggregate relationships.

These three, large−grain refactorings are dependent upon dozens of small−grain program
transformations [Opdyke 92], which are familiar to virtually all programmers. Examples of
small−grain transformations include: (a) renaming classes, methods, and attributes; (b)
creating new classes; (c) migrating functionality between classes; (d) converting direct
references to indirect pointers, and so forth. For a complete list, consult Opdyke (1992).

Development AntiPattern Summaries
Development AntiPatterns utilize various formal and informal refactoring approaches. The
following summaries provide an overview of the Development AntiPatterns found in this
chapter and focus on the development AntiPattern problem. Included are descriptions of both
development and mini−AntiPatterns. The refactored solutions appear in the appropriate
AntiPattern templates that follow the summaries.

The Blob: Procedural−style design leads to one object with a lion’s share of the
responsibilities, while most other objects only hold data or execute simple processes. The
solution includes refactoring the design to distribute responsibilities more uniformly and
isolating the effect of changes.

Continuous Obsolescence: Technology is changing so rapidly that developers often
have trouble keeping up with current versions of software and finding combinations of
product releases that work together. Given that every commercial product line evolves
through new releases, the situation is becoming more difficult for developers to cope with.
Finding compatible releases of products that successfully interoperate is even harder.

Lava Flow: Dead code and forgotten design information is frozen in an ever−changing
design. This is analogous to a Lava Flow with hardening globules of rocky material. The
refactored solution includes a configuration management process that eliminates dead
code and evolves or refactors design toward increasing quality.

Ambiguous Viewpoint: Object−oriented analysis and design (OOA&D) models are often
presented without clarifying the viewpoint represented by the model. By default, OOA&D
models denote an implementation viewpoint that is potentially the least useful. Mixed
viewpoints don’t allow the fundamental separation of interfaces from implementation
details, which is one of the primary benefits of the object−oriented paradigm.

Functional Decomposition: This AntiPattern is the output of experienced,
nonobject−oriented developers who design and implement an application in an
object−oriented language. The resulting code resembles a structural language (Pascal,
FORTRAN) in class structure. It can be incredibly complex as smart procedural
developers devise very “clever” ways to replicate their time−tested methods in an
object−oriented architecture.

Poltergeists: Poltergeists are classes with very limited roles and effective life cycles.
They often start processes for other objects. The refactored solution includes a
reallocation of responsibilities to longer−lived objects that eliminate the Poltergeists.

Boat Anchor: A Boat Anchor is a piece of software or hardware that serves no useful
purpose on the current project. Often, the Boat Anchor is a costly acquisition, which
makes the purchase even more ironic.

Golden Hammer: A Golden Hammer is a familiar technology or concept applied
obsessively to many software problems. The solution involves expanding the knowledge
of developers through education, training, and book study groups to expose developers to
alternative technologies and approaches.

Dead End: A Dead End is reached by modifying a reusable component if the modified
component is no longer maintained and supported by the supplier. When these
modifications are made, the support burden transfers to the application system developers
and maintainers. Improvements in the reusable component are not easily integrated, and
support problems can be blamed upon the modification.

Spaghetti Code: Ad hoc software structure makes it difficult to extend and optimize
code. Frequent code refactoring can improve software structure, support software
maintenance, and enable iterative development.
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Input Kludge: Software that fails straightforward behavioral tests may be an example of
an input kludge, which occurs when ad hoc algorithms are employed for handling program
input.

Walking through a Minefield: Using today’s software technology is analogous to
walking through a high−tech mine field [Beizer 97a]. Numerous bugs are found in released
software products; in fact, experts estimate that original source code contains two to five
bugs per line of code.

Cut−and−Paste Programming: Code reused by copying source statements leads to
significant maintenance problems. Alternative forms of reuse, including black−box reuse,
reduce maintenance issues by having common source code, testing, and documentation.

Mushroom Management: In some architecture and management circles, there is an
explicit policy to keep system developers isolated from the system’s end users.
Requirements are passed second−hand through intermediaries, including architects,
managers, or requirements analysts.

In addition to the preceding AntiPatterns, this chapter includes a number of mini−AntiPatterns
that represent other common problems and solutions.

The Blob

AntiPattern Name: The Blob

Also Known As: Winnebago [Akroyd 96] and The God Class [Riel 96]

Most Frequent Scale: Application

Refactored Solution Name: Refactoring of Responsibilities

Refactored Solution Type: Software

Root Causes: Sloth, Haste

Unbalanced Forces: Management of Functionality, Performance, Complexity

Anecdotal Evidence: “This is the class that is really the heart of our architecture.”

Background
Do you remember the original black−and−white movie The Blob? Perhaps you saw only the
recent remake. In either case, the story line was almost the same: A drip−sized, jellylike alien
life form from outer space somehow makes it to Earth. Whenever the jelly thing eats (usually
unsuspecting earthlings), it grows. Meanwhile, incredulous earthlings panic and ignore the
one crazy scientist who knows what’s happening. Many more people are eaten before they
come to their senses. Eventually, the Blob grows so large that it threatens to wipe out the
entire planet. The movie is a good analogy for the Blob AntiPattern, which has been known to
consume entire object−oriented architectures (see Figure 5.1).

Figure 5.1 The Blob.
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General Form
The Blob is found in designs where one class monopolizes the processing, and other classes
primarily encapsulate data. This AntiPattern is characterized by a class diagram composed of
a single complex controller class surrounded by simple data classes, as shown in Figure 5.2.
The key problem here is that the majority of the responsibilities are allocated to a single
class.

In general, the Blob is a procedural design even though it may be represented using object
notations and implemented in object−oriented languages. A procedural design separates
process from data, whereas an object−oriented design merges process and data models,
along with partitions. The Blob contains the majority of the process, and the other objects
contain the data. Architectures with the Blob have separated process from data; in other
words, they are procedural−style rather than object−oriented architectures.

Figure 5.2 Controller Class.

The Blob can be the result of inappropriate requirements allocation. For example, the Blob
may be a software module that is given responsibilities that overlap most other parts of the
system for system control or system management. The Blob is also frequently a result of
iterative development where proof−of−concept code evolves over time into a prototype, and
eventually, a production system. This is often exacerbated by the use of primarily
GUI−centric programming languages, such as Visual Basic, that allow a simple form to
evolve its functionality, and therefore purpose, during incremental development or
prototyping. The allocation of responsibilities is not repartitioned during system evolution, so
that one module becomes predominant. The Blob is often accompanied by unnecessary
code, making it hard to differentiate between the useful functionality of the Blob Class and
no−longer−used code (see the Lava Flow AntiPattern).

Symptoms And Consequences
• Single class with a large number of attributes, operations, or both. A class with 60 or more

attributes and operations usually indicates the presence of the Blob [Akroyd 96].

• A disparate collection of unrelated attributes and operations encapsulated in a single
class. An overall lack of cohesiveness of the attributes and operations is typical of the
Blob.

• A single controller class with associated simple, data−object classes.

• An absence of object−oriented design. A program main loop inside the Blob class
associated with relatively passive data objects. The single controller class often nearly
encapsulates the applications entire functionality, much like a procedural main program.

• A migrated legacy design that has not been properly refactored into an object−oriented
architecture.

•
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The Blob compromises the inherent advantages of an object−oriented design. For
example, The Blob limits the ability to modify the system without affecting the functionality
of other encapsulated objects. Modifications to the Blob affect the extensive software
within the Blob’s encapsulation. Modifications to other objects in the system are also likely
to have impact on the Blob’s software.

• The Blob Class is typically too complex for reuse and testing. It may be inefficient, or
introduce excessive complexity to reuse the Blob for subsets of its functionality.

• The Blob Class may be expensive to load into memory, using excessive resources, even
for simple operations.

Typical Causes
• Lack of an object−oriented architecture. The designers may not have an adequate

understanding of object−oriented principles. Alternatively, the team may lack appropriate
abstraction skills.

• Lack of (any) architecture. The absence of definition of the system components, their
interactions, and the specific use of the selected programming languages. This allows
programs to evolve in an ad hoc fashion because the programming languages are used
for other than their intended purposes.

• Lack of architecture enforcement. Sometimes this AntiPattern grows accidentally, even
after a reasonable architecture was planned. This may be the result of inadequate
architectural review as development takes place. This is especially prevalent with
development teams new to object orientation.

• Too limited intervention. In iterative projects, developers tend to add little pieces of
functionality to existing working classes, rather than add new classes, or revise the class
hierarchy for more effective allocation of responsibilities.

• Specified disaster. Sometimes the Blob results from the way requirements are specified. If
the requirements dictate a procedural solution, then architectural commitments may be
made during requirements analysis that are difficult to change. Defining system
architecture as part of requirements analysis is usually inappropriate, and often leads to
the Blob AntiPattern, or worse.

Known Exceptions
The Blob AntiPattern is acceptable when wrapping legacy systems. There is no software
partitioning required, just a final layer of code to make the legacy system more accessible.

Refactored Solution
As with most of the AntiPatterns in this section, the solution involves a form of refactoring.
The key is to move behavior away from the Blob. It may be appropriate to reallocate behavior
to some of the encapsulated data objects in a way that makes these objects more capable
and the Blob less complex. The method for refactoring responsibilities is described as
follows:

1. Identify or categorize related attributes and operations according to contracts. These
contracts should be cohesive in that they all directly relate to a common focus, behavior,
or function within the overall system. For example, a library system architecture diagram
is represented with a potential Blob class called LIBRARY. In the example shown in
Figure 5.3, the LIBRARY class encapsulates the sum total of all the system’s
functionality. Therefore, the first step is to identify cohesive sets of operations and
attributes that represent contracts. In this case, we could gather operations related to
catalog management, like Sort_Catalog and Search_Catalog, as shown in Figure 5.4.
We could also identify all operations and attributes related to individual items, such as
Print_Item, Delete_Item, and so on.
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Figure 5.3 The Library Blob.

Figure 5.4 Regrouping the Blob by contracts.

2. The second step is to look for “natural homes” for these contract−based collections of
functionality and then migrate them there. In this example, we gather operations related
to catalogs and migrate them from the LIBRARY class and move them to the CATALOG
class, as shown in Figure 5.5. We do the same with operations and attributes related to
items, moving them to the ITEM class. This both simplifies the LIBRARY class and
makes the ITEM and CATALOG classes more than simple encapsulated data tables. The
result is a better object−oriented design.
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Figure 5.5 Migrating the contracted collections.

3. The third step is to remove all “far−coupled,” or redundant, indirect associations. In the
example, the ITEM class is initially far−coupled to the LIBRARY class in that each item
really belongs to a CATALOG, which in turn belongs to a LIBRARY.

4. Next, where appropriate, we migrate associates to derived classes to a common base
class. In the example, once the far−coupling has been removed between the LIBRARY
and ITEM classes, we need to migrate ITEMs to CATALOGs, as shown in Figure 5.6.

Figure 5.6 Removing the far couplings.

5. Finally, we remove all transient associations, replacing them as appropriate with type
specifiers to attributes and operations arguments. In our example, a Check_Out_Item or
a Search_For_Item would be a transient process, and could be moved into a separate
transient class with local attributes that establish the specific location or search criteria for
a specific instance of a check−out or search. This process is shown in Figure 5.7.
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Figure 5.7 Removing transient associations.

Variations
Sometimes, with a system composed of the Blob class and its supporting data objects, too
much work has been invested to enable a refactoring of the class architecture. An alternative
approach may be available that provides an “80%” solution. Instead of a bottom−up
refactoring of the entire class hierarchy, it may be possible to reduce the Blob class from a
controller to a coordinator class. The original Blob class manages the system’s functionality;
the data classes are extended with some of their own processing. The data classes operate
at the direction of the modified coordinator class. This process may allow the retention of the
original class hierarchy, except for the migrations of processing functionality from the Blob
class to some of the encapsulated data classes.

Riel identifies two major forms of the Blob AntiPattern. He calls these two forms God
Classes: Behavioral Form and Data Form [Riel 96]. The Behavioral Form is an object that
contains a centralized process that interacts with most other parts of the system. The Data
Form is an object that contains shared data used by most other objects in the system. Riel
introduces a number of object−oriented heuristics for detect ing and refactoring God Class
designs.

Applicability To Other Viewpoints And Scales
Both architectural and managerial viewpoints play key roles in the initial prevention of the
Blob AntiPattern. Avoidance of the Blob may require ongoing policing of the architecture to
assure adequate distribution of responsibilities. It is through an architectural viewpoint that an
emerging Blob is recognized. With a mature object−oriented analysis and design process,
and an alert manager who understands the design, developers can prevent the cultivation of
a Blob.

The most important factor is that, in most cases, it’s much less expensive to create
appropriate design than to rework design after implementation. Up−front investment in good
architecture and team education can ensure a project against the Blob and most other
AntiPatterns. Ask any insurance salesperson, and he or she may tell you that most insurance
is purchased after it was needed by people who are poorer but wiser.

Example
A GUI module that is intended to interface to a processing module gradually takes on the
processing functionality of background−processing modules. An example of this is a
PowerBuilder screen for customer data entry/retrieval. The screen can:

1. Display data.

2. Edit data.

3. Perform simple type validation. The developer then adds functionality to what was
intended to be the decision engine:
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• Complex validation.

• Algorithms that use the validated data to assess next actions.

4. The developer then gets new requirements to:

• Extend the GUI to three forms.

• Make it script−driven (including the development of a script engine).

• Add new algorithms to the decision engine.

The developer extends the current module to incorporate all of this functionality. So instead
of developing several modules, a single module is developed, as shown in Figure 5.8. If the
intended application is architected and designed, it is easier to maintain and extend. This
would look like Figure 5.9.

Figure 5.8 Life of a protoype GUI.

Figure 5.9 Life of a protoype application.

Mini−AntiPattern: Continuous Obsolescence

AntiPattern Problem

Technology is changing so rapidly that developers have trouble keeping up with the
current versions of software and finding combinations of product releases that work
together. Given that every commercial product line evolves through new product
releases, the situation has become increasingly difficult for developers to cope with.
Finding compatible releases of products that successfully interoperate is even harder.
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Java is a well−known example of this phenomenom, with new versions coming out
every few months. For example, by the time a book on Java 1.X goes to press, a new
Java Development Kit obsoletes the information. Java is not alone; many other
technologies also participate in Continuous Obsolescence. The most flagrant examples
are products that embed the year in their brand names, such as Product98. In this way,
these products flaunt the progression of their obsolescence. Another example is the
progression of Microsoft dynamic technologies:

DDE

OLE 1.0

OLE 2.0

COM

ActiveX

DCOM

COM?

From the technology marketers’ perspective, there are two key factors: mindshare and
marketshare. Rapid innovation requires the dedicated attention of consumers to stay
current with the latest product features, announcements, and terminology. For those
following the technology, rapid innovation contributes to mindshare; in other words,
there is always new news about technology X. Once a dominant marketshare is
obtained, the suppliers’ primary income is through obsolescence and replacement of
earlier product releases. The more quickly technologies obsolesce (or are perceived as
obsolete), the higher the income.

Refactored Solution

An important stabilizing factor in the technology market is open systems standards. A
consortium standard is the product of an industry concensus that requires time and
investment. Joint marketing initiatives build user awareness and acceptance as the
technologies move into the mainstream. There is an inherent inertia in this process that
benefits consumers, for once a vendor product is conformant to a standard, the
manufacturer is unlikely to change the conformant features of the product.

The advantages of a rapidly obsolescing technology are transitive. Architects and
developers should depend upon interfaces that are stable or that they control. Open
systems standards give a measure of stability to an otherwise chaotic technology
market.

Variations

The Wolf Ticket Mini−AntiPattern (Chapter 6) describes various approaches that
consumers can use to influence product direction toward improved product quality.

Lava Flow

AntiPattern Name: Lava Flow

Also Known As: Dead Code

Most Frequent Scale: Application

Refactored Solution Name: Architectural Configuration Management

Refactored Solution Type: Process

Root Causes: Avarice, Greed, Sloth

Unbalanced Forces: Management of Functionality, Performance, Complexity

Anecdotal Evidence: “Oh that! Well Ray and Emil (they’re no longer with the
company) wrote that routine back when Jim (who left last month) was trying a
workaround for Irene’s input processing code (she’s in another department now, too). I
don’t think it’s used anywhere now, but I’m not really sure. Irene didn’t really document
it very clearly, so we figured we would just leave well enough alone for now. After all,
the bloomin’ thing works doesn’t it?!”
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Background
In a data−mining expedition, we began looking for insight into developing a standard
interface for a particular kind of system. The system we were mining was very similar to
those we hoped would eventually support the standard we were working on. It was also a
research−originated system and highly complex. As we delved into it, we interviewed many
of the developers concerning certain components of the massive number of pages of code
printed out for us. Over and over, we got the same answer: “I don’t know what that class is
for; it was written before I got here.” We gradually realized that between 30 and 50 percent of
the actual code that comprised this complex system was not understood or documented by
any one currently working on it. Furthermore, as we analyzed it, we learned that the
questionable code really served no purpose in the current system; rather, it was there from
previous attempts or approaches by long−gone developers. The current staff, while very
bright, was loath to modify or delete code that they didn’t write or didn’t know the purpose of,
for fear of breaking something and not knowing why or how to fix it.

At this point, we began calling these blobs of code “lava,” referring to the fluid nature in which
they originated as compared to the basaltlike hardness and difficulty in removing it once it
had solidified. Suddenly, it dawned on us that we had identified a potential AntiPattern.

Nearly a year later, and after several more data−mining expeditions and interface design
efforts, we had encountered the same pattern so frequently that we were routinely referring
to Lava Flow throughout the department (see Figure 5.10).

Figure 5.10 The Lava Flow of obsolete technologies and forgotten extensions
leaves hardened globules of dead code in its wake.

General Form
The Lava Flow AntiPattern is commonly found in systems that originated as research but
ended up in production. It is characterized by the lavalike “flows” of previous developmental
versions strewn about the code landscape, which have now hardened into a basaltlike,
immovable, generally useless mass of code that no one can remember much, if anything,
about (see Figure 5.11). This is the result of earlier (perhaps Jurassic) developmental times
when, while in a research mode, developers tried out several ways of accomplishing things,
typically in a rush to deliver some kind of demonstration, thereby casting sound design
practices to the winds and sacrificing documentation.
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Figure 5.11 Lava Flow source code listing.

The result is several fragments of code, wayward variable classes, and procedures that are
not clearly related to the overall system. In fact, these flows are often so complicated in
appearance and spaghettilike that they seem important, but no one can really explain what
they do or why they exist. Sometimes, an old, gray−haired hermit developer can remember
certain details, but typically, everyone has decided to “leave well enough alone” since the
code in question “doesn’t really cause any harm, and might actually be critical, and we just
don’t have time to mess with it.”

“Architecture is the art of how to waste space.”

—Phillip Johnson

Though it can be fun to dissect these flows and study their anthropology, there is usually not
enough time in the schedule for such meanderings. Instead, developers usually take the
expedient route and neatly work around them.

This AntiPattern is, however, incredibly common in innovative design shops where
proof−of−concept or prototype code rapidly moves into production. It is poor design, for
several key reasons:

• Lava Flows are expensive to analyze, verify, and test. All such effort is expended entirely
in vain and is an absolute waste. In practice, verification and test are rarely possible.

• Lava Flow code can be expensive to load into memory, wasting important resources and
impacting performance.

• As with many AntiPatterns, you lose many of the inherent advantages of an
object−oriented design. In this case, you lose the ability to leverage modularization and
reuse without further proliferating the Lava Flow globules.

Symptoms And Consequences
• Frequent unjustifiable variables and code fragments in the system.

• Undocumented complex, important−looking functions, classes, or segments that don’t
clearly relate to the system architecture.

• Very loose, “evolving” system architecture.

• Whole blocks of commented−out code with no explanation or documentation.

• Lots of “in flux” or “to be replaced” code areas.

• Unused (dead) code, just left in.

• Unused, inexplicable, or obsolete interfaces located in header files.

• If existing Lava Flow code is not removed, it can continue to proliferate as code is reused
in other areas.

• If the process that leads to Lava Flow is not checked, there can be exponential growth as
succeeding developers, too rushed or intimidated to analyze the original flows, continue to
produce new, secondary flows as they try to work around the original ones, this
compounds the problem.
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• As the flows compound and harden, it rapidly becomes impossible to document the code
or understand its architecture enough to make improvements.

Typical Causes
• R&D code placed into production without thought toward configuration management.

• Uncontrolled distribution of unfinished code. Implementation of several trial approaches
toward implementing some functionality.

• Single−developer (lone wolf) written code.

• Lack of configuration management or compliance with process management policies.

• Lack of architecture, or non−architecture−driven development. This is especially prevalent
with highly transient development teams.

• Repetitive development process. Often, the goals of the software project are unclear or
change repeatedly. To cope with the changes, the project must rework, backtrack, and
develop prototypes. In response to demonstration deadlines, there is a tendency to make
hasty changes to code on the fly to deal with immediate problems. The code is never
cleaned up, leaving architectural consideration and documentation postponed indefinitely.

• Architectural scars. Sometimes, architectural commitments that are made during
requirements analysis are found not to work after some amount of development. The
system architecture may be reconfigured, but these inline mistakes are seldom removed.
It may not even be feasible to comment−out unnecessary code, especially in modern
development environments where hundreds of individual files comprise the code of a
system. “Who’s going to look in all those files? Just link em in!”

Known Exceptions
Small−scale, throwaway prototypes in an R&D environment are ideally suited for
implementing the Lava Flow AntiPattern. It is essential to deliver rapidly, and the result is not
required to be sustainable.

Refactored Solution
There is only one sure−fire way to prevent the Lava Flow AntiPattern: Ensure that sound
architecture precedes production code development. This architecture must be backed up by
a configuration management process that ensures architectural compliance and
accommodates “mission creep” (changing requirements). If architectural consideration is
shortchanged up front, ultimately, code is developed that is not a part of the target
architecture, and is therefore redundant or dead. Over time, dead code becomes problematic
for analysis, testing, and revision.

In cases where Lava Flow already exists, the cure can be painful. An important principle is to
avoid architecture changes during active development. In particular, this applies to
computational architecture, the software interfaces defining the systems integration solution.
Management must postpone development until a clear architecture has been defined and
disseminated to developers. Defining the architecture may require one or more system
discovery activities. System discovery is required to locate the components that are really
used and necessary to the system. System discovery also identifies those lines of code that
can be safely deleted. This activity is tedious; it can require the investigative skills of an
experienced software detective.

As suspected dead code is eliminated, bugs are introduced. When this happens, resist the
urge to immediately fix the symptoms without fully understanding the cause of the error.
Study the dependencies. This will help you to better define the target architecture.

To avoid Lava Flow, it is important to establish system−level software interfaces that are
stable, well−defined, and clearly documented. Investment up front in quality software
interfaces can produce big dividends in the long run compared to the cost of jackhammering
away hardened globules of Lava Flow code.

Tools such as the Source−Code Control System (SCCS) assist in configuration
management. SCCS is bundled with most Unix environments and provides a basic capability
to record histories of updates to configuration−controlled files.
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Example
We recently participated in a data−mining expedition site where we attempted to identify
evolutionary interfaces that resulted from preliminary interface architectures that we
originated and were in the process of updating. The system we mined was targeted because
the developers had utilized our initial architecture in a unique way that fascinated us:
Essentially, they constructed a quasi−event service out of our generic interapplication
framework.

As we studied their system, we encountered large segments of code that baffled us. These
segments didn’t seem to contribute to the overall architecture that we had expected to find.
They were somewhat incohesive and only very sparsely documented, if at all. When we
asked the current developers about some of these segments, the reply was, “Oh that? Well
we’re not using that approach anymore. Reggie was trying something, but we came up with a
better way. I guess some of Reggie’s other code may depend on that stuff though, so we
didn’t delete anything.” As we looked deeper into the matter, we learned that Reggie was no
longer even at the site, and hadn’t been there for some time, so the segments of code were
several months old.

After two days of code examination, we realized that the majority of the code that comprised
the system was most likely similar to that code that we already examined: completely Lava
Flow in nature. We gleaned very little that helped us articulate how their architecture actually
was constructed; therefore, it was nearly impossible to mine. At this point, we essentially
gave up trying to mine the code and instead focused on the current developer’s explanations
of what was “really” going on, hoping to somehow codify their work into interface extensions
that we could incorporate into our upcoming revisions to our generic interapplication
framework.

One solution was to isolate the single, key person who best understood the system they had
developed, and then to jointly write IDL with that person. On the surface, the purpose of the
IDL we were jointly writing was to support a crisis demonstration that was weeks away. By
utilizing the Fire Drill Mini−AntiPattern, we were able to get the systems developers to
validate our IDL by using it to rapidly build a CORBA wrapper for their product for the
demonstration. Many people lost a lot of sleep, but the demonstration went well. There was,
of course, one side effect to this solution: We ended up with the interface, in IDL, which we
had set out to discover in the first place.

Related Solutions
In today’s competitive world, it is often desirable to minimize the time delay between R&D
and production. In many industries, this is critical to a company’s survival. Where this is the
case, inoculation against Lava Flow can sometimes be found in a customized
configuration−management (CM) process that puts certain limiting controls in place at the
prototyping stage, similar to “hooks” into a real, production−class develop ment without the
full restraining impact on the experimental nature of R&D. Where possible, automation can
play a big role here, but the key lies in the customization of a quasi−CM process that can be
readily scaled into a full−blown CM control system once the product moves into a production
environment. The issue is one of balance between the costs of CM in hampering the creative
process and the cost of rapidly gaining CM control of the development once that creative
process has birthed something useful and marketable.

This approach can be facilitated by periodic mapping of a prototyping system into an updated
system architecture, including limited, but standardized inline documentation of the code.

Applicability To Other Viewpoints And Scales
The architectural viewpoint plays a key role in preventing Lava Flows initially. Managers can
also play a role in early identification of Lava Flows or the circumstances that can lead to
Lava Flows. These managers must also have the authority to put the brakes on when Lava
Flow is first identified, postponing further development until a clear architecture can be
defined and disseminated.

As with most AntiPatterns, prevention is always cheaper than correction, so up−front
investment in good architecture and team education can typically ensure a project against
this and most other AntiPatterns. While this initial cost does not show immediate returns, it is
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certainly a good investment.

Mini−AntiPattern: Ambiguous Viewpoint

AntiPattern Problem

Object−oriented analysis and design (OOA&D) models are often presented without
clarifying the viewpoint represented by the model. By default, OOA&D models denote
an implementation viewpoint that is potentially the least useful. Mixed viewpoints don’t
allow the fundamental separation of interfaces from implementation details, which are
one of the primary benefits of the object−oriented paradigm.

Refactored Solution

There are three fundamental viewpoints for OOA&D models: the business viewpoint,
the specification viewpoint, and the implementation viewpoint. The business viewpoint
defines the user’s model of the information and processes. This is a model that domain
experts can defend and explain (commonly called an analysis model). Analysis models
are some of the most stable models of the information system and are worthwhile to
maintain.

Models can be less useful if they don’t focus on the required perspective(s). A
perspective applies filters to the information. For example, defining a class model for a
telephone exchange system will vary significantly depending upon the focus provided
by the following perspectives:

• Telephone user, who cares about the ease of making calls and receiving itemized
bills.

• Telephone operator, who cares about connecting users to required numbers.

• Telephone accounting department, which cares about the formulae for billing and
records of all calls made by users.

Some of the same classes will be identified, but not many; where there are, the
methods will not be the same.

The specification viewpoint focuses on software interfaces. Because objects (as
abstract data types) are intended to hide implementation details behind interfaces, the
specification viewpoint defines the exposed abstractions and behaviors in the object
system. The specification viewpoint defines the software boundaries between objects
in the system.

The implementation viewpoint defines the internal details of the objects.
Implementation models are often called design models in practice. To be an accurate
model of the software, design models must be maintained continuously as the software
is developed and modified. Since an out−of−date model is useless, only selected
design models are pertinent to maintain; in particular, those design models that depict
complex aspects of the system.

Functional Decomposition

AntiPattern Name: Functional Decomposition

Also Known As: No Object−Oriented AntiPattern “No OO” [Akroyd 96]

Most Frequent Scale: Application

Refactored Solution Name: Object−Oriented Reengineering

Refactored Solution Type: Process

Root Causes: Avarice, Greed, Sloth

Unbalanced Forces: Management of Complexity, Change

Anecdotal Evidence: “This is our ‘main’ routine, here in the class called LISTENER.”

Background
Functional Decomposition is good in a procedural programming environment. It’s even useful
for understanding the modular nature of a larger−scale application. Unfortunately, it doesn’t
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translate directly into a class hierarchy, and this is where the problem begins. In defining this
AntiPattern, the authors started with Michael Akroyd’s original thoughts on this topic. We
have reformatted it to fit in with our template, and extended it somewhat with explanations
and diagrams.

General Form
This AntiPattern is the result of experienced, nonobject−oriented developers who design and
implement an application in an object−oriented language. When developers are comfortable
with a “main” routine that calls numerous subroutines, they may tend to make every
subroutine a class, ignoring class hierarchy altogether (and pretty much ignoring object
orientation entirely). The resulting code resembles a structural language such as Pascal or
FORTRAN in class structure. It can be incredibly complex, as smart procedural developers
devise very clever ways to replicate their time−tested methods in an object−oriented
architecture.

You will most likely encounter this AntiPattern in a C shop that has recently gone to C??, or
has tried to incorporate CORBA interfaces, or has just implemented some kind of object tool
that is supposed to help them. It’s usually cheaper in the long run to spend the money on
object−oriented training or just hire new programmers who think in objects.

Symptoms And Consequences
• Classes with “function” names such as Calculate_Interest or Display_Table may indicate

the existence of this AntiPattern.

• All class attributes are private and used only inside the class.

• Classes with a single action such as a function.

• An incredibly degenerate architecture that completely misses the point of object−oriented
architecture.

• Absolutely no leveraging of object−oriented principles such as inheritance and
polymorphism. This can be extremely expensive to maintain (if it ever worked in the first
place; but never underestimate the ingenuity of an old programmer who’s slowly losing the
race to technology).

• No way to clearly document (or even explain) how the system works. Class models make
absolutely no sense.

• No hope of ever obtaining software reuse.

• Frustration and hopelessness on the part of testers.

Typical Causes
• Lack of object−oriented understanding. The implementers didn’t “get it.” This is fairly

common when developers switch from programming in a nonobject−oriented
programming language to an object−oriented programming language. Because there are
architecture, design, and implementation paradigm changes, object−orientation can take
up to three years for a company to fully achieve.

• Lack of architecture enforcement. When the implementers are clueless about object
orientation, it doesn’t matter how well the architecture has been designed; they simply
won’t understand what they’re doing. And without the right supervision, they will usually
find a way to fudge something using the techniques they do know.

• Specified disaster. Sometimes, those who generate specifications and requirements don’t
necessarily have real experience with object−oriented systems. If the system they specify
makes architectural commitments prior to requirements analysis, it can and often does
lead to AntiPatterns such as Functional Decomposition.

Known Exceptions
The Functional Decomposition AntiPattern is fine when an object−oriented solution is not
required. This exception can be extended to deal with solutions that are purely functional in
nature but wrapped to provide an object−oriented interface to the implementation code.
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Refactored Solution
If it is still possible to ascertain what the basic requirements are for the software, define an
analysis model for the software, to explain the critical features of the software from the user’s
point of view. This is essential for discovering the underlying motivation for many of the
software constructs in a particular code base, which have been lost over time. For all of the
steps in the Functional Decomposition AntiPattern solution, provide detailed documentation
of the processes used as the basis for future maintenance efforts.

Next, formulate a design model that incorporates the essential pieces of the existing system.
Do not focus on improving the model but on establishing a basis for explaining as much of
the system as possible. Ideally, the design model will justify, or at least rationalize, most of
the software modules. Developing a design model for an existing code base is enlightening; it
provides insight as to how the overall system fits together. It is reasonable to expect that
several parts of the system exist for reasons no longer known and for which no reasonable
speculation can be attempted.

For classes that fall outside of the design model, use the following guidelines:

1. If the class has a single method, try to better model it as part of an existing class.
Frequently, classes designed as helper classes to another class are better off being
combined into the base class they assist.

2. Attempt to combine several classes into a new class that satisfies a design objective. The
goal is to consolidate the functionality of several types into a single class that captures a
broader domain concept than the previous finer−grained classes. For example, rather
than have classes to manage device access, to filter information to and from the devices,
and to control the device, combine them into a single device controller object with
methods that perform the activities previously spread out among several classes.

3. If the class does not contain state information of any kind, consider rewriting it as a
function. Potentially, some parts of the system may be best modeled as functions that
can be accessed throughout various parts of the system without restriction.

Examine the design and find similar subsystems. These are reuse candidates. As part of
program maintenance, engage in refactoring of the code base to reuse code between similar
subsystems (see the Spaghetti Code solution for a detailed description of software
refactoring).

Example
Functional Decomposition is based upon discrete functions for the purpose of data
manipulation, for example, the use of Jackson Structured Programming. Functions are often
methods within an object−oriented environment. The partitioning of functions is based upon a
different paradigm, which leads to a different grouping of functions and associated data.

The simple example in Figure 5.12 shows a functional version of a customer loan scenario:

1. Adding a new customer.

2. Updating a customer address.

3. Calculating a loan to a customer.

4. Calculating the interest on a loan.

5. Calculating a payment schedule for a customer loan.

6. Altering a payment schedule.

56



Figure 5.12 Functional decomposition of a customer loan system.

Figure 5.13 then shows the object−oriented view of a customer loan application. The
previous functions map to object methods.

Figure 5.13 Object−oriented model of a customer loan system.

Related Solutions
If too much work has already been invested in a system plagued by Functional
Decomposition, you may be able to salvage things by taking an approach similar to the
alternative approach addressed in the Blob AntiPattern.

Instead of a bottom−up refactoring of the whole class hierarchy, you may be able to extend
the “main routine” class to a “coordinator” class that manages all or most of the system’s
functionality. Function classes can then be “massaged” into quasi−object−oriented classes
by combining them and beefing them up to carry out some of their own processing at the
direction of the modified “coordinator” class. This process may result in a class hierarchy that
is more workable [Fowler 97].

Applicability To Other Viewpoints And Scales
Both architectural and managerial viewpoints play key roles in either initial prevention or
ongoing policing against the Functional Decomposition AntiPattern. If a correct
object−oriented architecture was initially planned and the problem occurred in the
development stages, then it is a management challenge to enforce the initial architecture.
Likewise, if the cause was a general lack of incorrect architecture initially, then it is still a
management challenge to recognize this, put the brakes on, and get architectural help—the
sooner the cheaper.

Poltergeists

AntiPattern Name: Poltergeists

Also Known As: Gypsy [Akroyd 96], Proliferation of Classes [Riel 96], and Big DoIt
Controller Class [Fowler 97]

Most Frequent Scale: Application

Refactored Solution Name: Ghostbusting

Refactored Solution Type: Process

Root Causes: Sloth, Ignorance

Unbalanced Force: Management of Functionality, Complexity

Anecdotal Evidence: “I’m not exactly sure what this class does, but it sure is
important!”

Background
When Michael Akroyd presented the Gypsy AntiPattern at Object World West in 1996, he
likened the transient appearance and then discrete vanishing of the gypsy class to a “Gypsy
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Wagon” that is there one day and gone the next. As we studied Akroyd’s model, we wanted
to convey more of the Gypsy’s invoking function in the overall AntiPattern name. Thus, we
felt that since poltergeists represent “restless ghosts” that cause “bump−in−the−night types
of phenomena,” that term better represented the “pop in to make something happen” concept
of this AntiPattern while retaining the “here now then suddenly vanished” flavor of the initial
Gypsy name (see Figure 5.14).

FIGURE 5.14 Poltergeists: ghostly classes.

In the LISP language, as in many others, certain pure−evil programmers exist who take great
glee in leveraging the “side effects” of certain language functions to mysteriously perform key
functionality in their systems. Analysis and understanding of such systems is virtually
impossible, and any attempt at reuse is considered insane.

Like the Poltergeist “controller” class, the use of “side effects” to accomplish any principle
task in an implementation is an incorrect utilization of the language or architecture tool, and
should be avoided.

General Form
Poltergeists are classes with limited responsibilities and roles to play in the system; therefore,
their effective life cycle is quite brief. Poltergeists clutter software designs, creating
unnecessary abstractions; they are excessively complex, hard to understand, and hard to
maintain.

This AntiPattern is typical in cases where designers familiar with process modeling but new
to object−oriented design define architectures. In this AntiPattern, it is possible to identify one
or more ghostlike apparition classes that appear only briefly to initiate some action in another
more permanent class. Akroyd calls these classes “Gypsy Wagons” [Akroyd 96]. Typically,
Gypsy Wagons are invented as controller classes that exist only to invoke methods of other
classes, usually in a predetermined sequence. They are usually obvious because their
names are often suffixed by _manager or _controller.

The Poltergeist AntiPattern is usually intentional on the part of some greenhorn architect who
doesn’t really understand the object−oriented concept. Poltergeist classes constitute bad
design artifacts for three key reasons:

1. They are unnecessary, so they waste resources every time they “appear.”

2. They are inefficient because they utilize several redundant navigation paths.

3. They get in the way of proper object−oriented design by needlessly cluttering the object
model.

Symptoms And Consequences
• Redundant navigation paths.

• Transient associations.
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• Stateless classes.

• Temporary, short−duration objects and classes.

• Single−operation classes that exist only to “seed” or “invoke” other classes through
temporary associations.

• Classes with “control−like” operation names such as start_process_alpha.

Typical Causes
• Lack of object−oriented architecture. “The designers don’t know object orientation.”

• Incorrect tool for the job. Contrary to popular opinion, the object−oriented approach isn’t
necessarily the right solution for every job. As a poster once read, “There is no right way
to do the wrong thing.” That is to say, if object orientation isn’t the right tool, there’s no
right way to implement it.

• Specified disaster. As in the Blob, management sometimes makes architectural
committments during requirements analysis. This is inappropriate, and often leads to
problems like this AntiPattern.

Known Exceptions
There are no exceptions to the Poltergeists AntiPattern.

Refactored Solution
Ghostbusters solve Poltergeists by removing them from the class hierarchy altogether. After
their removal, however, the functionality that was “provided” by the poltergeist must be
replaced. This is easy with a simple adjustment to correct the architecture.

The key is to move the controlling actions initially encapsulated in the Poltergeist into the
related classes that they invoked. This is explained in detail in the next section.

Example
In order to more clearly explain the Poltergeist, consider the peach−canning example in
Figure 5.15. We see that the class PEACH_CANNER_CONTROLLER is a Poltergeist
because:

Figure 5.15 Controller class.

• It has redundant navigation paths to all other classes in the system.

• All of its associations are transient.

• It has no state.

• It is a temporary, short−duration class that pops into existence only to invoke other
classes through temporary associations.

In this example, if we remove the Poltergeist class, the remaining classes lose the ability to
interact. There is no longer any ordering of processes. Thus, we need to place such
interaction capability into the remaining hierarchy, as shown in Figure 5.16. Notice that
certain operations are added to each process such that the individual classes interact and
process results.
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Figure 5.16 Refactored controller class.

Related Solutions
The “80% solution” discussed in the Blob AntiPattern results in something that looks very
similar to a Poltergeist. The “coordinator” class presented still manages all or most of the
system’s functionality and typically exhibits many of the features of a Poltergeist.

Applicability To Other Viewpoints And Scales
We elected to place this AntiPattern in the development chapter, rather than with the
architectural AntiPatterns, because it usually occurs when developers are designing a
system as they implement it (typically by the seat of their pants!) although certainly it may
come as a result of failure to properly architect a system. Whether this presents evidence
that Poltergeists are really a case of failed management is left to the reader.

As with most development AntiPatterns, both architectural and managerial viewpoints play
key roles in initial prevention and ongoing policing against them. It’s through an architectural
viewpoint that an emerging AntiPattern is often recognized, and through effective
management that it is properly addressed when not prevented outright.

Managers should take great care to ensure that object−oriented architectures are evaluated
by qualified object−oriented architects as early as possible and then on an ongoing basis to
prevent novice−induced errors such as this AntiPattern. Pay the price for good architecture
up front!

Mini−AntiPattern: Boat Anchor

AntiPattern Problem

A Boat Anchor is a piece of software or hardware that serves no useful purpose on the
current project. Often, the Boat Anchor is a costly acquisition, which makes the
purchase even more ironic.

The reasons for acquiring a Boat Anchor are usually compelling at the time. For
example, a policy or programmatic relationship may require the purchase and usage of
a particular piece of hardware or software. This is a starting assumption (or constraint)
of the software project. Another compelling reason is when a key manager is convinced
of the utility of the acquisition. A sales practice called “very important person (VIP)
marketing” targets the sales pitch at senior decision makers who have buying authority.
VIP marketing often focuses on chief executive officers of small− to medium−size
corporations. A commitment to the product is made without proper technical evaluation.

The consequences for managers and software developers are that significant effort
may have to be devoted to making the product work. After a significant investment of
time and resources, the technical staff realizes that the product is useless in the current
context, and abandons it for another technical approach. Eventually, the Boat Anchor is
set aside and gathers dust in some corner (if it’s hardware).

Refactored Solution

Good engineering practice includes the provision for technical backup, an alternative
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approach that can be instituted with minimal software rework. The selection of technical
backup is an important risk−mitigation strategy. Technical backups should be identified
for most infrastructure technologies (upon which most software depends), and for other
technologies in high−risk areas. Technical backups should be evaluated along with
critical−path technologies in the selection process. Prototyping with evaluation licenses
(available from most vendors) is recommended for both critical−path and back−up
technologies.

Related AntiPatterns

Rational decision making is explained in the solution to the Irrational Management
AntiPattern. Rational decision making can be used as an objective technology selection
process to identify Boat Anchors prior to acquisition. The solution to the Smoke and
Mirrors AntiPattern describes the practices for prepurchase technology evaluation,
including review of product documentation and train−before−you−buy.

Golden Hammer

AntiPattern Name: Golden Hammer

Also Known As: Old Yeller, Head−in−the sand

Most Applicable Scale: Application

Refactored Solution Name: Expand your horizons

Refactored Solution Type: Process

Root Causes: Ignorance, Pride, Narrow−Mindedness

Unbalanced Forces: Management of Technology Transfer

Anecdotal Evidence: “I have a hammer and everything else is a nail (Figure 5.17).”
“Our database is our architecture.” “Maybe we shouldn’t have used Excel macros for
this job after all.”

Figure 5.17 When your only tool is a hammer, everything else is a nail

Background
This is one of the most common AntiPatterns in the industry. Frequently, a vendor,
specifically a database vendor, will advocate using its growing product suite as a solution to
most of the needs of an organization. Given the initial expense of adopting a specific
database solution, such a vendor often provides extensions to the technology that are proven
to work well with its deployed products at greatly reduced prices.

General Form
A software development team has gained a high level of competence in a particular solution
or vendor product, referred to here as the Golden Hammer. As a result, every new product or
development effort is viewed as something that is best solved with it. In many cases, the
Golden Hammer is a mismatch for the problem, but minimal effort is devoted to exploring
alternative solutions.

61



This AntiPattern results in the misapplication of a favored tool or concept. Developers and
managers are comfortable with an existing approach and unwilling to learn and apply one
that is better suited. This is typified by the common “our database is our architecture”
mind−set, particularly common in the world’s banking community.

Frequently, an advocate will propose the Golden Hammer and its associated product suite as
a solution to most of the needs of an organization. Given the initial expense of adopting a
specific solution, Golden Hammer advocates will argue that future extensions to the
technology, which are designed to work with their existing products, will minimize risk and
cost.

Symptoms And Consequences
• Identical tools and products are used for wide array of conceptually diverse products.

• Solutions have inferior performance, scalability, and so on when compared to other
solutions in the industry.

• System architecture is best described by a particular product, application suite, or vendor
tool set.

• Developers debate system requirements with system analysts and end users, frequently
advocating requirements that are easily accommodated by a particular tool and steering
them away from areas where the adopted tool is insufficient.

• Developers become isolated from the industry. They demonstrate a lack of knowledge and
experience with alternative approaches.

• Requirements are not fully met, in an attempt to leverage existing investment.

• Existing products dictate design and system architecture.

• New development relies heavily on a specific vendor product or technology.

Typical Causes
• Several successes have used a particular approach.

• Large investment has been made in training and/or gaining experience in a product or
technology.

• Group is isolated from industry, other companies.

• Reliance on proprietary product features that aren’t readily available in other industry
products.

• “Corncob” proposing the solution (see Corncob AntiPattern in Chapter 7).

Known Exceptions
The Golden Hammer AntiPattern sometimes works:

1. If the product that defines the architectural constraints is the intended strategic solution
for the long term; for example, using an Oracle database for persistent storage and
wrapped stored procedures for secure access to data.

2. If the product is part of a vendor suite that provides for most of the software needs.

Refactored Solution
This solution involves a philosophical aspect as well as a change in the development
process. Philosophically, an organization needs to develop a commitment to an exploration
of new technologies. Without such a commitment, the lurking danger of overreliance on a
specific technology or vendor tool set exists. This solution requires a two−pronged approach:
A greater commitment by management in the professional development of their developers,
along with a development strategy that requires explicit software boundaries to enable
technology migration.

Software systems need to be designed and developed with well−defined boundaries that
facilitate the replaceability of individual software components. A component should insulate
the system from proprietary features in its implementation. If the system is developed using
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explicit software boundaries, the interfaces that make up the boundaries become points at
which the software used in the implementation may be replaced with a new implementation,
without affecting the other components in the system. An industry standard, such as the
OMG IDL specification, is an invaluable tool for incorporating rigid software boundaries
between components.

In addition, software developers need to be up to date on technology trends, both within the
organization’s domain and in the software industry at large. This can be accomplished
through several activities that encourage the interchange of technical ideas. For example,
developers can establish groups to discuss technical developments (design patterns,
emerging standards, new products) that may impact the organization in the future. They can
also form book study clubs to track and discuss new publications that describe innovative
approaches to software development. In practice, we have found the book study club
paradigm to be a very effective way to exchange ideas and new approaches. Even without
full management buyin, developers can establish informal networks of technology−minded
people to investigate and track new technologies and solutions. Industry conferences are
also a great way to contact people and vendors and stay informed as to where the industries
are headed and what new solutions are available to developers.

On the management side, another useful step is to adopt a commitment to open systems and
architectures. Without it, developers often acquire the attitude that achieving short−term
results by any means necessary is acceptable. Though this may be desirable in the short
term, future results become problematic because rather than building upon a solid foundation
of past successes, effort is expended reworking past software to conform to new challenges.
Flexible, reusable code requires an investment in its initial development, otherwise long−term
benefits will not be achieved [Jacobson 97]. Also, the danger of overreliance on a specific
technology or vendor tool set is a potential risk in the product or project development.
In−house research programs that develop proof−of−concept prototypes are effective for
testing the feasibility of incorporating less risky open technologies into a development effort.

Another management−level way of eliminating or avoiding the Golden Hammer AntiPattern is
to encourage the hiring of people from different areas and from different backgrounds.
Teams benefit from having a broader experience base to draw upon in developing solutions.
Hiring a database team whose members all have experience in using the same database
product greatly limits the likely solution space, in comparison to a similar team whose
experience encompasses a wide range of database technology solutions.

Finally, management must actively invest in the professional development of software
developers, as well as reward developers who take initiative in improving their own work.

Variations
A common variation of Golden Hammer occurs when a developer uses a favorite software
concept obsessively. For example, some developers learn one or two of the GoF patterns
[Gamma 94] and apply them to all phases of software analysis, design, and implementation.
Discussions about intent or purpose are insufficient to sway them from recognizing the
applicability of the design pattern’s structure and force−fitting its use throughout the entire
development process. Education and mentoring is required to help people become aware of
other available approaches to software system construction.

Example
A common example of the Golden Hammer AntiPattern is a database−centric environment
with no additional architecture except that which is provided by the database vendor. In such
an environment, the use of a particular database is assumed even before object−oriented
analysis has begun. As such, the software life cycle frequently begins with the creation of an
entity−relationship (E−R) diagram that is produced as a requirements document with the
customer. This is frequently destructive, because the E−R diagram ultimately is used to
specify the database requirements; and detailing the structure of a subsystem before
understanding and modeling the system presumes that the impact of the actual customer
requirements on the system design is minimal. Requirements gathering should enable
system developers to understand the user needs to the extent that the external behavior of
the solution system is understood by the user as a black box [Davis 93]. Conceivably, many
systems are built to satisfy user requirements without utilizing a database at all. However,
with the Golden Hammer AntiPattern in force, such possibilities are discounted up front,

63



leading to every problem incorporating a database element.

Over time, the organization may develop several database−centric products that could have
been implemented as independent systems. The database evolves into the basis for
interconnectivity between applications, and it manages distribution and shared access to
data. In addition, many implementation problems are addressed through using database
proprietary features that commit future migrations to parallel the development of a technology
of the implementation database. At some point, it may be necessary to interoperate with
systems that either do not share the same database−centric architecture or are implemented
using a different database that may not permit unrestricted access to their information.
Suddenly, development becomes extremely expensive as unique, special−purpose
connections are built to “bridge” between unique systems. If, however, some thought is given
to the problem before the situation gets too far out of hand, a common framework can be
developed, where products chosen for particular areas are selected based on standard
interface specifications, such as CORBA, DCOM, or TCP/IP.

Another example is an insurance company with several stovepipe legacy systems that
decided in its move to client/server that Microsoft Access should be the key part of the
solution for persistence. The entire front end of the call−center system was architected
around an early version of this product. Thereafter, the system’s future was fully constrained
by the development path of the database product because of a bad architecture decision.
Needless to say, the system lasted less than six months.

Related Solutions
• Lava Flow. This AntiPattern results when the Golden Hammer AntiPattern is applied over

the course of several years and many projects. Typically, older sections based on earlier
versions of the Golden Hammer are delegated to remote, seldom−used parts of the
overall application. Developers become reluctant to modify these sections, which build up
over time and add to the overall size of the application while implementing functions that
are seldom, if ever, used by the customer.

• Vendor Lock−In. Vendor lock−in is when developers actively receive vendor support and
encouragement in applying the Golden Hammer AntiPattern. A software project is actively
committed to relying upon a single vendor’s approach in designing and implementing an
object−oriented system.

Mini−AntiPattern: Dead End

Also Known As

Kevorkian Component

AntiPattern Problem

A Dead End is reached by modifying a reusable component, if the modified component
is no longer maintained and supported by the supplier. When these modifications are
made, the support burden transfers to the application system developers and
maintainers. Improvements in the reusable component cannot be easily integrated, and
support problems may be blamed on the modification.

The supplier may be a commercial vendor, in which case this AntiPattern is also known
as COTS Customization. When subsequent releases of the product become available,
the special modifications will have to be made again, if possible. If fact, it may not be
possible to upgrade the customized component, for various reasons such as cost and
staff turnover.

The decision to modify a reusable component by a system’s integrator is often seen as
a workaround for the vendor’s product inadequacies. As a short−term measure, this
helps a product development progress, rather than slow it down. The longer−term
support burden becomes untenable when trying to deal with the future application
versions and the “reusable component” vendor’s releases. The only time we saw this
work was when the system’s integrator arranged with the reusable component vendor
that the SI modifications would be included in the next release of the vendor product. It
was pure luck that their objectives were the same.

Refactored Solution
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Avoid COTS Customization and modifications to reusable software. Minimize the risk of
a Dead End by using mainstream platforms and COTS infrastructure, and upgrading
according to the supplier’s release schedule. When customization is unavoidable, use
an isolation layer (see Vendor Lock−In AntiPattern). Use isolation layers and other
techniques to separate dependencies from the majority of the application software from
customizations and proprietary interfaces.

A Dead End may be an acceptable solution in testbeds that support basic research
such as throwaway code, and significant benefits are realized through the
customization.

Spaghetti Code

AntiPattern Name: Spaghetti Code

Most Applicable Scale: Application

Refactored Solution Name: Software Refactoring, Code Cleanup

Refactored Solution Type: Software

Root Causes: Ignorance, Sloth

Unbalanced Forces: Management of Complexity, Change

Anecdotal Evidence: “Ugh! What a mess!” “You do realize that the language supports
more than one function, right?” “It’s easier to rewrite this code than to attempt to modify
it.” “Software engineers don’t write spaghetti code.” “The quality of your software
structure is an investment for future modification and extension.”

Background
The Spaghetti Code AntiPattern is the classic and most famous AntiPattern; it has existed in
one form or another since the invention of programming languages. Nonobject−oriented
languages appear to be more susceptible to this AntiPattern, but it is fairly common among
developers who have yet to fully master the advanced concepts underlying object orientation.

General Form
Spaghetti Code appears as a program or system that contains very little software structure.
Coding and progressive extensions compromise the software structure to such an extent that
the structure lacks clarity, even to the original developer, if he or she is away from the
software for any length of time. If developed using an object−oriented language, the software
may include a small number of objects that contain methods with very large implementations
that invoke a single, multistage process flow. Furthermore, the object methods are invoked in
a very predictable manner, and there is a negligible degree of dynamic interaction between
the objects in the system. The system is very difficult to maintain and extend, and there is no
opportunity to reuse the objects and modules in other similar systems.

Symptoms And Consequences
• After code mining, only parts of object and methods seem suitable for reuse. Mining

Spaghetti Code can often be a poor return on investment; this should be taken into
account before a decision to mine is made.

• Methods are very process−oriented; frequently, in fact, objects are named as processes.

• The flow of execution is dictated by object implementation, not by the clients of the
objects.

• Minimal relationships exist between objects.

• Many object methods have no parameters, and utilize class or global variables for
processing.

• The pattern of use of objects is very predictable.

• Code is difficult to reuse, and when it is, it is often through cloning. In many cases,
however, code is never considered for reuse.
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• Object−oriented talent from industry is difficult to retain.

• Benefits of object orientation are lost; inheritance is not used to extend the system;
polymorphism is not used.

• Follow−on maintenance efforts contribute to the problem.

• Software quickly reaches a point of diminishing returns; the effort involved in maintaining
an existing code base is greater than the cost of developing a new solution from the
ground up.

“First things first, second things never.”

—Shirley Conran

Typical Causes
• Inexperience with object−oriented design technologies.

• No mentoring in place; ineffective code reviews.

• No design prior to implementation.

• Frequently the result of developers working in isolation.

Known Exceptions
The Spaghetti Code AntiPattern is reasonably acceptable when the interfaces are coherent
and only the implementation is spaghetti. This is somewhat like wrapping a
nonobject−oriented piece of code. If the lifetime of the component is short and cleanly
isolated from the rest of the system, then some amount of poor code may be tolerable.

The reality of the software industry is that software concerns usually are subservient to
business concerns, and, on occasion, business success is contingent on delivering a
software product as rapidly as possible. If the domain is not familiar to the software architects
and developers, it may be better to develop products to gain an understanding of the domain
with the intention of designing products with an improved architecture at some later date
[Foote 97].

Refactored Solution
Software refactoring (or code cleanup) is an essential part of software development [Opdyke
92]. Seventy percent or more of software cost is due to extensions, so it is critical to maintain
a coherent software structure that supports extension. When the structure becomes
compromised through supporting unanticipated requirements, the ability of the code to
support extensions becomes limited, and eventually, nonexistent. Unfortunately, the term
“code cleanup” does not appeal to pointy−haired managers, so it may be best to discuss this
issue using an alternative term such as “software investment.” After all, in a very real sense,
code cleanup is the maintenance of software investment. Well−structured code will have a
longer life cycle and be better able to support changes in the business and underlying
technology.

Ideally, code cleanup should be a natural part of the development process. As each feature
(or group of features) is added to the code, code cleanup should follow what restores or
improves the code structure. This can occur on an hourly or daily basis, depending on the
frequency of the addition of new features.

Code cleanup also supports performance enhancement. Typically, performance optimization
follows the 90/10 rule, where only 10 percent of the code needs modification in order to
achieve 90 percent of the optimal performance. For single−subsystem or application
programming, performance optimization often involves compromises to code structure. The
first goal is to achieve a satisfactory structure; the second is to determine by measurement
where the performance−critical code exists; the third is to carefully introduce necessary
structure compromises to enhance performance. It is sometimes necessary to reverse the
performance enhancement changes in software to provide for essential system extensions.
Such areas merit additional documentation, in order to preserve the software structure in
future releases.
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The best way to resolve the Spaghetti Code AntiPattern is through prevention; that is, to
think, then develop a plan of action before writing. If, however, the code base has already
degenerated to the point that it is unmaintainable, and if reengineering the software is not an
option, there are still steps that can be taken to avoid compounding the problem. First, in the
maintenance process, whenever new features are added to the Spaghetti Code code base,
do not modify the Spaghetti Code simply by adding code in a similar style to minimally meet
the new requirement. Instead, always spend time refactoring the existing software into a
more maintainable form. Refactoring the software includes performing the following
operations on the existing code:

1. Gain abstract access to member variables of a class using accessor functions. Write new
and refactored code to use the accessor functions.

2. Convert a code segment into a function that can be reused in future maintenance and
refactoring efforts. It is vital to resist implementing the Cut−and−Paste AntiPattern
(discussed next). Instead, use the Cut−and−Paste refactored solution to repair prior
implementations of the Cut−and−Paste AntiPattern.

3. Reorder function arguments to achieve greater consistency throughout the code base.
Even consistently bad Spaghetti Code is easier to maintain than inconsistent Spaghetti
Code.

4. Remove portions of the code that may become, or are already, inaccessible. Repeated
failure to identify and remove obsolete portions of code is one of the major contributors to
the Lava Flow AntiPattern.

5. Rename classes, functions, or data types to conform to an enterprise or industry
standard and/or maintainable entity. Most software tools provide support for global
renaming.

In short, commit to actively refactoring and improving Spaghetti Code to as great an extent
as resources allow whenever the code base needs to be modified. It’s extremely useful to
apply unit and system testing tools and applications to ascertain that refactoring does not
immediately introduce any new defects into the code base. Empirical evidence suggests that
the benefits of refactoring the software greatly outweigh the risk that the extra modifications
may generate new defects.

If prevention of Spaghetti Code is an option, or if you have the luxury of fully engineering a
Spaghetti Code application, the following preventative measures may be taken:

1. Insist on a proper object−oriented analysis process to create the domain model,
regardless of how well the domain is understood. It is crucial that any moderate−or
large−size project develop a domain model as the basis of design and development. If
the domain is fully understood to the point that a domain model is not needed, counter
with “If that’s true, then the time to develop one would be negligible.” If it actually is, then
politely admit you were mistaken. Otherwise, the time that it takes justifies how badly it
was needed.

2. After developing a domain model that explains the system requirements and the range of
variability that must be addressed, develop a separate design model. Though it is valid to
use the domain model as a starting point for design, the domain model must be
maintained as such in order to retain useful information that would otherwise be lost if
permitted to evolve directly into a design model. The purpose of the design model is to
extract the commonality between domain objects and abstract in order to clarify the
necessary objects and relationships in the system. Properly performed, it establishes the
bounds for software implementation. Implementation should be performed only in order
to satisfy system requirements, either explicitly indicated by the domain model or
anticipated by the system architect or senior developers.

3. In the development of the design model, it is important to ensure that objects are
decomposed to a level where they are fully understood by developers. It is the
developers, not the designers, who must believe the software modules are easy to
implement.

4. Once a first pass has been made at both the domain and design model, begin
implementation based upon the plan established by the design. The design does not
have to be complete; the goal is that the implementation of software components should
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always be according to some predefined plan. Once development begins, proceed to
incrementally examine other parts of the domain model and design other parts of the
system. Over time, the domain model and the design model will be refined to
accommodate discoveries in the requirements gathering, design decisions, and to cope
with implementation issues. Again, Spaghetti Code is far less likely to occur if there is an
overall software process in which the requirements and design are specified in advance
of the implementation, instead of occurring concurrently.

Example
This is a frequent problem demonstrated by people new to object−oriented development,
who map system requirements directly to functions, using objects as a place to group related
functions. Each function contains an entire process flow that completely implements a
particular task. For example, the code segment that follows contains functions such as
initMenus(), getConnection(), and executeQuery(), which completely execute the specified
operation. Each object method contains a single process flow that performs all of the steps in
sequence needed to perform the task. The object retains little or no state information
between successive invocations; rather, the class variables are temporary storage locations
to handle intermediate results of a single process flow.

• LINES_1–16
public class Showcase extends Applet
implements EventOutObserver {
//Globals
String
homeUrl="http://www.webserver.com
/images/"
;
int caseState;
String url="jdbc:odbc:WebApp";
Driver theDriver;
Connection con=null;
ResultSet rs,counter;
int theLevel;
int count=0;
String tino;
• LINES_17–32
int [] clickx;
int [] clicky;
String [] actions;
String [] images;
String [] spectra;
String showcaseQuery=null;
TextArea output=null;
Browser browser=null;
Node material=null;
EventInSFColor diffuseColor=null;
EventOutSFColor outputColor=null;
EventOutSFTime touchTime=null;
boolean error=false;
EventInMFNode addChildren;
Node mainGroup=null;
EventOutSFVec2f coord=null;
• LINES_33–80
EventInSFVec3f translation=null;"
EventOutSFTime theClick=null;
Image test;
int rx,ry;
float arx,ary;
int b=0;
Graphics gg=null;
//Initialize applet
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public void init() {
super.init(); setLayout(null);
initMenus();
output=new TextArea(5, 40);
add(output);
browser=(Browser)

Browser.getBrowser((Applet)this);
addNotify(); resize(920,800);

initUndoStack();
caseState=0; theLevel=0;  
setClock(0);

try { theDriver=new postgresql 
.Driver(); }
catch(Exception e) {};
try { con=DriverManager.
getConnection(
"jdbc:postgresql://www.webserver.   
.com/WebApps",

"postgres","");
Statement stmt=con
.createStatement();
showcaseQuery="SELECT sid,
case,

button,text , name, actions FROM
WebApp
WHERE case="+caseState+" and
level="+theLevel+";";

rs=stmt.executeQuery     
(showcaseQuery);
count=0; while (rs.next())      
count++;
System.out.println("Count=   
"+count+"\n");
rs=stmt.executeQuery     
(showcaseQuery);

}
catch(Exception e) {System.out  
.println(
• LINES_81–128

"Error connecting and running:
"+e);};

  nextButton=new
symantec.itools.awt.ImageButton();
  lastButton=new
symantec.itools.awt.ImageButton();
  try {

nextButton.setImageURL(new
java.net.URL(
"http://www.webserver.com:8080/
images/next.jpg"));

if (count<7) nextButton     
.setVisible(false);
else nextButton.setVisible
(true);
lastButton.setImageURL(new

java.net.URL(
"http://www.webserver.com:8080/
images/last.jpg"));

}
catch(Exception e) {};

imageButtons=new
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symantec.itools.awt.ImageButton[6];
11=new
symantec.itools.awt.shape.Horizontal
Line();
12=new
symantec.itools.awt.shape.Horizontal
Line();
v1=new
symantec.itools.awt.shape.Vertical
Line();
v2=new
symantec.itools.awt.shape.Vertical
Line();
bigspectralabel=new
java.awt.Label("Spectra");
gtruthlabel=new
java.awt.Label("GroundTruth");
clickx=new int[6];
clicky=new int[6];
actions=new String[6];
images=new String[6];
spectra=new String[6];
imageLabels =?new java.awt.Label[6];
for (int I=0; i<6 ; i++) {
• LINES_129–176

imageButtons[i]=new
symantec.itools.awt.ImageButton();

imageLabels[i]=new java.awt 
.Label();
actions[i]=new String();
images[i] =new String();
spectra[i] =new String();

};
for (int i=0; i<6 ; i++) {

   try{
    rs.next();
    tino=rs.getString(4);

System.out.println(tino+"\n");
    actions[i]=rs.getString(6);}
   catch(Exception e) {System.out
   .println("SQL

Error :"+e);}
   try{

     System.out.print(tino+ln"\n");
     int len=tino.length();
     if (tino.startsWith
     ("INVISIBLE")) {
        imageButtons[i]
       .setVisible(false);
        imageLabels[i]
        .setVisible(false);}

     else {
     imageButtons[i].setImageURL(

         new java.net.URL
         (homeUrl+tino));
     imageButtons[i].setVisible
     (true);
     imageLabels[i].setText
     (rs.getString(5));
     imageLabels[i].setVisible
     (true);
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   }
} catch (Exception e) { System.out
 .println(

     "Died in accessor statement:    
     "+e);

      }
}
11.reshape(0,6,775,1);add(11);
12.reshape(0,120,775,1);add(12);
v1.reshape(0,6,1,114);add(v1);
v2.reshape(775,6,1,114);add(v2);
• LINES_177–224
bigspectralabel.reshape
(460,122,200,16);
bigspectralabel.setVisible(false);
gtruthlabel.reshape(124,122,200,16);
gtruthlabel.setVisible(false);
add(bigspectralabel);add
(gtruthlabel);
nextButton.reshape(2,12,84,40);
add(nextButton);
lastButton.reshape
(2,56,84,40);
add(lastButton);
imageLabels[0].reshape(124,
12,84,16);
add(imageLabels[0]);
imageButtons[0].reshape
(124,30 ,84,84;)
add(imageButtons[0]);
imageLabels[1].reshape
(236,12,84,16);
add(imageLabels[1]);
imageButtons[1].reshape
(236,30,84,84);
add(imageButtons[1]);
imageLabels[2].reshape
(348,12,84,16);
add(imageLabels[2]);
imageButtons[2].reshape
(348,30 ,84,84);
add(imageButtons[2]);
imageLabels[3].reshape
(460,12,84,16);
add(imageLabels[3]);
imageButtons[3].reshape
(460,30 ,84,84);
add(imageButtons[3]);
imageLabels[4].reshape
(572,12,84,16);
add(imageLabels[4]);
imageButtons[4].reshape
(572,30 ,84,84);
add(imageButtons[4]);
imageLabels[5].reshape
(684,12,84,16);
add(imageLabels[5]);
imageButtons[5].reshape
(684,30 ,84,84);
add(imageButtons[5]);
// Take out this line if you don’t
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• LINES_225–228
 use
// symantec.itools.net.RelativeURL
symantec.itools.lang.Context
.setDocumentBase(
• LINES_229–232
   getDocumentBase());
//{{INIT_CONTROLS
//}}
}

Related Solutions
• Analysis Paralysis. This AntiPattern is the result of taking the solution to its logical

extreme. Rather than developing code ad hoc without a design to guide the overall
structure of the code, Analysis Paralysis produces a detailed design without ever reaching
a point at which implementation can commence.

• Lava Flow. This AntiPattern frequently contains several examples of Spaghetti Code that
discourage the refactoring of the existing code base. With Lava Flow, the code base had a
logical purpose at some point in its life cycle, but portions became obsolescent, yet
remained as part of the code base.

Mini−AntiPattern: Input Kludge

AntiPattern Problem

Software that fails straightforward behavioral tests may be an example of an Input
Kludge, which occurs when ad hoc algorithms are employed for handling program
input. For example, if the program accepts free text input from the user, an ad hoc
algorithm will mishandle many combinations of legal and illegal input strings. The
anecdotal evidence for an Input Kludge goes like this: “End users can break new
programs within moments of touching the keyboard.”

Refactored Solution

For nondemonstration software, use production−quality input algorithms. For example,
lexical analysis and parsing software is readily available as freeware. Programs such
as lex and yacc enable robust handling of text comprised of regular expressions and
context−free language grammars. Employing these technologies for production−quality
software is recommended to ensure proper handling of unexpected inputs.

Variation

Many software defects arise due to unexpected combinations of user−accesible
features. Employing a feature matrix is recommended for sophisticated applications
with graphical user interfaces. A feature matrix is state information in the program used
to enable and disable features prior to user actions. When the user invokes a feature,
the feature matrix indicates which other features must be disabled in order to avoid
conflicts. For example, a feature matrix is often used to highlight and unhighlight menu
commands prior to displaying the menu.

Background

Programmers are trained to avoid input combinations that cause program and system
crashes. In a hands−on training course on OpenDoc, we used a preliminary alpha
release of the technology that was not yet sufficiently robust for production−quality
development. In other words, it was easy to crash the entire operating system with
seemingly correct sequences of input commands and mouse operations. The students
spent the first day experiencing numerous system crashes and waiting for system
reboot. After attending the “crashing labs,” we wondered whether the release was
robust enough to enable any kind of sophisticated software development. By the end of
the week, we had learned to work around the limitations and perform programming
tasks and input operations that went well beyond our expectations formed the first day.
We had internalized the input sequences that avoided system crashes.
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Mini−AntiPattern: Walking through a Mine Field

AntiPattern Problem

Using today’s software technology is analogous to walking through a high−technology
mine field [Beizer 97b]. (See Figure 5.18.) This mini−AntiPattern is also known as
Nothing Works or Do You Believe in Magic? Numerous bugs occur in released
software products; in fact, experts estimate that original source code contains two to
five bugs per line of code. This means that the code will require two or more changes
per line to remove all defects. Without question, many products are released well
before they are ready to support operational systems. A knowledgeable software
engineer states that, “There are no real systems, not even ours.”

Figure 5.18 The best way through a mine field is to follow somebody.

The location and consequences of software defects are unrelated to their apparent
causes, and even a minor bug can be catastrophic. For example, operating systems
(UNIX, Windows, etc.) contain many known and unknown security defects that make
them vulnerable to attack; furthermore, the Internet has dramatically increased the
likelihood of system attack.

End users encounter software bugs frequently. For example, approximately one in
seven correctly dialed telephone numbers is not completed by the telephone system (a
software−intensive application). And note, the rate of complaint is low compared to the
frequency of software failures.

The purpose of commercial software testing is to limit risk, in particular, support costs
[Beizer 97a]. For shrink−wrapped software products, each time an end user contacts a
vendor for technical support, most or all of the profit margin is spent answering the call.

With simpler systems of the past, we were lucky. When a software bug occurred, the
likely outcome was that nothing happened. With today’s systems, including
computer−controlled passenger trains and spacecraft control systems, the outcome of
a bug can be catastrophic. Already, there have been half a dozen major software
failures where financial losses exceeded $100 million.

Refactored Solution

Proper investment in software testing is required to make systems relatively bug−free.
In some progressive companies, the size of testing staff exceeds programming staff
[Cusumano 95]. The most important change to make to testing procedures is
configuration control of test cases [Beizer 97a]. A typical system can require five times
as much test−case software as production software. Test software is often more
complex than production software because it involves the explicit management of
execution timing to detect many bugs. When test software detects a bug, it is more
likely to be the result of a bug in the test than in the code being tested. Configuration
control enables the management of test software assets; for example, to support
regression testing.
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Other effective approaches for testing include automation of test execution and test
design. Manual test execution is labor−intensive, and there is no proven basis for the
effectiveness of manual testing. In contrast, automatic test execution enables running
tests in concert with the build cycle. Regression tests can be executed without manual
intervention, ensuring that software modifications do not cause defects in previously
tested behaviors. Test design automation supports the generation of rigorous test
suites, and dozens of good tools are available to support test design automation.

Variations

Formal verification is used in a number of applications to ensure an error−free design
[Bowen 97]. Formal verification involves prov−ing (in a mathematical sense) the
satisfaction of requirements. Unfortunately, computer scientists trained to perform this
form of analysis are relatively rare. In addition, the results of formal analysis are
expensive to generate and may be subjective. Consequently, in general, we do not
recommend this approach as feasible for most organizations.

Software inspection is an alternative approach that has been shown to be effective in a
wide range of organizations [Gilb 95]. Software inspection is a formal process for
review of code and documentation products. It involves careful review of software
documentation in search of defects; for example, it is recommended that each
inspector search for approximately 45 minutes per page of documentation. The defects
discovered by multiple inspectors are then listed during an inspection logging meeting.
The document editor can remove defects for subsequent review by the inspection
team. Quality criteria are established for initial acceptance of the document by the
inspection team and completion of the inspection process. Software inspection is a
particularly useful process because it can be applied at any phase of development,
from the writing of initial requirements documents through coding.

Background

“Do you believe in magic?” is a question sometimes posed by savvy computer
professionals. If you believe that today’s software systems are robust, you certainly do
believe in magic.

The reality of today’s software technology is analogous to an intriguing short story in
Stephen Gaskin’s Mind at Play [Gaskin 79]. In the story, people are driving shiny new
cars and living comfortable lives. However, there is one man who wants to see the
world as it really exists. He approaches an authority figure who can remove all illusions
from his perception. Then, when he looks at the world, he sees people walking in the
streets pretending to be driving fancy cars. In other words, the luxurious lifestyles were
phony. In the end, the man recants, and asks to be returned to his prior state of
disillusionment.

In one view, today’s technology is very much like the Gaskin story. It is easy to believe
that we are using mature software technologies on powerful, robust platforms. In fact,
this is an illusion; software bugs are pervasive, and there are no robust platforms
underneath.

Cut−And−Paste Programming

AntiPattern Name: Cut−and−Paste Programming

Also Known As: Clipboard Coding, Software Cloning, Software Propagation

Most Applicable Scale: Application

Refactored Solution Name: Black Box Reuse

Refactored Solution Type: Software

Root Causes: Sloth

Unbalanced Forces: Management of Resources, Technology Transfer

Anecdotal Evidence: “Hey, I thought you fixed that bug already, so why is it doing this
again?” “Man, you guys work fast. Over 400,000 lines of code in three weeks is
outstanding progress!”

74



“Never mind the quality, feel the width.”

—Vince Powell and Harry Driver

Background
Cut−and−Paste Programming is a very common, but degenerate form of software reuse
which creates maintenance nightmares. It comes from the notion that it’s easier to modify
existing software than program from scratch. This is usually true and represents good
software instincts. However, the technique can be easily over used.

General Form
This AntiPattern is identified by the presence of several similar segments of code
interspersed throughout the software project. Usually, the project contains many
programmers who are learning how to develop software by following the examples of more
experienced developers. However, they are learning by modifying code that has been proven
to work in similar situations, and potentially customizing it to support new data types or
slightly customized behavior. This creates code duplication, which may have positive
short−term consequences such as boosting line count metrics, which may be used in
performance evaluations. Furthermore, it’s easy to extend the code as the developer has full
control over the code used in his or her application and can quickly meet short−term
modifications to satisfy new requirements.

Symptoms And Consequences
• The same software bug reoccurs throughout software despite many local fixes.

• Lines of code increase without adding to overall productivity.

• Code reviews and inspections are needlessly extended.

• It becomes difficult to locate and fix all instances of a particular mistake.

• Code is considered self−documenting.

• Code can be reused with a minimum of effort.

• This AntiPattern leads to excessive software maintenance costs.

• Software defects are replicated through the system.

• Reusable assets are not converted into an easily reusable and documented form.

• Developers create multiple unique fixes for bugs with no method of resolving the
variations into a standard fix.

• Cut−and−Paste Programming form of reuse deceptively inflates the number of lines of
code developed without the expected reduction in maintenance costs associated with
other forms of reuse.

Typical Causes
• It takes a great deal of effort to create reusable code, and organization emphasizes

short−term payoff more than long−term investment.

• The context or intent behind a software module is not preserved along with the code.

• The organization does not advocate or reward reusable components, and development
speed overshadows all other evaluation factors.

• There is a lack of abstraction among developers, often accompanied by a poor
understanding of inheritance, composition, and other development strategies.

• The organization insists that code must be a perfect match to the new task to allow it to be
reused. Code is duplicated to address perceived inadequacies in meeting what is thought
to be a unique problem set.

• Reusable components, once created, are not sufficiently documented or made readily
available to developers.

• A “not−invented−here” syndrome is in operation in the development environment.

75



• There is a lack of forethought or forward thinking among the development teams.

• Cut−and−Paste AntiPattern is likely to occur when people are unfamiliar with new
technology or tools; as a result, they take a working example and modify it, adapting it to
their specific needs.

Known Exceptions
The Cut−and−Paste Programming AntiPattern is acceptable when the sole aim is to get the
code out of the door as quickly as possible. However, the price paid is one of increased
maintenance.

Refactored Solution
Cloning frequently occurs in environments where white−box reuse is the predominant form of
system extension. In white−box reuse, developers extend systems primarily though
inheritance. Certainly, inheritance is an essential part of object−oriented development, but it
has several drawbacks in large systems. First, subclassing and extending an object requires
some knowledge of how the object is implemented, such as the intended constraints and
patterns of use indicated by the inherited base classes. Most object−oriented languages
impose very few restrictions, types of extensions can be implemented in a derived class and
lead to nonoptimal use of subclassing. In addition, typically, white−box reuse is possible only
at application compile time (for compiled languages), as all subclasses must be fully defined
before an application is generated.

On the other hand, black−box reuse has a different set of advantages and limitations and is
frequently a better option for object extension in moderate and large systems. With
black−box reuse, an object is used as−is, through its specified interface. The client is not
allowed to alter how the object interface is implemented. The key benefit of black−box reuse
is that, with the support of tools, such as interface definition languages, the implementation of
an object can be made independent of the object’s interface. This enables a developer to
take advantage of late binding by mapping an interface to a specific implementation at run
time. Clients can be written to a static object interface yet benefit over time by more
advanced services that support the identical object interface. Of course, the drawback is that
the supported services are limited to those supported by the same interface. Changes to the
interface typically must be made at compile time, similar to interface or implementation
changes in white−box reuse.

The distinction between white−box and black−box reuse mirrors the difference between
object−oriented programming (OOP) and component−oriented programming (COP), where
the white−box subclassing is the traditional signature of OOP and the dynamic late binding of
interface to implementation is a staple in COP.

Restructuring software to reduce or eliminate cloning requires modifying code to emphasize
black−box reuse of duplicated software segments. In the case where Cut−and−Paste
Programming has been used extensively throughout the lifetime of a software project, the
most effective method of recovering your investment is to refactor the code base into
reusable libraries or components that focus on black−box reuse of functionality. If performed
as a single project, this refactoring process is typically difficult, long, and costly, and requires
a strong system architect to oversee and execute the process and to mediate discussions on
the merits and limitations of the various extended versions of software modules.

Effective refactoring to eliminate multiple versions involves three stages: code mining,
refactoring, and configuration management. Code mining is the systematic identification of
multiple versions of the same software segment. The refactoring process involves developing
a standard version of the code segment and reinserting it into the code base. Configuration
management is a set of policies drawn up to aid in the prevention of future occurrences of
Cut−and−Paste Programming. For the most part, this requires monitoring and detection
policies (code inspections, reviews, validation), in addition to educational efforts.
Management buy−in is essential to ensure funding and support throughout all three stages.

Example
There is one piece of code that we suspect has been cloned repeatedly throughout several
organizations and probably is still cloned today. This piece of code has been observed
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several hundred times across dozens of organizations. It is a code file that implements a
linked−list class without the use of templates or macros. Instead, the data structure stored by
the linked list is defined in a header file, so each linked list is customized to operate only on
the specified data structure. Unfortunately, the original author of the code (rumor has it he
was originally a LISP programmer) introduced a flaw in the linked−list code: It failed to free
the memory of an item when it was deleted; instead, it just rearranged the pointers. On
occasion, this code has been modified to fix this defect; however, more often than not, it still
exists. It’s clearly the same code set; the variable names, the instructions, and even the
formatting is exactly the same in each and every case. Even the file is typically named
<prefix>link.c, where the prefix is one or two letters that cryptically refer to the data structure
managed by the list.

Related Solutions
Spaghetti Code often contains several instances of the Cut−and−Paste Programming
AntiPattern. Because Spaghetti Code is not structured for easy component reuse, in many
cases, Cut−and−Paste Programming is the only means available for reusing existing
segments of code. Of course, this leads to unnecessary code bloat and a maintenance
nightmare, but empirical evidence suggests that Spaghetti Code without Cut−and−Paste
Programming is typically an even worse mess than instances that make use of
Cut−and−Paste Programming.

Cloning can be minimized in new development through the implementation of a software
reuse process or organization [Jacobson 97]. Some degree of cloning is inevitable in large
software development; however, when it occurs, there must be a formalized process for
merging clones into a common baseline [Kane 97].

Mini−AntiPattern: Mushroom Management

Also known as Pseudo−Analysis and Blind Development, Mushroom Management is
often described by this phrase: “Keep your developers in the dark and feed them
fertilizer.” An experienced system architect recently stated, “Never let software
developers talk to end users.” Furthermore, without end−user participation, “The risk is
that you end up building the wrong system.”

AntiPattern Problem

In some architecture and management circles, there is an explicit policy to isolate
system developers from the system’s end users. Requirements are passed
second−hand through intermediaries, including architects, managers, or requirements
analysts. Mushroom Management assumes that requirements are well understood by
both end users and the software project at project inception. It is assumed that
requirements are stable.

There are several mistaken assumptions in Mushroom Management:

• In reality, requirements change frequently and drive about 30 percent of development
cost. In a Mushroom Management project, these changes are not discovered until
system delivery. User acceptance is always a significant risk, which becomes critical
in Mushroom Management.

• The implications of requirements documents are rarely understood by end users, who
can more easily visualize the meaning of requirements when they experience a
prototype user interface. The prototype enables end users to articulate their real
needs in contrast to the prototype’s characteristics.

• When developers don’t understand the overall requirements of a product, they rarely
understand the required component interaction and necessary interfaces. Because of
this, poor design decisions are made and often result in stovepipe components with
weak interfaces that do not fulfill the functional requirements.

Mushroom Management affects developers by creating an environment of uncertainty.
Often, the documented requirements are not sufficiently detailed, and there is no
effective way to obtain clarification. In order to do their job, developers must make
assumptions, which may lead to pseudo−analysis, that is, object−oriented analysis that
takes place without end−user participation. Some Mushroom Management projects
eliminate analysis altogether and proceed directly from high−level requirements to
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design and coding.

Refactored Solution

Risk−driven development is a spiral development process based upon prototyping and
user feedback. Risk−driven development is a specialization of iterative−incremental
development process (see the Analysis Paralysis AntiPattern in Chapter 7). In this
case, every increment is an external iteration. In other words, every project increment
includes extensions to user−interface functionality. The increment includes a
user−interface experiment, including hands−on experience. The experiment assesses
the acceptability and usability of each extension, and the results of the experiment
influence the direction of the project through the selection of the next iteration. Because
the project frequently assesses user acceptance, and uses this input to influence the
software, the risk of user rejection is minimized.

Risk−driven development is most applicable to applications, which are
user−interface−intensive and require relatively simple infrastructure support. Personal
computer applications that depend upon local files for storage infrastructure are strong
candidates for risk−driven development.

Variations

Including a domain expert on the development team is a very effective way to have
domain input on project decisions. Whenever there is a domain−specific question, team
members have expertise on−hand. An important risk in this approach, however, is that
the domain expert represents only one opinion from the domain community.

Chapter 6: Software Architecture AntiPatterns

Overview
Architecture AntiPatterns focus on the system−level and enterprise−level structure of
applications and components. Although the engineering discipline of software architecture is
relatively immature [Shaw 96], what has been determined repeatedly by software research
and experience is the overarching importance of architecture in software development:

• Good architecture is a critical factor in the success of the system development [Booch 96,
Shaw 96, Mowbray 95].

• Architecture−driven software development is the most effective approach to building
systems [Booch 96, Horowitz 93]. Architecture−driven approaches are superior to
requirements−driven, document−driven, and methodology−driven approaches. Projects
often succeed in spite of methodology, not because of it [Mowbray 95].

Software architecture is a subset of the overall system architecture, which includes all design
and implementation aspects, including hardware and technology selection. Important
principles of architecture include the following:

• Architecture provides a view of the whole system [Hilliard 96]. This distinguishes
architecture from other analysis and design models that focus on parts of a system.

• An effective way to model whole systems is through multiple viewpoints [ISO 96]. The
viewpoints correlate to various stakeholders and technical experts in the
system−development process [Hilliard 96].

Software architecture is distinguished from programming in several ways. First, the difference
between an architect and a programmer is that the architect takes into account the cost of
their decisions. Complexity is viewed by many in the architecture, management, and metrics
fields as the key architecture design force [Shaw 96], and software complexity is related to
software cost [Horowitz 93]. At a minimum, the architect is responsible for managing
complexity.

Software architecture focuses on three aspects of software design [Shaw 96]:

1. Partitioning. The functional partitioning of software modules.

2. Interfaces. The software interfaces between modules.
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3. Connections. The selection and characteristics of the technology used to implement the
interface connections between software modules.

These architecture decisions are usually implemented by a much larger group of developers
and maintainers. In order to manage these elements effectively, there are significant
challenges for architects in managing the people and relationships. Some examples include:
communicating the design to developers, achieving buy in from managers and developers,
and managing the implementation and extension of the design.

Architecture AntiPatterns Summaries
The following AntiPatterns focus on some common problems and mistakes in the creation,
implementation, and management of architecture. They are summarized here and explained
in detail in the balance of the chapter.

Lack of commonality between systems in terms of design and technology is the cause of
much frustration and the inability to provide interoperability and reuse between related
systems. Improved enterprise architecture planning is used to align system developments.

Autogenerated Stovepipe: This AntiPattern occurs when migrating an existing software
system to a distributed infrastructure. An Autogenerated Stovepipe arises when
converting the existing software interfaces to distributed interfaces. If the same design is
used for distributed computing, a number of problems emerge.

Stovepipe Enterprise: A Stovepipe System is characterized by a software structure that
inhibits change. The refactored solution describes how to abstract subsystem and
components to achieve an improved system structure. The Stovepipe Enterprise
AntiPattern is characterized by a lack of coordination and planning across a set of
systems.

Jumble: When horizontal and vertical design elements are intermixed, an unstable
architecture results. The intermingling of horizontal and vertical design elements limits the
reusability and robustness of the architecture and the system software components.

Stovepipe System: Subsystems are integrated in an ad hoc manner using multiple
integration strategies and mechanisms, and all are integrated point to point. The
integration approach for each pair of subsystems is not easily leveraged toward that of
other subsystems. The Stovepipe System AntiPattern is the single−system analogy of
Stovepipe Enterprise, and is concerned with how the subsystems are coordinated within a
single system.

Cover Your Assets: Document−driven software processes often produce
less−than−useful requirements and specifications because the authors evade making
important decisions. In order to avoid making a mistake, the authors take a safer course
and elaborate upon alternatives.

Vendor Lock−In: Vendor Lock−In occurs in systems that are highly dependent upon
proprietary architectures. The use of architectural isolation layers can provide
independence from vendor−specific solutions.

Wolf Ticket: A Wolf Ticket is a product that claims openness and conformance to
standards that have no enforceable meaning. The products are delivered with proprietary
interfaces that may vary significantly from the published standard.

Architecture by Implication: Management of risk in follow−on system development is
often overlooked due to overconfidence and recent system successes. A general
architecture approach that is tailored to each application system can help identify unique
requirements and risk areas.

Warm Bodies: Software projects are often staffed with programmers with widely varying
skills and productivity levels. Many of these people may be assigned to meet staff size
objectives (so−called “warm bodies”). Skilled programmers are essential to the success of
a software project. So−called heroic programmers are exceptionally productive, but as few
as 1 in 20 have this talent. They produce an order of magnitude more working software
than an average programmer.

Design by Committee: The classic AntiPattern from standards bodies, Design by
Committee creates overly complex architectures that lack coherence. Clarification of
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architectural roles and improved process facilitation can refactor bad meeting processes
into highly productive events.

Swiss Army Knife: A Swiss Army Knife is an excessively complex class interface. The
designer attempts to provide for all possible uses of the class. In the attempt, he or she
adds a large number of interface signatures in a futile attempt to meet all possible needs.

Reinvent the Wheel: The pervasive lack of technology transfer between software
projects leads to substantial reinvention. Design knowledge buried in legacy assets can
be leveraged to reduce time−to−market, cost, and risk.

The Grand Old Duke of York: Egalitarian software processes often ignore people’s
talents to the detriment of the project. Programming skill does not equate to skill in
defining abstractions. There appear to be two distinct groups involved in software
development: abstractionists and their counterparts the implementationists.

Mini−AntiPattern: Autogenerated Stovepipe

AntiPattern Problem

This AntiPattern occurs when migrating an existing software system to a distributed
infrastructure. An Autogenerated Stovepipe arises when converting the existing
software interfaces to distributed interfaces. If the same design is used for distributed
computing, a number of problems emerge. For example, the existing interfaces may be
using fine−grain operations to transfer information that may be inefficient in a
distributed environment. Preexisting interfaces are usually implementation−specific,
and will cause subsystem interdependencies when used in a larger−scale distributed
system. Local operations often make various assumptions about location, including
address space and access to the local file system. Excess complexity can arise when
multiple existing interfaces are exposed across a larger−scale distributed system.

Refactored Solution

When designing distributed interfaces for existing software, the interfaces should be
reengineered. A separate, larger−grained object model should be considered for the
distributed interfaces. The interoperability functionality used by multiple subsystems
should be the design center of the new interfaces. Design that is independent of
particular subsystems can be achieved through architecture mining. The stability of the
new interfaces is very important, given that separately compiled software will be
dependent upon these new designs.

Stovepipe Enterprise

AntiPattern Name: Stovepipe Enterprise

Also Known As: Islands of Automation

Most Frequent Scale: Enterprise

Refactored Solution Name: Enterprise Architecture Planning

Refactored Solution Type: Process

Root Causes: Haste, Apathy, Narrow−Mindedness

Unbalanced Forces: Management of Change, Resources, Technology Transfer

Anecdotal Evidence: “Can I have my own island (of automation)?” (See Figure 6.1.)
“We’re unique!”
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Figure 6.1 Island of automation.

Background
Stovepipe is a popular term used to describe software systems with ad hoc architectures. It is
a metaphor to the exhaust pipes of wood−burning stoves, so−called pot−bellied stoves.
Since wood burning produces corrosive substances that erode metal, a stovepipe must be
constantly maintained and repaired in order to avoid leakage. Often, the pipes are repaired
with any materials at hand, thus wood−burning stovepipes quickly become a hodgepodge of
ad hoc repairs—hence, the reference is used to describe the ad hoc structure of many
software systems.

General Form
Multiple systems within an enterprise are designed independently at every level. Lack of
commonality inhibits interoperability between systems, prevents reuse, and drives up cost; in
addition, reinvented system architecture and services lack quality structure supporting
adaptability.

At the lowest level are the standards and guidelines. These work like architectural building
codes and zoning laws across enterprise systems. The next level up in the hierarchy is the
operating environment [Mowbray 97c], which comprises infrastructure and object services.
The top two layers include the value−added functional services and the mission−specific
services. By selecting and defining all of these technologies independently, Stovepipe
Enterprises “create islands of automation,” isolated from the rest of the enterprise, as shown
in Figure 6.2.

Figure 6.2 Stovepipe Enterprises are caused by isolated technology decisions at
every level of coordination.

Symptoms And Consequences
• Incompatible terminology, approaches, and technology between enterprise systems.

• Brittle, monolithic system architectures and undocumented architectures.

• Inability to extend systems to support business needs.

• Incorrect use of a technology standard.

• Lack of software reuse between enterprise systems.

• Lack of interoperability between enterprise systems.

• Inability of systems to interoperate even when using the same standards.

• Excessive maintenance costs due to changing business requirements; the need to extend
the system to incorporate new products and technologies.

• Employee turnover, which causes project discontinuity and maintenance problems.
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Typical Causes
• Lack of an enterprise technology strategy, specifically:

Lack of a standard reference model [Mowbray 97a].

Lack of system profiles [Mowbray 97a].

• Lack of incentive for cooperation across system developments:

Competing business areas and executives.

• Lack of communication between system development projects.

• Lack of knowledge of the technology standard being used.

• Absence of horizontal interfaces in system integration solutions.

Known Exceptions
The Stovepipe Enterprise AntiPattern is unacceptable for new systems at an enterprise level
in this day and age, particularly when most companies are facing the need to extend their
business systems. However, when companies grow by takeover or merger, the Stovepipe
AntiPattern is likely to occur; in which case, wrapping some systems can be an intermediate
solution.

Another exception is when a common service layer is implemented across the enterprise
systems. This is usually a manifestation of the Vendor Lock−In AntiPattern (discussed later in
this chapter). These systems have a common horizontal component; for example, in banking,
this is often true of databases such as DB2 and Oracle.

Refactored Solution
Coordination of technologies at several levels is essential to avoid a Stovepipe Enterprise, as
shown in Figure 6.3. Initially, the selection of standards can be coordinated through the
definition of a standards reference model [Mowbray 97a]. The standards reference model
defines the common standards and a migration direction for enterprise systems. The
establishment of a common operating environment coordinates the selection of products and
controls the configuration of product versions. Defining system profiles that coordinate the
utilization of products and standards is essential to assure standards benefits, reuse, and
interoperability. At least one system profile should define usage conventions across systems.

Figure 6.3 Coordinated technologies enable the establishment of common
infrastructure and standards.

Through much experience, large enterprises have worked out some useful conventions for
the definition of object−oriented architectures that can apply to many organizations. A key
challenge of large−scale architecture is to define detailed interoperability conventions across
systems while addressing technology strategy and requirements. For very large enterprises,
experience has shown that four requirements models and four specification models are
necessary to properly scope and resolve interoperability challenges, as shown in Figure 6.4.
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Figure 6.4 Multiple levels of coordination: Technology policies, requirements, and
specifications may be necessary in large enterprises.

The requirements models include:

1. Open Systems Reference Model.

2. Technology Profile.

3. Operating Environment.

4. System Requirements Profile.

The specification models include:

1. Enterprise Architectures.

2. Computational Facilities Architecture.

3. Interoperability Specifications.

4. Development Profile.

The following sections describe these models, each of which is part of an overall
enterprise−architecture plan. The plan provides effective coordination between projects and
reduces the need for point−to−point interoperability solutions.

Open Systems Reference Model

An open systems reference model contains a high−level architecture diagram and a list of
target standards for system development projects. The purpose of this model is to identify all
of the candidate standards for projects, to coordinate open−systems strategies.

An off−the−shelf reference model of this type is the IEEE POSIX 1003.0 standard. This
section of POSIX lists a wide range of open systems standards with respect to applicability,
maturity, commercial support, and other factors. This POSIX standard is the starting point for
many enterprise−specific reference models.

Technology Profile

When open−systems reference models were invented less than 10 years ago, they were
thought to be the complete answer to systems interoperability. Unfortunately, developers
were uncertain how these models affected their projects. A key problem is that reference
models define future architecture goals with an unspecified time frame for implementation.
Also, approximately a third of the items change status every year, due to the activities of
standards bodies.

Technology profiles were invented to define the short−term standards plan for systems
developers. A technology profile is a concise list of standards drawn from a reference model,
which is considered a set of flexible guidelines; but technology profiles often mandate
standards for current and new systems development projects. The technology profile clarifies
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what the developer has to do about the reference model standards; for example, the
US−DOD Joint Technical Architecture is a technical profile that identifies standards for
current implementation.

Operating Environment

Most large enterprises have heterogeneous hardware and software architectures, but even
with a consistent infrastructure, varying installation practices can cause serious problems for
enterprise interoperability, software reuse, security, and systems management.

An operating environment defines product releases and installation conventions that are
supported by the enterprise, and establishes guidelines that must be flexible locally, to
support R&D and unique systems requirements. The enterprise can encourage compliance
with these conventions through technical support services and purchasing procedures; in
other words, the enterprise can influence the adoption of the recommended environments by
making them the easiest system configurations to obtain and support. Variations from the
operating environment must be supported locally at extra cost.

System Requirements Profile

Enterprise architecture planning often produces broad, high−level requirements documents.
For any particular family of systems, the requirements may be unclear to developers because
of the sheer volume of information. A system requirements profile is a summary of key
requirements for a family of related systems. The time frame is short term. Ideally, this
document is only a few dozen pages in length, written to clarify the intended implementation
goals for component systems and application development projects.

The system requirements profile identifies necessary scoping of system capabilities, and thus
is the stepping−off point for enterprise requirements planning. The balance of the enterprise
planning models are architecture and design specifications (described in subsequent
sections), which are expressed through object−oriented models and comprise a set of
object−oriented software architectures.

Enterprise Architecture

An enterprise architecture is a set of diagrams and tables that define a system or family of
systems from various stakeholder viewpoints; thus, the enterprise architecture comprises
views of the entire system. Current and future time frames are depicted, and each view
addresses the issues posed by principal stakeholders, such as end users, developers,
systems operators, and technical specialists.

Consistency of the architecture views and notations across projects is important, for
enterprise architectures enable technical communication across projects. Reuse and
interoperability opportunities can be identified when projects share their architectures. Since
individual projects have the most knowledge of the technical details, project−specific
architectures can be compiled into accurate, enterprisewide architectures.

Computational Facilities Architecture

As just explained, enterprise architectures are important communication tools for end users
and architects. Each of the remaining specifications detail the computational architecture that
defines interfaces for interoperability and reuse.

A computational facilities architecture (CFA) identifies and defines key points of
interoperability for a family of systems. Each facility identifies a set of application program
interfaces (APIs) and common data objects that are defined in detail in the interoperability
specifications. A CFA partitions the enterprise’s interoperability needs into manageable
specifications; it also defines a road map of priorities and schedules for the facilities. This is
necessary to initiate and guide the formulation of interoperability specifications.

Achieving consensus on the facilities in a CFA is a key challenge for many enterprises.
Misunderstandings abound regarding the role of the facilities in relation to external
requirements, the need for system independence, the definition of common abstractions, and
the necessity of limiting the scope of the facilities.

Interoperability Specification
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An interoperability specification defines the technical details of a computational facility.
Typical interoperability specifications include APIs defined in IDL and common data object
definitions.

Interoperability specifications establish key points of interoperability in a manner that is
independent of any particular system of subsystem implementation. Architecture mining is a
particularly effective process for creating these specifications [Mowbray 97c]. During system
maintenance, the key points of interoperability become value−added entry points for system
extension.

Development Profile

An interoperability specification alone is not enough to assure successful integration,
because the semantics of APIs can be interpreted differently by different implementors.
Robust API designs have built−in flexibility that enable extension and reuse, and details of
their usage are often discovered in the development process. Some of these details may be
unique to a particular set of systems.

A development profile records the implementation plans and developer agreements that are
necessary to assure interoperability and successful integration. A development profile
identifies the parts of API specifications that are used, local extensions to the specification,
and conventions that coordinate integration.

While it is important to configuration−control all of these models, development profiles are
working documents that evolve throughout development and maintenance life cycles.
Multiple development profiles may exist for a single API specification, each of which
addresses the integration needs of a particular domain or family of systems.

Example
System 1 and System 2 in Figure 6.5 represent two Stovepipe Systems in the same
enterprise. While similar in many ways, these systems lack commonality; they use different
database products, different office automation tools, have different software interfaces, and
use unique graphical user interfaces (GUIs). The potential commonalities between these
systems was not recognized and therefore not utilized by the designers and developers.

Figure 6.5 Stovepipe Enterprise with two systems.

To resolve the AntiPattern, the enterprise starts by defining a standards reference model.
This model, shown in Figure 6.6, selects some baseline standards for interchange across all
systems. The next step is to choose products for an operating environment. In this case, both
database products are selected, but only one of the office automation tools. This is the
supported direction for future migration of the enterprise. The enterprise can facilitate this
operating environment through enterprise product licensing, training, and technical support.
This level also defines profiles for use of these technologies and common interfaces with
reusable service implementations. The GUI applications comprise the remaining
system−specific implementations.
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Figure 6.6 Refactored solution: techology coordination.

Related Solutions
Reinvent the Wheel is an AntiPattern that comprises a subset of the overall problem of
Stovepipe Systems. Reinvent the Wheel is focused upon the lack of maturity of designs and
implementations caused by the lack of communication between development projects.

Standards reference model, operating environment, and profile are solutions from the book
CORBA Design Patterns [Mowbray 97a]. They are all important components in the solution
of Stovepipe Enterprises.

Examples of standards reference models include the IEEE POSIX.0, NIST Application
Portability Profile (APP), and volume 7 of the U.S. Department of Defense’s Technical
Architecture Framework for Information Management (TAFIM). Examples of common
interfaces and profiles can be found on www−ismc.itsi.disa.mil/ciiwg/ciiwg.html.

Applicability To Other Viewpoints And Scales
Stovepipe Enterprises are often the consequence of organizational boundaries imposed by
management. Organizational structures that inhibit communication and the transfer of
technology produce the kind of disconnects that result in the lack of coordination that
characterizes Stovepipe Enterprises. The impact of the Stovepipe Enterprise AntiPattern on
management is that every system development involves significant but unnecessary risk and
cost. Since the systems do not interoperate and are difficult to integrate, the overall
organizational effectiveness is impacted. The organization’s ability to accommodate changing
business requirements is greatly impeded by the Stovepipe Enterprise. An emerging
requirement for enterprises is called agile systems, which are able to accommodate changes
in business processes because they already support interoperability across most or all
enterprise systems.

Developers, too, are affected by the Stovepipe Enterprise because they are often asked to
create brittle solutions to bridge independently architected systems. These interfaces are
difficult to maintain and reuse, and the absence of technology coordination makes the
creation of these interfaces quite challenging. Often, combinations of middleware solutions
and commercial products (database engines) must be bridged in order to achieve
interoperability.

Mini−AntiPattern: Jumble

AntiPattern Problem

When horizontal and vertical design elements are intermixed, an unstable architecture
results. Vertical design elements are dependent upon the individual application and
specific software implementations. Horizontal design elements are those that are
common across applications and specific implementations. By default, the two are
mixed together by developers and architects. But doing this limits the reusability and
robustness of the architecture and the system software components. Vertical elements
cause software dependencies that limit extensibility and reuse. Intermingling makes all
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the software designs less stable and reusable.

Refactored Solution

The first step is to identify the horizontal design elements and delegate them to a
separate architecture layer. Then use the horizontal elements to capture the common
interoperability functionality in the architecture. For example, the horizontal elements
are abstractions of the specific subsystem implementations:

1. Add vertical elements as extensions for specialized functionality and for
performance.

2. Incorporate metadata into the architecture.

3. Trade off the static elements of the design (horizontal and vertical) with the
dynamic elements (metadata).

Proper balance of horizontal, vertical, and metadata elements in an architecture leads
to well−structured, extensible, reusable software.

Background

It takes some time to fully understand the meaning and implications of horizontal and
vertical design elements. These topics are explored further in our companion book,
CORBA Design Patterns [Mowbray 97c]. In particular, the
Horizontal−Vertical−Metadata (HVM) pattern and related CORBA design patterns
establish key principles for software architecture design. The Jumble AntiPattern
describes the most common misuse of these principles.

Stovepipe System

AntiPattern Name: Stovepipe System

Also Known As: Legacy System, Uncle Sam Special, Ad Hoc Integration

Most Frequent Scale: System

Refactored Solution Name: Architecture Framework

Refactored Solution Type: Software

Root Causes: Haste, Avarice, Ignorance, Sloth

Unbalanced Forces: Management of Complexity, Change

Anecdotal Evidence: “The software project is way over−budget; it has slipped its
schedule repeatedly; my users still don’t get the expected features; and I can’t modify
the system. Every component is a stovepipe.”

Background
Stovepipe System is a widely used derogatory name for legacy software with undesirable
qualities. In this AntiPattern, we attribute the cause of these negative qualities to the internal
structure of the system. An improved system structure enables the evolution of the legacy
system to meet new business needs and incorporate new technologies seamlessly. By
applying the recommended solution, the system can gain new capabilities for adaptability
that are uncharacteristic of Stovepipe Systems.

General Form
The Stovepipe System AntiPattern is the single−system analogy of Stovepipe Enterprise,
which involves a lack of coordination and planning across a set of systems. The Stovepipe
System AntiPattern addresses how the subsystems are coordinated within a single system.
The key problem in this AntiPattern is the lack of common subsystem abstractions, whereas
in a Stovepipe Enterprise, the key problem is the absence of common multisystem
conventions.

Subsystems are integrated in an ad hoc manner using multiple integration strategies and
mechanisms. All subsystems are integrated point to point, as shown in Figure 6.7, thus the
integration approach for each pair of subsystems is not easily leveraged toward that of other
subsystems. Furthermore, the system implementation is brittle because there are many
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implicit dependencies upon system configuration, installation details, and system state. The
system is difficult to extend, and extensions add additional point−to−point integration links.
As each new capability and alteration is integrated, system complexity increases, throughout
the life cycle of the stovepipe system; subsequently, system extension and maintenance
become increasingly intractable.

Figure 6.7 Stovepipe interfaces require point−to−point integration, which leads to
order (N x N) system cost and complexity.

Symptoms And Consequences
• Large semantic gap between architecture documentation and implemented software;

documentation does not correspond to system implementation.

• Architects are unfamiliar with key aspects of integration solution.

• Project is over−budget and has slipped its schedule for no obvious reason.

• Requirements changes are costly to implement, and system maintenance generates
surprising costs.

• System may comply with most paper requirements but does not meet user expectations.

• Users must invent workarounds to cope with limitations of the system.

• Complex system and client installation procedures are followed that defy attempts to
automate.

• Interoperability with other systems is not possible, and there is an inability to support
integrated system management and intersystem security capabilities.

• Changes to the systems become increasingly difficult.

• System modifications become increasingly likely to introduce new serious bugs.

Typical Causes
• Multiple infrastructure mechanisms used to integrate subsystems; absence of a common

mechanism makes the architecture difficult to describe and modify.

• Lack of abstraction; all interfaces are unique to each subsystem.

• Insufficient use of metadata; metadata is not available to support system extensions and
reconfigurations without software changes.

• Tight coupling between implemented classes requires excessive client code that is
service−specific.

• Lack of architectural vision.

Known Exceptions
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Research and development software production often institute the Stovepipe System
AntiPattern to achieve a rapid solution. This is perfectly acceptable for prototypes and
mockups; and sometimes, insufficient knowledge about a domain may require a Stovepipe
System to be initially developed to gain domain information either for building a more robust
system or for evolving the initial system into an improved version [Foote 97]. Or, the choice to
use a vendor’s product and not reinvent the wheel can lead to both the Stovepipe System
AntiPattern and the Vendor Lock−In AntiPattern.

Refactored Solution
The refactored solution to the Stovepipe System AntiPattern is a component architecture that
provides for flexible substitution of software modules. Subsystems are modeled abstractly so
that there are many fewer exposed interfaces than there are subsystem implementations.
The substitution can be both static (compile−time component replacement) and dynamic
(run−time dynamic binding). The key to defining the component interfaces is to discover the
appropriate abstractions. The subsystem abstractions model the interoperability needs of the
system without exposing unnecessary differences between subsystems and
implementation−specific details, as shown in Figure 6.8.

Figure 6.8 Component architectures model interoperability needs with common
interfaces.

In order to define a component architecture, you should choose a base level of functionality
that the majority of applications will support. In general, that level should be low and focus
upon a single aspect of interoperability, such as data interchange or conversion. Then define
a set of system interfaces that support this base level of functionality; we recommend using
ISO IDL. Most services have an additional interface to express finer−grained functional
needs so the component interface should be small.

Having a base level of component services available to all clients in the domain encourages
the development of thin clients that work well with existing and future services, without
modification. By thin clients, we mean clients that do not require detailed knowledge of the
services and architecture of the system; a framework may support and simplify their access
to complex services. Having several plug−compatible implementations available increases
the robustness of clients, as they potentially have many options in fulfilling their service
request.

Applications will have clients that are written to more specialized (vertical) interfaces. Vertical
clients should remain unaffected by the addition of the new component interfaces. Clients
that require only the base level of functionality can be written to the horizontal interfaces,
which should be more stable and easily supported by new or other existing applications. The
horizontal interface should hide, via abstraction, all the lower−level details of a component
and provide only the base−level functionality. The client should be written to handle whatever
data types are indicated by the interface in order to support any future interchange of the
horizontal component implementations. For example, if an “any” is returned, the client should
be capable of handling all types that the “any” may contain. Admittedly, for CORBA
implementations that don’t support the transfer of new user−defined types at run time, type
management may have to occur at the horizontal level; specifically, it may be necessary to
convert vertical types into horizontal types that are known at compile time.
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Incorporation of metadata into the component architecture is key to service discovery and
service discrimination. A fundamental level of metadata support is through naming and
trading services [Mowbray 97c]. Naming services enable the discovery of known objects; a
trading service lists the available services and their properties for discovery by clients.
Interoperable naming services are extended to incorporate some trading capabilities. More
extensive use of metadata is usually required for enhanced decoupling of clients from
services. For example, schema metadata for database services helps clients to adapt
alternative schema and schema changes [Mowbray 95].

Example
Figure 6.9 is a representation of a typical stovepipe system. There are three client
subsystems and six service subsystems. Each subsystem has a unique software interface,
and each subsystem instance is modeled as a class in the class diagram. When the system
is constructed, unique interface software for each client corresponds to each of the integrated
subsystems. If additional subsystems are added or substituted, the clients must be modified
with additional code that integrates new unique interfaces.

Figure 6.9 Client/server Stovepipe System.

The refactored solution to this example considers the common abstractions between the
subsystems (Figure 6.10). Since there are two services of each type, it is possible for each
model to have one or more service interface in common. Then each particular device or
service can be wrapped to support the common interface abstraction. If additional devices
are added to the system from these abstract subsystem categories, they can be integrated
transparently to the existing system software. The addition of a trader service adds the ability
to discover and discriminate between the abstracted services.

Figure 6.10 The refactored architecture abstracts subsystem differences.

Related Solutions
The Stovepipe Enterprise AntiPattern describes how stovepipe practices are promulgated on
an enterprise scale. Note that Stovepipe Enterprise addresses a multisystem problem, which
involves a larger scale of architecture than a single system.

Applicability To Other Viewpoints And Scales
The management consequences of Stovepipe Systems are: increased risk, bigger budget,
and longer time to market. And because complexity increases throughout the life cycle of the
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system, the management problems magnify as development progresses. Eventually, the
risks of system modification outweigh the potential benefits, and the Stovepipe System
ceases to adapt to new business needs; the organization’s business processes are frozen by
the Stovepipe System. Since the architecture information is buried in the implementation,
employee turnover in the software maintenance staff can lead to a total loss of capability to
modify or maintain the system.

For developers, Stovepipe Systems mean they must spend more time on system discovery
and testing. In early development, developers have a great deal of freedom to choose
implementation strategies with minimal architectural guidance, but as the complexity of the
stovepipe interfaces supercedes the documentation, the system becomes increasingly
complex and brittle. Development in a stovepipe environment resembles walking through a
mine field. Every decision involves guesswork, uncertainty, and experiments. Developer
decisions have high−risk consequences for the business, and often lead to repeated crises.

“Safe upon solid rock the ugly house stands: Come and see my shining palace built upon
the sand!”

—Edna St. Vincent Millay

Mini−AntiPattern: Cover Your Assets

AntiPattern Problem

Document−driven software processes often produce less−than−useful requirements
and specifications because the authors evade making important decisions. In order to
avoid making a mistake, the authors take a safer course and elaborate upon
alternatives. The resulting documents are voluminous and become an enigma; there is
no useful abstraction of the contents that convey the authors’ intent. Unfortunate
readers, who may have contractual obligations dependent upon the text, must pore
through the mind−numbing details. When no decisions are made and no priorities are
established, the documents have limited value. It is unreasonable to have hundreds of
pages of requirements that are all equally important or mandatory. The developers are
left without much useful guidance about what to implement in what priority.

Refactored Solution

Architecture blueprints are abstractions of information systems that facilitate
communication of requirements and technical plans between the users and developers
[Blueprint 97]. An architecture blueprint is a small set of diagrams and tables that
communicate the operational, technical, and systems architecture of current and future
information systems [C4ISR 96]. A typical blueprint comprises no more than a dozen
diagrams and tables, and can be presented in an hour or less as a viewgraph
presentation. Architecture blueprints are particularly useful in an enterprise with
multiple information systems. Each system can establish its architecture blueprints,
then the organization can compile enterprisewide blueprints based upon the
system−specific details. Blueprints should characterize both existing systems and
planned extensions. The extensions can be used to coordinate architecture planning
across multiple systems. Because architecture blueprints allow multiple projects to
portray their technologies, opportunities for interoperability and reuse are enhanced.

Vendor Lock−In

AntiPattern Name: Vendor Lock−In

Also Known As: Product−Dependent Architecture, Bondage and Submission,
Connector Conspiracy

Most Frequent Scale: System

Refactored Solution Name: Isolation Layer

Refactored Solution Type: Software

Root Causes: Sloth, Apathy, Pride/Ignorance (Gullibility)

Unbalanced Forces: Management of Technology Transfer, Management of Change

Anecdotal Evidence: We have often encountered software projects that claim their
architecture is based upon a particular vendor or product line.
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Other anecdotal evidence occurs around the time of product upgrades and new
application installations: “When I try to read the new data files into the old version of the
application, it crashes my system.” “Once you read data into the new application, you
can never get it out again.” “The old software acts like it has a virus, but it’s probably
just the new application data.” “Our architecture is ... What’s the name of our database
again?”

Background
A worst−case scenario of this AntiPattern would occur if your data and software licenses
were completely allocated to online services, and one day, a modal dialog box popped up, as
shown in Figure 6.11.

Figure 6.11 A situation in your future under Vendor Lock−In.

Interactive word processing became more popular than formatting language technologies
(like SGML) because it allows the user to see the final format on the computer screen and
print an exact copy of the on−screen appearance. This capability is called “What you see is
what you get” (WYSIWIG). A pervasive variation of Vendor Lock−In is the phenomenon
called “What you see is sort−of like what you get” (WYSISLWYG, pronounced “weasel wig”).
Recently, given the desktop dominance of Microsoft, product misfeatures cause the printed
versions of documents to vary significantly from their on−screen appearance. For example,
symbols in drawings can change or disappear, and embedded objects are often printed as
command strings (like “{EMBEDDED POWERPOINT FIGURE}”). Documents from different
versions of the same Microsoft product can cause support problems on corporate networks
and system crashes. Many companies discourage or outlaw co−mingling of product versions.
It is difficult to avoid this form of vendor lock−in and its product misfeatures because of
organizational dependence on Microsoft’s products for document interchange.

General Form
A software project adopts a product technology and becomes completely dependent upon
the vendor’s implementation. When upgrades are done, software changes and
interoperability problems occur, and continuous maintenance is required to keep the system
running. In addition, expected new product features are often delayed, causing schedule
slips and an inability to complete desired application software features.

Symptoms And Consequences
• Commercial product upgrades drive the application software maintenance cycle.

• Promised product features are delayed or never delivered, subsequently, causing failure
to deliver application updates.

• The product varies significantly from the advertised open systems standard.

• If a product upgrade is missed entirely, a product repurchase and reintegration is often
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necessary.

Typical Causes
• The product varies from published open system standards because there is no effective

conformance process for the standard.

• The product is selected based entirely upon marketing and sales information, and not
upon more detailed technical inspection.

• There is no technical approach for isolating application software from direct dependency
upon the product.

• Application programming requires in−depth product knowledge.

• The complexity and generality of the product technology greatly exceeds that of the
application needs; direct dependence upon the product results in failure to manage the
complexity of the application system architecture.

Known Exceptions
The Vendor Lock−In AntiPattern is acceptable when a single vendor’s code makes up the
majority of code needed in an application.

Refactored Solution
The refactioned solution to the Vendor Lock−In AntiPattern is called isolation layer. An
isolation layer separates software packages and technology, as shown in Figure 6.12. It can
be used to provide software portability from underlying middleware and platform−specific
interfaces. This solution is applicable when one or more of the following conditions apply:

• Isolation of application software from lower−level infrastructure. This infrastructure may
include middleware, operating systems, security mechanisms, or other low−level
mechanisms.

• Changes to the underlying infrastructure are anticipated within the life cycle of the affected
software; for example, new product releases or planned migration to new infrastructure.

Figure 6.12 The isolation layer separates application software from
product−dependent interfaces, which may change.

• A more convenient programming interface is useful or necessary. The level of abstraction
provided by the infrastructure is either too primitive or too flexible for the intended
applications and systems.

• There a need for consistent handling of the infrastructure across many systems. Some
heavyweight conventions for default handling of infrastructure interfaces must be
instituted.

• Multiple infrastructures must be supported, either during the life cycle or concurrently.

The solution entails creating a layer of software that abstracts the underlying infrastructure or
product−dependent software interfaces. This layer provides an application interface that
completely isolates the application software from the underlying interfaces. The application
interface should implement a convenient language−specific interface to desired capabilities.
The layering software should ensure default handling of some infrastructure calls and
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parameters, but expose other details when appropriate.

This isolation layer is used across multiple system development projects to assure
interoperability, consistency, and isolation. To implement it, migrate the isolation to new
infrastructures as necessary; also, update the isolation layer when the infrastructure is
updated. In all cases, maintain the same application software interface, regardless of
infrastructure changes.

It is also necessary to install gateways [Mowbray 97c] between multiple infrastructures that
must be supported concurrently, and to install forward and reverse gateways during
infrastructure migration [Brodie 95].

The benefits of this solution are:

• Mitigation of the risks and costs of infrastructure migration.

• Precluding obsolescence caused by to infrastructure changes.

• Reduction of the risk and cost of software upgrades required by infrastructure changes.

• Assurance of a less labor−intensive and more inexpensive programming interface to most
application programmers.

• Support for the concurrent use of multiple infrastructures, transparently.

• Enforcement of coordinated default handling of flexible interfaces and parameters.

• Separation of infrastructure knowledge from application knowledge, thereby enabling a
small team of infrastructure developers to maintain the isolation layer, while the majority of
programmers have a customized interface to the layering software.

Other consequences of this solution are that:

• The isolation layer must be migrated and maintained, potentially on multiple platforms and
infrastructures.

• The developers who define the initial isolation layer interfaces must be coordinated.

• Changes made to the application interfaces must be coordinated.

Variations
This solution is often used at the global level in commercial products and technologies.
Typically, the isolation layer enables the vendor to provide a convenient language−specific
interface to a lower−level technology. Some of this convenience comes in the form of default
handling of lower−level interfaces that are more flexible than necessary for most applications.
For example, the HP Object−Oriented Distributed Computing Environment (OO DCE)
product comprises an isolation layer, and presents a C++ interface to application developers.
Underlying this interface is an isolation layer of software that is built upon the C language
DCE environment. Calls to the C++ APIs can invoke several underlying DCE procedure calls;
in particular, just two calls are needed to initialize OO DCE security service interfaces. The
underlying isolation layer, in turn, makes more than 50 calls to DCE APIs to achieve this
initialization with the legacy DCE security service.

The isolation layer solution is most applicable at the enterprise level. However, individual
systems have applied this solution to provide middleware isolation; for example, the Paragon
Electronic Light Table (ELT) product uses an isolation layer above the Common Desktop
Environment (CDE) middleware infrastructure, called ToolTalk. By isolating ToolTalk,
Paragon can easily migrate its product to a CORBA infrastructure and support both CORBA
and ToolTalk infrastructures.

Example
The following examples are three known uses of the isolation layer solution:

1. The ORBlite framework, based on HP ORB plus, isolates application software from
multiple language mappings and network protocols [Moore 97]. Thus, it was able to
support multiple language mappings for C++, given the evolution of the OMG mappings
during the adoption and revision process [Moore 97].

2. Even though OpenDoc is no longer in the product strategy of its creator, some interesting
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technical approaches were used, including the isolation layer solution. The OpenDoc
Parts Framework (OPF) institutes a higher−level C++ programming interface to the
OpenDoc compound document interface, defined in ISO IDL. OPF includes interfaces to
operating system functions (including display graphics), as well as OpenDoc functions. In
doing so, OPF enables source code portability interfaces for middleware, windowing, and
operating systems. Compound document parts written using OPF can be ported via
recompilation and linking to OS/2, MacOS, and Windows95. A testing capability called
LiveObjects, from the Component Integration Labs, the consortium responsible for
OpenDoc, assures component portability and interoperability.

3. EOSDIS (Earth Observing System Data and Information System) is a large−scale
information retrieval project funded by NASA. The EOSDIS middleware abstraction layer
was used to isolate application software and evolving middleware. Initial prototypes used
a beta−test CORBA product. These prototyping efforts proved unsuccessful, largely due
to difficulties in using the beta−test product. Although program management
acknowledged the need for future CORBA support, a proprietary object−oriented DCE
extension was chosen for short−term implementations. Management also did not want to
rely entirely on proprietary interfaces. The situation was resolved through the addition of
a middleware abstraction layer that masked the choice of middleware from EOSDIS
application software; it hid differences in object creation, object activation, and object
invocation.

Related Solutions
This pattern is related to the Object Wrapper pattern [Mowbray 97c], which provides isolation
to and from a single application to a single object infrastructure. The isolation layer pattern
provides insulation of multiple applications from multiple infrastructures. This pattern is also
related to the Profile pattern [Mowbray 97c], where an isolation layer can be viewed as a
particular enterprise profile for the use of middleware.

The isolation layer can be thought of as one the levels in a layered architecture [Mowbray
97c]. In contrast to most layers, this is a very thin layer that does not contain application
objects. Typically, an isolation layer serves only as a proxy for integrating clients and
services with one or more infrastructures. The Proxy pattern is described in Buschmann
(1996).

Applicability To Other Viewpoints And Scales
The impact of Vendor Lock−In on management is a loss of control of the technology, IT
functionality, and O&M budgets to the dictates of vendor product releases. Vendor Lock−In
also impacts risk management. The AntiPattern is often accepted with the understanding that
future features will be implemented. Unfortunately, these feature often deliver later than
expected or needed, if ever.

Vendor Lock−In affects developers by requiring they have in−depth product knowledge. But
this knowledge is transient; it will be made obsolete by the next product release. Thus,
developers are expected to be on a continuous learning−curve treadmill about product
features, product bugs, and product futures.

Mini−AntiPattern: Wolf Ticket

AntiPattern Problem

There are many more information systems standards than there are mechanisms to
assure conformance. Only 6 percent of information systems standards have test suites.
Most of the testable standards are for programming language compilers—FORTRAN,
COBOL, Ada, and so forth.

A Wolf Ticket is a product that claims openness and conformance to standards that
have no enforceable meaning. The products are delivered with proprietary interfaces
that may vary significantly from the published standard. A key problem is that
technology consumers often assume that openness comes with some benefits. In
reality, standards are more important to technology suppliers for brand recognition than
for any benefits that the standards may offer users.

Standards do reduce technology migration costs and improve technology stability, but,
differences in the implementation of the standards often negate their assumed benefits,
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such as multivendor interoperability and software portability. Furthermore, many
standards specifications are too flexible to assure interoperability and portability; other
standards are excessively complex, and these are implemented incompletely and
inconsistently in products. Frequently, different subsets of the standard are
implemented by various vendors.

Wolf Tickets are a significant problem for de facto standards (an informal standard
established through popular usage or market exposure). Unfortunately, some de facto
standards have no effective specification; for example, a nascent database technology
that is commercially available with multiple proprietary interfaces, unique to each
vendor, has become a de facto standard.

Refactored Solution

Technology gaps cause deficiencies in specifications, product availability,
conformance, interoperability, robustness, and functionality. The closing of these gaps
is necessary to enable the delivery of whole products, those comprising the
infrastructure and services necessary for the realization of useful systems. In the
1960s, a sophisticated user group called SHAPE advised the industry to stabilize
technology and create whole products for the computer mainframe market, required for
the realization of successful nonstovepipe systems. As a result, the mainframe workset
remains the only whole−product information technology market.

Technology gaps become political issues for end users, corporate developers, and
systems integrators. Politics is the exercise of power, and consumers must demand the
resolution of technology gaps before they will be effectively addressed. For example,
consumers must demand guarantees of merchantability and “fitness for purpose”
before products are offered by commercial suppliers.

The core strategy of grassroots politics is heightening the contradiction. By spreading
awareness of the contradictions in a system (such as the technology market), the
establishment (in this case, technology suppliers) will resolve the issues. Three
elements constitute an effective political message. With these three elements, the
message has a good chance of being reported by the media:

1. The message must be controversial.

2. The message must be repetitive.

3. The message must be entertaining.

Currently, we are working on an initiative in technology consumer politics.

What is needed are whole products supporting mission−critical system development. A
whole product that enables the construction of any mission−critical system has five key
services: naming, trading, database access, transactions, and system management.
These services apply to mission−critical systems in any domain. Naming is a
white−pages service that enables the retrieval of object references for known objects.
Trading is a yellow−pages service that supports system extensibility through retrieval of
candidate services based upon attributes. A standard database access service is
necessary for retrieval and updating of information resources. Transactions assure
robust access to state information and orderly cleanup in case of failures. System
management is required for maintaining heterogeneous hardware and software
environments.

Because today, developers cannot buy these whole products in a robust, interworking
form, developers are forced to re−create these services or build stovepipe systems.

Variation

All computer technology consumers can participate in improving the technologies that
they are currently using. To do so, simply call the vendor with your questions,
complaints, and support problems. Keep in mind, for shrink−wrap products, the profit
margin is less than the resources required to answer a phone call and address your
questions. Most vendors track the support issues and incorporate relevant changes
into their products in future releases. The priority for changes is usually based upon the
frequency and urgency of the reported problems.
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Background

The term Wolf Ticket originates from its slang use, where it is an unofficial pass sold to
an event, such as a rock concert, by scalpers.

Architecture By Implication

AntiPattern Name: Architecture by Implication

Also Known As: Wherefore art thou architecture?

Most Frequent Scale: System

Refactored Solution Name: Goal Question Architecture

Refactored Solution Type: Documentation

Root Causes: Pride, Sloth

Unbalanced Forces: Management of Complexity, Change, and Risk

Anecdotal Evidence: “We’ve done systems like this before!” “There is no risk; we
know what we’re doing!”

Background
Dwight Eisenhower said that planning is essential, but plans are inconsequential. Another
soldier said that no plans survive first contact with the enemy. The planning culture in modern
management owes some credit to Robert McNamara, founder of the RAND Corporation. In
McNamara’s approach, plans are generated for speculative purposes, to investigate the
potential benefits and consequences of different courses of action. Given the large number of
unknowns in systems development, planning for IT systems must be more pragmatic and
iterative.

One professional planner said that 20 percent of an engineer’s time should be devoted to
planning. As we gain experience, our belief in this assertion increases. Productivity and
efficiency can be greatly amplified when the work is well organized through planning. The
unfortunate consequence is that many organizations attempt to formalize too much of the
planning. Planning is most effective when it is personally motivated and utilized. Time
management experts teach that a key element of stress reduction is planning to balance life’s
overall priorities. The form and use of time−management systems becomes increasingly
personalized as the practice matures.

A group of CEOs from DoD Systems integration firms was formed to answer the question,
“Wherefore art thou architecture?” The goal was to reflect on the changing nature of systems
development, which has evolved into the reuse of existing legacy components and
commercial software, and away from greenfield, custom code development (see the
Reinvent the Wheel AntiPattern in this chapter).

General Form
This AntiPattern is characterized by the lack of architecture specifications for a system under
development (see Figure 6.13). Usually, the architects responsible for the project have
experience with previous system construction, and therefore assume that documentation is
unnecessary. This overconfidence leads to exacerbated risks in key areas that affect system
success. Architecture definitions are often missing from one or more of these areas:
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Figure 6.13 Architecture by Implementation often involves coding without
architecture planning.

• Software architecture and specifications that include language use, library use, coding
standards, memory management, and so forth.

• Hardware architecture that includes client and service configurations.

• Communications architecture that includes networking protocols and devices.

• Persistence architecture that includes databases and file−handling mechanisms.

• Application security architecture that includes thread models and trusted system base.

• Systems management architecture.

Symptoms And Consequences
• Lack of architecture planning and specification; insufficient definition of architecture for

software, hardware, communications, persistence, security, and systems management.

• Hidden risks caused by scale, domain knowledge, technology, and complexity, all of which
emerge as the project progresses.

• Impending project failure or unsuccessful system due to inadequate performance, excess
complexity, misunderstood requirements, usability, and other system characteristics. For
example, approximately 1 of 3 systems encounter serious performance problems during
development and operations.

• Ignorance of new technologies.

• Absence of technical backup and contingency plans.

Typical Causes
• No risk management.

• Overconfidence of managers, architects, and/or developers.

• Reliance on previous experience, which may differ in critical areas.

• Implicit and unresolved architecture issues caused by gaps in systems engineering.

Known Exceptions
The Architecture by Implication AntiPattern is acceptable for a repeated solution, where there
are minor differences in the code, such as installation scripts. This AntiPattern may also be
useful in a new project domain as an exploratory effort to determine whether existing
techniques are transferable into a new area.

Refactored Solution
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The refactored solution to the Architecture by Implication AntiPattern entails an organized
approach to systems architecture definition, and relies on multiple views of the system. Each
view models the system from the perspective of a system stakeholder, who may be real or
imaginary, individual or aggregate. Each stakeholder is responsible for a high−priority set of
questions and issues, and each view represents the entire information system and answers
these key questions and issues. The views comprising a set of diagrams, tables, or
specifications, are linked for consistency. Generally, a view is a lightweight specification. The
purpose of the architecture documentation is to communicate architecture decisions and
other issues resolutions. The documentation should be easy to understand and inexpensive
to maintain.

That said, the only people who can define and implement a successful architecture are those
who already fully understand it. Unfortunately, this is often not the case, as many projects
adopt some new technology that is not well understood. Therefore, developing a good
architecture from scratch is an iterative process and should be recognized as such. An initial
reference architecture should have strong strategies that can be implemented within the time
period of the first product development. Thereafter, it will have to be incrementally refined by
future versions of the reference architecture, and driven by new versions of the first product
or new products.

The steps to define a system architecture using viewpoints are as follows [Hilliard 96]:

1. Define the architecture goals. What must this architecture achieve? Which stakeholders,
real and imaginary, must be satisfied with the design and implementation? What is the
vision for the system? Where are we now and where are we going?

2. Define the questions. What are the specific questions that must be addressed to satisfy
the stakeholder issues? Prioritize the questions to support view selection.

3. Select the views. Each view will represent a blueprint of the system architecture.

4. Analyze each view. Detail the architecture definition from each viewpoint. Create the
system blueprints.

5. Integrate the blueprints. Verify that the views present a consistent architecture definition.

6. Trace views to needs. The views should address the known questions and issues to
discover any gaps not addressed by the architecture specifications. Validate the
architecture with respect to formal requirements. Prioritize the outstanding issues.

7. Iterate the blueprints. Refine the views until all questions, issues, and gaps are resolved.
Utilize review processes to surface any remaining issues. If a significant number of
unresolved issues remain, consider creating additional views.

8. Promote the architecture. Make an explicit effort to communicate the architecture to key
stakeholders, particularly the system developers. Create lasting documents (such as a
video tutorial) to provide valuable information throughout the development and
maintenance life cycle.

9. Validate the implementation. The blueprints should represent an “as−built” design.
Determine any deltas between the blueprints and the system implementation. Decide
whether these differences should result in system modifications of updates to the
blueprints. Upgrade the documentation for consistency.

We refer to this method as the goal−question architecture (GQA), analogous to the
goal−question metric approach in software metrics [Kitchenham 96].

Variations
A number of approaches consider the system architecture using viewpoints; in some, the
viewpoints are predefined. Most of these approaches are open−ended, in that one can select
additional viewpoints as described.

The Reference Model for Open Distributed Process (RM−ODP) is a popular, useful standard
for distributed architectures. RM−ODP defines five standard viewpoints: enterprise,
information, computational, engineering, and technology [ISO 96]. It also defines a useful set
of transparency properties for distributed infrastructure through the engineering viewpoint.

Another approach, the Zachman Framework, analyzes system architectures from the
perspectives of data, function, and network [Spewak 92]. Within each perspective are
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multiple levels of abstraction, corresponding to the planning needs of various groups of
stakeholders. Enterprise Architecture Planning is an approach based upon the Zachman
Framework for large−scale systems [Spewak 92]. Neither of these approaches is tailored to
object−oriented systems development.

A third approach, the Command, Communication, Control, Computer, Intelligence,
Surveillance, and Reconnaissance Architecture Framework (C4ISR−AF), is used to define
various command and control system architectures. A version of C4ISR−AF is used for other
types of civilian systems. This approach has been very beneficial in enabling
communications between architects across disparate domains [Mowbray 97b].

A fourth, the 4 + 1 Model View, is a viewpoint−based architecture approach supported by
software engineering tools, such as Rational Rose [Kruchten 95]. The viewpoints include
logical, use−case, process, implementation, and deployment. Finally, GQA is a
generalization of the underlying method used in several of these architecture approaches
[Hilliard 96].

Example
A common but bad practice is object−oriented modeling without defining the viewpoint. In
most modeling approaches, there is a blurring of the viewpoints. Many of the modeling
constructs contain implementation detail, and the default practice is to intermingle
implementation and specification constructs.

Three fundamental viewpoints are: conceptual, specification, and implementation [Cook 94].
The conceptual viewpoint defines the system from the perspective of the user. This is
typically referred to as an analysis model. The distinction between what is automated and
what is not is usually not represented in the model; rather, the model is drawn so that a user
can explain and defend it to his or her peers. The specification viewpoint concerns only
interfaces. ISO IDL is one important notation that is strictly limited to defining interface
information and excludes implementation specifics. The separation of interfaces from
implementations enables the realization of many important object technology benefits, such
as reuse, system extension, variation, substitutability, polymorphism, and distributed object
computing. The final viewpoint, implementation, is best represented by the source code.
Complex implementation structures are beneficially augmented with object−oriented design
models to help current and future developers and maintainers understand the code.

Another example of the Architecture by Implication AntiPattern is the following, where the key
stakeholders did not have collective experience in what was built. The project was intended
to deliver a Microsoft Distributed Common Object Model (DCOM)−based solution to extract
legacy mainframe data, filter it based on business rule, and display it on Web pages.
However, the manager was a good software engineer with no distributed object technology
(DOT) experience and the architect was a “dyed−in−the−wool” CORBA addict who helped
the OMG derive its Object Management Architecture. To compound the problem, the project
had few DCOM−aware staff; less than 10 percent.

In addition, the architecture and subsequent design were based on the OMA view of the DOT
world, rather than DCOM. This led to an attempt to deliver CORBA services under a DCOM
architecture. The resulting product suffered from a set of components that had no DOT
consistency and were poor performers. Also, SIs found it very difficult to use, due to lack of a
standardized approach. Finally, it failed in the marketplace.

Related Solutions
Architecture by Implication AntiPattern differs from the Stovepipe Systems AntiPattern in
scope; the latter focuses on deficiencies in computational architecture. In particular, it
identifies how improper abstraction of subsystem APIs leads to brittle architecture solutions.
In contrast, the Architecture by Implication AntiPattern involves planning gaps constituted of
multiple architecture viewpoints.

Applicability To Other Viewpoints And Scales
This AntiPattern significantly increases risk for managers, who defer important decisions until
failures occur; often, it is too late to recover. Developers suffer from a lack of guidance for
system implementation. They are given de facto responsibility for key architectural decisions
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for which they may not have the necessary architectural perspective. Systemwide
consequences of interface design decisions should be considered; in particular: system
adaptability, consistent interface abstractions, metadata availability, and management of
complexity.

Another important result of this AntiPattern is the deferment of resource allocation. The
essential tools and technology components may not be available when needed due to lack of
planning.

Mini−AntiPattern: Warm Bodies

Also Known As

Deadwood, Body Shop, Seat Warmers, Mythical Man−Month [Brooks 79]

Anecdotal Evidence

“One out of 20 programmers... produces 20 times the software compared to an
average programmer.”

There are approximately two million working software managers and developers in
America. Currently, there are 200,000 additional job openings. These figures indicate a
negative 10 percent unemployment rate.

AntiPattern Problem

Skilled programmers are essential to the success of a software project. So−called
heroic programmers are exceptionally productive, but as few as 1 in 20 have this talent.
They produce an order of magnitude of more working software than an average
programmer.

Large−scale software projects are prevalent in many industries. These projects employ
hundreds of programmers to build an enterprise system; a staff of 100 to 400 on a
single project is not atypical. These large projects often involve outsourced
development and contractual payments based upon labor−hours worked. Since profits
are a percentage of the staff salaries, the more hours worked, the higher the profits.
System requirements always change and increase during development; so there is little
risk involved if the project is underbid initially; the contractor can grow the staff to meet
inevitable problems and new requirements. The fallacy of adding more staff to an
ongoing software project was described by Frederick Brooks in the Mythical
Man−Month (1979).

Refactored Solution

The ideal project size is four programmers; the ideal project duration is four months
[Edwards 97]. Software projects are subject to the same group dynamics as committee
meetings (see the Design by Committee AntiPattern, described next). Project teams
that grow beyond five people generally experience escalating difficulties with group
coordination. The members have trouble making efficient decisions and maintaining a
common vision. Working toward a near−term deadline is essential to encourage the
team to focus and begin producing a solution.

We submit that extremely large projects are futile efforts. Small project teams with
individual accountability are much more likely to produce successful software.

Variations

Finding talented programmers is an important challenge for software−intensive
companies. Some firms have resorted to incorporating testing as part of their hiring
processes. These examinations resemble IQ tests. If the subject fails the test, he or
she will probably end up on a large−scale project with hundreds of other programmers.

Working with independent contractors and consultants is an effective way to acquire
programming talent quickly. In some areas of the United States, hundreds of contract
programmers work out of their homes, and they can be engaged via a phone call or
e−mail. These contract programmers can produce significant software products for
reasonable rates, compared to the project failures and overruns that result from the
Warm Bodies mini−AntiPattern.
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Design By Committee

AntiPattern Name: Design by Committee

Also Known As: Gold Plating, Standards Disease, Make Everybody Happy, Political
Party

Most Frequent Scale: Global

Refactored Solution Name: Meeting Facilitation

Refactored Solution Type: Process

Root Causes: Pride, Avarice

Unbalanced Forces: Management of Functionality, Complexity, and Resources

Anecdotal Evidence: “A camel is a horse designed by a committee.” “Too many cooks
spoil the broth.”

Background
Object orientation is often described as a two−generation technology. Data−centric object
analysis is characteristic of the first generation, and design patterns are characteristic of the
second. The first generation espoused a philosophy that “objects are things you can touch.”
A consequence of this is that virtually all designs are uniquely vertical. In the first generation,
people believed a number of assumptions that were unsubstantiated by practice. One of
these was that project teams should be egalitarian; in other words, that everyone should
have an equal say and that decisions are democratic. This leads to Design by Committee.
Given that only a small number of object developers can define good abstractions, the
majority rule invariably leads to a diffusion of abstraction and excess complexity.

General Form
A complex software design is the product of a committee process. It has so many features
and variations that it is infeasible for any group of developers to realize the specifications in a
reasonable time frame. Even if the designs were possible, it would not be possible to test the
full design due to excessive complexity, ambiguities, overconstraint, and other specification
defects. The design would lack conceptual clarity because so many people contributed to it
and extended it during its creation.

Symptoms And Consequences
• The design documentation is overly complex, unreadable, incoherent, or is excessively

defective.

• The design documentation is voluminous (hundreds or thousands of pages).

• Convergence and stability are missing from the requirements and the design.

• The committee meetings resemble bull sessions during which substantive issues are
rarely discussed and progress is painstakingly slow. People talk and work serially; that is,
there is a single thread of discussion, and most people are unproductive most of the time.

• The environment is politically changed, and few decisions and actions can be undertaken
outside of the meeting; and the meeting process precludes reaching timely decisions.

• There is no prioritization of the design features, and no ready answer to the questions:
Which features are essential? Which features will be implemented in the initial delivery?

• Architects and developers have conflicting interpretations of the design.

• Design development becomes significantly over−budget and overdue.

• It becomes necessary to employ specialists to interpret, develop, and manage the
specifications. In other words, dealing with each specification that was designed by
committee becomes a full−time job.

Typical Causes
“The lunatics have taken charge of the asylum.”
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—Richard Rowland

• No designated project architect.

• A degenerate or ineffective software process.

• Bad meeting processes, marked by lack of facilitation or ineffective facilitation. The
meetings are bull sessions; the loudest people win and the level of discourse is the lowest
common denominator of sophistication.

• Gold plating—that is, features are added to the specification based on proprietary
interests. This can happen for many reasons: marketability, the existence of proprietary
technologies already containing these features, or speculative placement of features in
the specification for potential future work.

• The attempt to make everybody happy, to satisfy all of the committee participants by
incorporating their ideas. Unfortunately, it’s impossible to accept every idea and still
manage complexity.

• Design and editing is attempted during meetings with more than five people.

• Explicit priorities and a software−value system are undetermined [Mowbray 97c].

• Concerns are not separated, and reference models are not used.

Known Exceptions
There are few exceptions to the Design by Committee AntiPattern, and they occur when the
committee is small: approximately 6 to 10 people; more than that and consensus becomes
unlikely; fewer than six people and the breadth of understanding and experience become
insufficient. Also, committees should often be tiger teams, a small group of “experts” in a
particular problem domain, organized for the duration of the solution for a specific problem or
issue.

Refactored Solution
The essence of the solution to Design by Committee is to reform the meeting process. It’s fair
to say that most people are accustomed to enduring bad meetings, most of the time. Thus,
even simple alterations in the meeting process can yield substantial productivity
improvements. With improved productivity, there is an opportunity for enhanced quality and
more sophisticated solutions. Typical gains for software optimizations are less than an order
of magnitude (2 to 10 times). Meeting productivity gains are much more dramatic, with
several orders of magnitude typical (100 times), and we have seen productivity gains over
100,000:1.

First, most meeting rooms do not have a clock on the wall, particularly in hotel facilities. Time
awareness is essential to meeting progress. Participants should be coached to manage the
time allotted efficiently; participants should start their comments with a “25−words−or−less”
summary, and add details only if requested. Posting the meeting goals, an agenda, and a
clock where they are visible to all participants can improve meetings dramatically.

Second, in all meetings it’s important that group members answer two questions: “Why are
we here?” and “What outcomes do we want?” When no meeting plan is prepared, it is
particularly important that the group start with these two questions, and then work on
generating the desired outcomes.

Another important reform is to assign explicit roles in the software process: owner, facilitator,
architect, developers, testers, and domain experts. The owner is the manager responsible for
the software development. He or she makes strategic decisions about the overall software
process, and invites and organizes the participants. At the beginning of the meeting, the
process owner sets the goals and establishes expectations regarding the handling of the
outcomes. For example, the decisions made at the meeting may be regarded simply as
advice or be implemented exactly as discussed.

The facilitator is in charge of running the meeting. He or she is responsible for the process;
other participants are responsible for technical content. The facilitator turns to the process
owner if there are any key decisions to be made regarding the process.

“My specialty is being right when other people are wrong.”
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—George Bernard Shaw

The architect is the senior technical lead for the software project. He or she controls the
editing of the architecture documentation, and may be in charge of key, system−level
boundaries, such as the subsystem application program interfaces. Each developer is
typically responsible for a single subsystem and unit testing. Testers are responsible for
monitoring specification quality and value−added testing such as integration, portability, and
stress tests. The domain experts input key requirements to the process, but may not be
involved in all aspects of development.

There are three categories of meeting processes: divergent, convergent, and information
sharing. In a divergent process, ideas are generated for later utilization. In a convergent
process, a selection or decision is made that represents a consensus. Information sharing
can involve presentation, teaching, writing, and review.

The number of people involved in each meeting process is managed by the facilitator.
Creative processes that require writing, highlighting, or drawing should be limited to breakout
teams of five people or fewer. Groups larger than five are less effective at making progress in
creative tasks, although they are successful at reviewing and integrating results after a
creative process. Highly productive meetings involve many parallel processes, and frequent
iterations of breakout and review groups. Encouraging people to make a paradigm shift
between single−threaded discussion and parallel work is a key challenge for the facilitator.

The primary purpose of most meetings is problem solving. A general problem−solving
approach begins with a convergent process: The problem is defined and scoped for the
group to resolve. A divergent process is used to identify alternative solutions. Information
sharing may be needed to explore the details and consequences of selected alternatives.
Finally, a convergent process is used to select among the options.

One highly effective meeting process is called Spitwads [Herrington 91]. It’s a
general−purpose procedure that we have used on many occasions with excellent results.

1. Ask the question. The facilitator poses a question for the group to brainstorm. The
question is written down on a viewgraph or flipchart) to avoid misunderstandings. The
group is asked whether there are any suggested changes to the question before the
brainstorming starts. Typical questions are: “What are ways that we can improve the
performance of the system?” and “What is the most important requirement that has not
been addressed?”

2. Write silently. The participants write responses on identical slips of paper. Each response
is written on a separate piece of paper, and is limited to short phrases.

3. Toss spitwads. As the participants complete each idea, the facilitator instructs them to
wad up the paper and toss it across the room into a receptacle—a cardboard box or a
basket works best. This is done basketball style, and the facilitator encourages the
participants to have fun with this exercise.

4. Conduct spitwad roll call. The “spitwads” are distributed randomly back to the
participants, who one at a time read the ideas out loud to be recorded on a flipchart. Two
flipchart recorders can be used simultaneously to speed up the process. The flipcharts
are posted on the wall for all participants to see.

5. Reach common understanding. The ideas on the flipcharts are numbered. The facilitator
then asks the group if there are any ideas that they do not understand. If so, the
members of the group are encouraged to offer definitions. If an idea cannot be defined, it
is safe to eliminate it.

6. Eliminate duplicates. The facilitator asks the group to identify any ideas that are
duplicates or that should be combined. Participants identify the ideas by number to
suggest changes. If there is an objection, the changes are overruled. (This is a common
facilitation approach for editing: If there are objections to a proposed change, then the
change is not accepted.)

7. Prioritize. The group is directed to silently select the best ideas on the list by number.
They can pick more than one. The facilitator walks through the list tabulating votes
(raised hands, no discussion).

8.
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Discuss. The exercise is complete. The group discusses the highest−priority selections
and suggests what the follow−up actions will be.

Variations
The Railroad (also known as Rubber Stamp) AntiPattern is a variation of Design by
Committee, whereby a political coalition dominates the process and forces the adoption of
designs with serious defects. The Railroad is often motivated by mutual business interests of
many members of the committee. By adopting incomplete and defective specifications,
details of the technology can be hidden effectively in the software. In this way, software from
a coalition developer becomes the de facto standard, as opposed to the written
specifications. Some developers outside the coalition will even attempt to implement the
“misfeatures,” resulting in wasted time and money.

Example
Two classic examples of Design by Committee come from the domain of software
standardization: the Structured Query Language (SQL) and Common Object Request Broker
Architecture (CORBA).

Sql

The Structured Query Language (SQL) became an international standard in 1989. The
original, SQL89, was a small document—115 pages—that represented an efficient, minimal
design for the technology [Melton 93]. Virtually all relational database products implemented
the full specification. In 1992, the second version of SQL was standardized with significant
extensions that resulted in a 580−page document. The SQL92 specification was
implemented with a unique dialect in every product; few products implemented the entire
specification. The next version of SQL, called SQL3, may well be thousands of pages in
length. The standards committee responsible for the design is adding a smorgasbord of new
features that extend the concept well beyond the original intent. Some of the new features
include object−orientation extensions, geospatial extensions, and temporal−logic extensions.
It’s unlikely that any product will ever fully implement SQL3, nor is it likely that any two
products will implement the same subset in a portable manner. In this classic Design by
Committee, the SQL standard has become a dumping ground for advanced database
features.

An interesting solution to the problems of SQL convergence is presented by the
technologies: Open Database Connectivity (ODBC) and Java Database Connectivity (JDBC).
Each defined a standard application program interface for database access based on
dynamic queries, query statements that are submitted and parsed at run time. Because
ODBC and JDBC define the query interface and query language for the clients, they provide
isolation from product−specific database features. Clients can access multiple database
products transparently. ODBC became an industry standard through the SQL Access Group
(SAG), a software industry consortium. Microsoft developed the ODBC specification
independently of SAG, and then proposed it to the group. The specification was adopted
rapidly by SAG and became a de facto industry standard. Vendors that promote proprietary
solutions have had difficulty replacing this highly effective technology, which is universally
supported by database vendors and database tool developers.

Corba

The Common Object Request Broker Architecture (CORBA) standard was adopted by the
industry in 1991. The original document—fewer than 200 pages—was easily readable by
outsiders to the Object Management Group (OMG) process. In 1995, a revised CORBA2
specification released, with significant upgrades and extensions, including C++ and Smalltalk
mappings, the Interface Repository, and the Internet Inter−ORB Protocol (IIOP). The C++
mapping in CORBA2, in particular, contained complex details that could not be implemented
consistently by Object Request Broker (ORB) vendors, some of whom changed the APIs
generated by their IDL/C++ compilers repeatedly. The Basic Object Adapter (BOA) had been
substantially revised in CORBA2. A replacement of this part of CORBA, called the Portable
Object Adapter (POA), was adopted in 1997. Since the POA duplicates BOA functionality
already in working products, successful vendors may have little motivation to upgrade their
products. And because of all this attention on the basic infrastructure, some of the more
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critical needs of users are allocated lower priority.

An alternative process used by OMG to identify and define technologies for adoption was
used by the OMG to produce the CORBAfacilities Architecture. This process was reused by
other task forces and end−user enterprises to define their architectures and road maps. The
authors called this the “Lost Architecture Process” because it was undocumented (until now).

The Lost Architecture Process is a facilitated architecture−definition procedure that entails
the following steps. It may be adapted to the needs of specific enterprises, by replacing OMG
processes with organization−specific processes, such as internal surveys and off−site
workshops.

1. Release a request for information (RFI). The purpose of the RFI is to survey interested
parties both inside and outside OMG. Interested parties from any organization are asked
to submit their requirements, architectural input, and descriptions of relevant technologies
to assist in the planning process.

2. Review the RFI responses. Any responses received (typically a dozen or fewer) are
reviewed by the task force. This completes the survey and data−collection phase of the
process. Once the task force has reviewed this input, it becomes the responsibility of the
people in the room to define the architecture. The RFI process is an important step
psychologically, because it transforms an undefined set of stakeholders and implicit
requirements into the responsibility of the meeting participants to define the architecture
and draw the road map.

3. Identify candidate services and facilities. The candidate services are listed on flipcharts
and posted in the meeting room for participants to review. This listing can begin during
the RFI review process, and a brainstorming session can extend these lists with
additional facilities. It is important to solicit all ideas, then to cull the list, watching for
duplicates and overlapping services.

4. Launch the initial RFP process. Probably, at least one of the identified services will be an
obvious candidate for an RFP release. It is highly likely that some team of vendors is
attending the meeting with the goal of adopting a particular technology. This team can
break out to work on the initial RFP and start the task force adoption processes. The
other services and facilities will be defined during the balance of the process.

5. Diagram the architecture. A small breakout group organizes the list of services into
categories, in the form of a block diagram showing layers of services and horizontal
delineations. Obviously, this group needs at least one person skilled in reference model
diagramming techniques. This architecture reference diagram is a useful abstraction of
the listed services, and will be an important illustration in the architecture document. All
services and facilities are listed in the diagram.

6. Define preliminary service. The group parcels out services to be defined in terms of a
number of viewgraph bullets. People meet in small groups or work individually to define
the services in this form. The results are reviewed and discussed by the entire task force,
during which additions and edits to the bulleted phrases are recommended and
discussed.

7. Write the service definitions. Using the content portion of the RFP template, each of the
identified services is written up. Writing assignments are worked on in between meetings.
At this point, an architecture document editor (just one person is best) must be appointed
to receive the inputs and create a draft document.

8. Draft the document. The document editor assembles the submitted service definitions
and the architecture diagram into a draft document. The editor may add boilerplate
descriptions of the overall architecture so that the document can stand on its own. A table
of services and service categories is also included in the document to summarize and
abstract the contents of the service definitions.

9. Review the process. An updated draft of the architecture document is reviewed at each
meeting. Editorial changes are proposed and discussed for the next revision. Any
missing sections or service write−ups are assigned to group members for independent
work and incorporation by the editor.

10. Define the road map. The road map is a profile of the architecture that focuses on priority
and schedule. Several key criteria establish the priorities and define the schedules.
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These include industry need for the technology, dependencies between technologies,
broadness of technology applicability, and the workload of the task force. The road map
definition is a critical part of the process that allows member groups to organize
resources and plan research relevant to the adoption processes.

11. Conduct the approval process. After several iterations of the review process, a motion is
made to release the architecture and road map as version 1.0. Further revisions can
occur after version 1.0 is released; however, the passage of this motion indicates that the
task force has reached a consensus on the initial architecture.

Related Solutions, Patterns, and AntiPatterns
Kyle Brown posted a version of the Design by Committee AntiPattern on the Portland
Patterns Repository site [Brown 95]. That pattern uses a different template, which focuses
entirely on describing the problematic solution and not upon the refactored solution. In
contrast, this book includes a refactored solution with each AntiPattern, noting that Socrates
was put to death for exposing society’s contradictions without offering any constructive
suggestions.

Applicability to Other Viewpoints and Scales
The impact of the Design by Committee AntiPattern on developers is that they are expected
to implement a highly complex and ambiguous design, which is a stressful situation. They
may find the need to quietly subvert the demands of the committee with more realistic design
approaches.

Managers suffer from this AntiPattern through a dramatic increase in project risk caused by
the excessive complexity. Correspondingly, the schedule and budget of the project are likely
to increase dramatically as the consequences of the design are discovered in the laboratory.

At the system level, it might be reasonable to deliver a system based on a Design by
Committee specification, if no variations (multiple configurations) are required and the
proposed implementation schedule is extended by 30 percent or more. Most developers can
manage only a few variations, in platforms, databases, and feature sets.

Mini−AntiPattern: Swiss Army Knife

AntiPattern Problem

A Swiss Army Knife, also known as Kitchen Sink, is an excessively complex class
interface (see Figure 6.14). The designer attempts to provide for all possible uses of
the class. In the attempt, he or she adds a large number of interface signatures in a
futile attempt to meet all possible needs. Real−world examples of Swiss Army Knife
include from dozens to thousands of method signatures for a single class. The
designer may not have a clear abstraction or purpose for the class, which is
represented by the lack of focus in the interface. Swiss Army Knives are prevalent in
commercial software interfaces, where vendors are attempting to make their products
applicable to all possible applications.
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Figure 6.14 A Swiss Army Knife: The designers included everything they could
think of but the kitchen sink!

This AntiPattern is problematic because it ignores the force of managing complexity,
that is, the complicated interface is difficult for other programmers to understand, and
obscures how the class is intended to be used, even in simple cases. Other
consequences of complexity include the difficulties of debugging, documentation, and
maintenance.

Refactored Solution

Often, complex interfaces and standards are encountered that must be utilized in a
software development project; therefore, it is important to define conventions for using
these technologies so that management of the application’s complex architecture is not
compromised. This is called creating a profile. A profile is a documented convention
explaining how to use a complex technology. Often, a profile is an implementation plan
implementing the details of the technology. With profiles, two independent developers
can use the same technology, with the likelihood of achieving interoperable software.

A profile of a software interface defines the subset of the signatures that are utilized,
and should include conventions for the parameter values. In other words, the profile
identifies the literal values that can be passed in each parameter. In addition, the profile
may be required to define the dynamic behavior of the applications using the
interfaces. This includes descriptions and specifications of sequences of execution,
method calls, and exception handling.

Variations

A Swiss Army Knife differs from the Blob AntiPattern in that there may be several
Swiss Army Knives in a single design. In addition, the intent of the Swiss Army Knife is
that the designer is exposing complexity in a vain attempt to address all foreseeable
needs for the class. The Blob is a singleton object that monopolizes the process or
data in a system.

Reinvent The Wheel

AntiPattern Name: Reinvent the Wheel

Also Known As: Design in a Vacuum, Greenfield System

Most Frequent Scale: System

Refactored Solution Name: Architecture Mining

Refactored Solution Type: Process

Root Causes: Pride, Ignorance

Unbalanced Forces: Management of Change, Technology Transfer

Anecdotal Evidence: “Our problem is unique.” Software developers generally have
minimal knowledge of each other’s code. Even widely used software packages
available in source code rarely have more than one experienced developer for each
program.

Virtually all systems development is done in isolation of projects and systems with
overlapping functionality. Reuse is rare in most software organizations. In a recent
study of more than 32 object−oriented software projects, the researchers found virtually
no evidence of successful reuse [Goldberg 95].

Background
Software and design reuse are significantly different paradigms. Software reuse involves the
creation of a library of reusable components, the retrieval of those components, and the
integration of the components with a software system. The typical result is a modest amount
of reuse around the periphery of the system and additional software development to integrate
the components. Design reuse involves the reuse of architecture and software interfaces in
multiple application systems. It requires the identification of horizontal components with uses
across multiple application systems. Design reuse also supports software reuse of the
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horizontal components without additional development for integration, thus it is a much more
effective approach, in that a larger portion of the software system can be leveraged from
reusable components.

The term greenfield (in Greenfield System, an alias of Reinvent the Wheel) originates from
the construction industry. It refers to a new construction site where there are no legacy
buildings to introduce constraints on the new building’s architecture.

General Form
Custom software systems are built from the ground up, even though several systems with
overlapping functionality exist. The software process assumes “greenfield” (build from
scratch) development of a single system. Because top−down analysis and design lead to
new architectures and custom software, software reuse is limited and interoperability is
accommodated after the fact.

Most current software methods assume that developers are building custom software from
scratch, and that they are building a single system in isolation. These are called greenfield
system assumptions. Greenfield systems inevitably become stovepipes that lack potential for
interoperability, extension, and reuse. Greenfield assumptions are mismatched to most
real−world software development problems, where legacy systems exist, and interoperation
with them is an important requirement for many new systems. Greenfield assumptions also
ignore significant reusable software assets in the form of Internet freeware and commercially
available software.

Symptoms And Consequences
n Closed system architectures—architectures and software—that are designed for one

system at a time without provision for reuse and interoperability.

n Replication of commercial software functions.

n Immature and unstable architectures and requirements.

n Inadequate support for change management and interoperability.

n Extended development cycles involving failed and dead−end prototypes before the
architecture is mature enough to support long−term system development and
maintenance.

n Poor management of risks and costs, leading to schedule and budget overruns.

n Inability to deliver the desired features to the end user; extensive effort to replicate the
functionality already operational in existing systems.

Typical Causes
n No communication and technology transfer between software development projects.

n Absence of an explicit architecture process that includes architecture mining and domain
engineering.

n Assumption of greenfield development; in other words, the process assumes that the
system will be built from scratch.

n Lack of enterprise management of the computational viewpoint, leading to unique
software interfaces in each system.

Known Exceptions
The Reinvent the Wheel AntiPattern is suitable for a research environment and in general
software development to minimize coordination costs where developers with different skills
work at logistically remote sites.

Refactored Solution
Architecture mining is a way to quickly create successful object−oriented architectures that
are robust, product−independent, reusable, and extensible. Most object−oriented design
approaches assume that design information is invented as the process proceeds. In a
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top−down process, design information is generated from requirements, which may be
represented as use cases and object−oriented analysis models. Requirements−driven
architecture design is called architecture farming. In a spiral process, design information is
invented during each iteration. As the spiral process proceeds, architects derive new design
information as they learn more about the application problem. It’s fair to say that these
approaches reinvent much of their design information.

Precursor designs exist for most information systems applications and problems. These
designs are in the form of legacy systems, commercial products, standards, prototypes, and
design patterns. Experience proves it is not difficult to identify a half−dozen or more
precursor designs for any given application problem. Valuable information is buried in
preexisting designs, information that enabled earlier architects to build useful systems.
Extracting this information for use in object−oriented architectures is called architecture
mining.

Mining may be applicable at the application level for certain complex design problems. In
some cases, it may be less expensive and risky to exploit existing expertise than to create
new code without exposure to preexisting solutions. Mining is applicable at enterprise levels,
but less so at global levels, given the reduced access to information resources.

Mining is a bottom−up design approach, incorporating design knowledge from working
implementations. Mining can incorporate design input from top−down design processes, too,
so that there can be both top−down traceability and bottom−up realism.

“Immature artists imitate. Mature artists steal.”

—Lionel Trilling

Before mining starts, it is necessary to identify a set of representative technologies that are
relevant to the design problem. Technology identification can be done by various means,
such as searching literature, interviewing experts, attending technical conferences, and
surfing the Net. All available resources should be pursued.

The first mining step is to model each representative technology, to produce specifications of
relevant software interfaces. We recommend using OMG IDL as the interface notation
because it is concise and free from implementation detail. OMG IDL is also a good design
notation for the target architecture because it is language−independent, platform−neutral,
and distribution−transparent. Modeling everything in the same notation creates a good basis
for design comparison and trade−off.

While modeling, it is important to describe the as−built system, not the intended or desired
design. Frequently, relevant design information is not documented as software interfaces.
For example, some of the sought−after functionality may be accessible only through the user
interface. Other key design lessons may be undocumented, and it is useful to capture this
information, too.

In the second mining step, the designs are generalized to create a common interface
specification. This step entails more art than science, as the goal is to create an initial
“strawman” specification for the target architecture interfaces. It is usually not sufficient to
generate a lowest−common denominator design from the representative technology. The
generalized interfaces should resemble a best−of−breed solution that captures the common
functionality, as well as some unique aspects inspired by particular systems. Unique aspects
should be included when they create valuable features in the target architecture or represent
areas of known system evolution. A robust assortment of representative technologies will
contain indicators of likely areas of target system evolution.

At this point, it is appropriate to factor in the top−down design information as one of the
inputs. Top−down information is usually at a much higher level of abstraction than bottom−up
information. Reconciliation of these differences involves some important architecture
trade−offs.

The final step in the mining process is to refine the design. Refinements can be driven by the
architect’s judgment, informal walkthroughs, review processes, new requirements, or
additional mining studies.

Variations
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Within an organization, software reuse is difficult to achieve. In a survey of several dozen
object−oriented application projects, Goldberg and Rubin found no significant reuse
[Goldberg 95]. Even if successful, the cost benefits of internal reuse are usually less than 15
percent [Griss 97]. Industry experience indicates that the primary role of internal reuse is as a
investment in software for resale. Where large volumes make the potential savings
significant, reuse can shorten time−to−market and support product customization.

On the other hand, we claim that reuse is prevalent, but in different forms: reuse of
commercially available software and reuse of freeware. Because of larger user bases,
commercial software and freeware often have significantly higher quality than
custom−developed software. For infrastructure components upon which much application
software depends, this enhanced quality can be critical to project success. Commercial
software and freeware can reduce maintenance costs when the software is used without
modification and can be readily replaced with upgraded versions.

Example
Architecture mining requires the study of existing software architectures. Of particular interest
are the software interfaces of extant systems. In our training courses on distributed object
design patterns, we use the following example to illustrate the techniques and trade−offs
required for architecture mining. The software interfaces for two existing systems that
perform geospatial catalog queries are presented:

// ISO ODP IDL
module Legacy1 {
  struct GeoCoords {
    double lat, lon; // degrees
  };
  typedef string QueryId;
  typedef sequence<string> NameList;
  typedef sequence<string> QueryHitList;
  struct QueryResults {
    NameList     attribute_names;
    QueryHitList query_hits;
  };
  interface CA {
    // initiate query, get query results id, don’t wait for query
    // completion
    QueryId boolean_query(
      in string boolean_query_expression); // Boolean Query
  Syntax (BQS)
    // initiate query, get query results id, don’t wait for query
    // completion
    QueryId point_query(
      in string   boolean_query_expression,
      in GeoCoords point_geo_location);
    // find out if query is finished
    boolean query_finished(in QueryId query_result_identifier);
    // get query results (after query is finished)
    void get_results(
      in QueryId       query_result_identifier,
      in unsigned long number_of_hits_to_return,
      out unsigned long number_of_hits_remaining,
      out QueryResults product_records);
  };
};

The second system has the following software interfaces:

module Legacy2 {
  struct GeoCoords {
    double lat, lon; // degrees
  };
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  typedef sequence<GeoCoords> GeoCoordsList;
  typedef sequence<string> NameList;
  typedef sequence<string> QueryHitList;
  struct QueryResults {
    NameList     attribute_names;
    QueryHitList query_hits;
  };
  interface CA {
    // make query, get query results
    QueryResults boolean_query(
      in string boolean_query_expression); // Boolean Query
Syntax (BQS)
    // make query, get query results
    QueryResults polygonal_query(
      in string        boolean_query_expression,
      in GeoCoordsList polygon_vertices);
  };
};

The architect studies the interfaces in the preceding code sample with the aid of developers
who maintain the corresponding systems. He pays particular attention to how the
documented interfaces are utilized, as well as any differences between the documentation
and the actual usage in the system. The architect needs to understand each of the
operations and the parameters in detail. A resulting best−of−breed interface is shown next:

module BestOfBreed {
  struct GeoCoords {
    double lat, lon; // degrees
  };
  typedef sequence<GeoCoords> GeoCoordsList;
  typedef string QueryId;
  typedef sequence<string> NameList;
  typedef sequence<string> QueryHitList;
  struct QueryResults {
    NameList     attribute_names;
    QueryHitList query_hits;
  };
  interface CA {
    // initiate query, get query results id, don’t wait for query
    // completion
    QueryId boolean_query(
      in string boolean_query_expression); // Boolean Query
Syntax (BQS)
    // initiate query, get query results id, don’t wait for query
    // completion
    QueryId point_query(
      in string boolean_query_expression,
      in GeoCoords point_geo_location);
    // initiate query, get query results id, don’t wait for query
    // completion
    QueryId polygonal_query(
      in string boolean_query_expression,
      in GeoCoordsList polygon_vertices);
    // find out if query is finished
    boolean query_finished(in QueryId query_result_identifier);
    // get query results (after query is finished)
    void get_results(
      in QueryId       query_result_identifier,
      in unsigned long number_of_hits_to_return,
      out unsigned long number_of_hits_remaining,
      out QueryResults product_records);
  };
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};

Note that not every nuance of the original interfaces is incorporated into the best of breed.
The design is not a simple, lowest−common denominator of the originals; neither is it a union
of the two sets of interfaces and all of their features. The architect must generalize the
features that are in common between the mined systems, then selectively incorporate the
features that are unique to each system—some of which are predictive of future needs for
the common interface. Other unique features will continue to be system−specific and will not
belong in the common architecture definition.

Related Solutions
The impact upon management of complexity of architecture mining and the generalization to
common interfaces is analyzed in Mowbray 95. Architecture mining is a recurring solution
that addresses many of the problems caused by Stovepipe Systems. It is also one of the
approaches for defining domain−specific component architectures.

Applicability To Other Viewpoints And Scales
The Reinvent the Wheel AntiPattern puts managers at higher risk, in the form of increased
time−to−market and a lower degree of functionality than that expected of the end users.
Potential savings from reuse range from 15 to 75 percent of development cost, reduction of 2
to 5 times in time−to−market, and reduction of defects from 5 to 10 times [Jacobson 97].

Mini−AntiPattern: The Grand Old Duke of York

Also Known As

Everyone Charges Up the Hill, Lack of Architecture Instinct, Abstractionists versus
Implementationists

Anecdotal Evidence

Experts report that only 1 in 5 software developers is able to define good abstractions
[Mowbray 95]. On hearing this, a practicing software architect retorted, “It’s more like 1
out of 50.”

Background

The term abstractionist originates from the fine arts community, where an abstractionist
is an expressionist artist, who depicts his or her emotions and attitudes through
nonrepresentational art. In our connotation, an abstractionist is an architect or software
developer who has the architecture instinct.

AntiPattern Problem

Programming skill does not equate to skill in defining abstractions. There appear to be
two distinct groups involved in software development: abstractionists and their
counterparts (whom we call implementationists) [Riel 96]. Abstractionists are
comfortable discussing software design concepts without delving into implementation
details. As stated, they possess the architecture instinct, the ability to define and
explain good software abstractions. Implementationists, on the other hand, often
require source code examples before they can grasp abstract concepts; they are not
particularly adept at defining new abstractions that can be readily understood by other
developers.

Many object−oriented processes are egalitarian; design decisions made in meeting
processes are approved by consensus (see the Design by Committee AntiPattern
earlier in this chapter). According to experts, implementationists outnumber
abstractionists approximately 4 to 1 [Mowbray 95]. Thus, unfortunately, abstractionists
are often outvoted. Abstractionists know instinctively that management of complexity is
a key design force. Good abstractions are often compromised because so few
developers appreciate their significance. The primary consequence is software designs
with excessive complexity, which make the system difficult to develop, modify, extend,
document, and test. Software usability and system maintenance are impacted by a
failure to use effective abstraction principles.

The egalitarian approach to object−oriented development has been rather ineffective in
practice; it is reminiscent of a group of people charging up a hill simultaneously.
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Everyone must understand and concur on numerous decisions, and even though there
may be sophisticated members, the overall sophistication of the group is diminished to
the lowest common denominator and inhibited by the communication process.

Refactored Solution

A more effective approach involves several distinct roles in a software development
organization. Architects are abstractionists with significant experience in the majority of
key technologies. They facilitate communication between end users and developers;
they are responsible for managing the complexity and ensuring the adaptability of
systems. To do this, architects need to manage the computational architecture or
system−level programming interfaces.

Component developers are highly skilled programmers. They work with systems
programming languages such as C, C++, and Java; they create the software
infrastructure and reusable software components.

Application developers are other programmers who integrate these components to
create working systems. They primarily use scripting languages such as Visual Basic,
JavaScript, Python, Tcl, and Perl. The higher−level nature of the scripting languages
enables a wider range of programming skills to be productive.

Variations

The specialization of software development roles indicates that there are multiple
disciplines required to build safe and effective software systems. Certification is a
potential mechanism for establishing and validating professional capabilities.
Certification is required for many professionals, for example, cosmetologists,
chauffeurs, lawyers, and certified public accountants. Why not for software architects?

Chapter 7: Software Project Management
AntiPatterns

Overview
In the modern engineering profession, more than half of the job involves human
communication and resolving people issues. The management AntiPatterns identify some of
the key scenarios in which these issues are destructive to software processes.

Changing Role of Management
The role of the technical manager is changing. Before ubiquitous electronic mail and
intranets, managers were primarily organizational communicators. Management chains
conveyed information across organizational boundaries, whereas in the electronic
organization, communication can occur seamlessly across space, time, and boundaries.

Traditionally, a key role of management has been to authorize exceptions to rules and
procedures. But business−process reengineering (BPR) of organizational structures has
changed that role significantly. Before reengineering, organizational boundaries enforced
legacy business rules that were often counterproductive. In reengineered organizations,
unproductive boundaries are eliminated, and people are empowered to solve problems
without management intervention.

DILBERT reprinted by permission of United Feature Syndicate, Inc.

In software development, however, managers still play several important roles, in the areas
of:

• Software process management.
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• Resource management (human & IT infrastructure).

• External relationship management (e.g., customers, development partners).

Death March Projects
We are not the first to write about the contradictions and pitfalls in software projects [Webster
95, 97]. Yourdon has described the death march project as one with unreasonable
commitments [Yourdon 97]. He defines any project with goals or resources that are scoped
50 percent outside of reasonable norms as a death march project. This means one or more
of the following:

• The schedule is 50 percent too short.

• The size of the staff is only half as large as necessary.

• The budget is 50 percent too small.

• The number of features is 50 percent greater than comparable successful projects. Some
cynics contend that all software projects are death march projects.

We agree with many of Yourdon’s points with one significant exception. Using a quote from
Scott Adams (Dilbert Cartoonist), Yourdon asserts that the root cause of death march
projects is that “people are idiots.” Our view is that because people are human, they share all
human failings. We need to recognize our failings in the light of product development in order
to overcome them. The more people involved in a product development, the more complexity
this adds to the tasks of error identification (process, role, software defects, etc.) and error
rectification.

The purpose of management AntiPatterns is to build new awareness that enables you to
enhance your success. Management AntiPatterns describe how software projects are
impaired by people issues, processes, resources, and external relationships. The patterns
also describe some of the most effective solutions to these problems.

We have compassion for developers who suffer through stressful software projects. We have
even greater compassion for software managers, the people who suffer the dire
consequences of project failure [Yourdon 97]. Good managers help moderate the stress
levels of the entire software organization. As a consequence, many of them take on much of
this stress personally. In addition to the AntiPattern solutions discussed here, we recommend
time−management training as an effective way for software professionals to learn how to
manage stress.

Management AntiPattern Summaries
The following summaries are an overview of the management AntiPatterns. They also
include descriptions of management mini−AntiPatterns that are discussed in conjunction with
the main AntiPatterns.

Blowhard Jamboree: The opinions of so−called industry experts often influence
technology decisions. Controversial reports that criticize particular technologies frequently
appear in popular media and private publications. In addition to technical responsibilities,
developers spend too much time answering the concerns of managers and decision
makers arising from these reports.

Analysis Paralysis: Striving for perfection and completeness in the analysis phase often
leads to project gridlock and excessive thrashing of requirements/models. The refactored
solution includes a description of incremental, iterative development processes that defer
detailed analysis until the knowledge is needed.

Viewgraph Engineering: On some projects, developers become stuck preparing
viewgraphs and documents instead of developing software. Management never obtains
the proper development tools, andengineers have no alternative but to use office
automation software to produce psuedo−technical diagrams and papers.

Death by Planning: Excessive planning for software projects leads to complex
schedules that cause downstream problems. We explain how to plan a reasonable
software development process that includes incorporating known facts and incremental
replanning.
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Fear of Success: An interesting phenomenon often occurs when people and projects are
on the brink of success. Some people begin to worry obsessively about the kinds of things
that can go wrong. Insecurities about professional competence come to the surface.

Corncob: Difficult people frequently obstruct and divert the software development
process. Corncobs can be dealt with by addressing their agendas through various tactical,
operational, and strategic organizational actions.

Intellectual Violence: Intellectual violence occurs when someone who understands a
theory, technology, or buzzword uses this knowledge to intimidate others in a meeting
situation.

Irrational Management: Habitual indecisiveness and other bad management habits lead
to de facto decisions and chronic development crises. We explain how to utilize rational
management decision−making techniques to improve project resolution and for keeping
managers on track.

Smoke and Mirrors: Demonstration systems are important sales tools, as they are often
interpreted by end users as representational of production−quality capabilities. A
management team, eager for new business, sometimes (inadvertently) encourages these
misperceptions and makes commitments beyond the capabilities of the organization to
deliver operational technology.

Project Mismanagement: Inattention to the management of software development
processes can cause directionlessness and other symptoms. Proper monitoring and
control of software projects is necessary to successful development activities. Running a
product development is as complex an activity as creating the project plan, and
developing software is as complex as building skyscrapers, involving as many steps and
processes, including checks and balances. Often, key activities are overlooked or
minimized.

Throw It over the Wall: Object−oriented methods, design patterns, and implementation
plans intended as flexible guidelines are too often taken literally by the downstream
managers and object−oriented developers. As guidelines progress through approval and
publication processes, they often are attributed with unfulfilled qualities of completeness,
prescriptiveness, and mandated implementation.

Fire Drill: Airline pilots describe flying as “hours of boredom followed by 15 seconds of
sheer terror.” Many software projects resemble this situation: “Months of boredom
followed by demands for immediate delivery.” The months of boredom may include
protracted requirements analysis, replanning, waiting for funding, waiting for approval, or
any number of technopolitical reasons.

The Feud: Personality conflicts between managers can dramatically affect the work
environment. The employees reporting to these managers often suffer the consequences
of their supervisors’ disagreements. Animosity between managers is reflected in the
attitudes and actions of their employees.

E−mail Is Dangerous: E−mail is an important communication medium for software
managers. Unfortunately, it is an inappropriate medium for many topics and sensitive
communications.

Mini−AntiPattern: Blowhard Jamboree

AntiPattern Problem

The opinions of so−called industry experts often influence technology decisions.
Controversial reports that criticize particular technologies frequently appear in popular
media and private publications. In addition to technical responsibilities, developers
spend too much time answering the concerns of managers and decision makers arising
from such reports. Many of these so−called experts are misinformed; occasionally, they
represent biased viewpoints. Often, the information they are reporting is second−hand.
Rarely is there any hands−on research and experience backing up their conclusions.

Refactored Solution

An in−house expert on each key technology is an invaluable asset to every
organization. He or she can discriminate between facts, misinformation, and opinions in
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popular media and other reports. If your organization does not have in−house experts,
appoint staff to follow particular technologies and develop their expertise through
reading, training courses, standards activities, and hands−on experiments, such as
prototyping.

Electronic mailing lists often contribute to the spread of misinformation. Therefore,
avoid forwarding press releases to such lists. Press releases are properly called
propaganda; they circulate selected information that benefits a particular organization.
As an alternative, direct an in−house expert to disseminate a factual summary of
important announcements.

Analysis Paralysis

AntiPattern Name: Analysis Paralysis

Also Known As: Waterfall, Process Mismatch

Most Frequent Scale: System

Refactored Solution Name: Iterative−Incremental Development

Refactored Solution Type: Software

Root Causes: Pride, Narrow−Mindedness

Unbalanced Forces: Management of Complexity

Anecdotal Evidence: “We need to redo this analysis to make it more object−oriented,
and use much more inheritance to get lots of reuse.” “We need to complete
object−oriented analysis, and design before we can begin any coding.” “Well, what if
the user wants to create the employee list based on the fourth and fifth letters of their
first name combined with the project they charged the most hours to between
Thanksgiving and Memorial Day of the preceding four years?” “If you treat each object
attribute as an object, you can reuse field formatting between unrelated classes.”

Background
Analysis Paralysis is one of the classic AntiPatterns in object−oriented software
development. Object−oriented analysis is focused on decomposing a problem into its
constituent parts, but there is no obvious method for identifying the exact level of detail
necessary for system design [Webster 95]. Frequently, the focus is shifted from decomposing
to a level where the problem can be easily understood by the designers to applying the
techniques to achieve the mythical “completeness.” Also, system developers often willingly
fall prey to Analysis Paralysis, as “designs never fail, only implementations.” By prolonging
the analysis and design phases, they avoid risking accountability for results. Of course, this is
a losing strategy, because usually there is some point after which a working implementation
is expected.

General Form
Analysis Paralysis occurs when the goal is to achieve perfection and completeness of the
analysis phase. This AntiPattern is characterized by turnover, revision of the models, and the
generation of detailed models that are less than useful to downstream processes.

Many developers new to object−oriented methods do too much up−front analysis and design.
Sometimes, they use analysis modeling as an exercise to feel comfortable in the problem
domain. One of the benefits of object−oriented methods is developing analysis models with
the participation of domain experts. Otherwise, it’s easy to get bogged down in the analysis
process when the goal is to create a comprehensive model.

Analysis Paralysis usually involves waterfall assumptions:

• Detailed analysis can be successfully completed prior to coding.

• Everything about the problem is known a priori.

• The analysis models will not be extended nor revisited during development.
Object−oriented development is poorly matched to waterfall analysis, design, and
implementation processes. Effective object−oriented development is an incremental
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process during which incremental and iterative results of analysis are validated through
design and implementation and used as feedback into later system analysis.

“Ah! What is man? Wherefore does he why? Whence did he whence? Whither is he
withering?”

—Dan Leno (George Galvin)

A key indicator of Analysis Paralysis is that the analysis documents no longer make sense to
the domain experts. As Analysis Paralysis progresses, the analysis models more frequently
cover details that are of no interest to the domain experts. For example, the domain model of
a health care system for a hospital should be understandable by the administrators and staff
of the hospital. If the domain model defines unexpected software concepts, categories, and
specializations, the analysis modeling has probably gone too far. If the meaning of these new
classes has to be explained in detail to the people intimately familiar with the current system,
it is likely that the problem has been overanalyzed.

Symptoms And Consequences
• There are multiple project restarts and much model rework, due to personnel changes or

changes in project direction.

• Design and implementation issues are continually reintroduced in the analysis phase.

• Cost of analysis exceeds expectation without a predictable end point.

• The analysis phase no longer involves user interaction. Much of the analysis performed is
speculative.

• The complexity of the analysis models results in intricate implementations, making the
system difficult to develop, document, and test.

• Design and implementation decisions such as those used in the Gang of Four design
patterns are made in the analysis phase.

Typical Causes
• The management process assumes a waterfall progression of phases. In reality, virtually

all systems are built incrementally even if not acknowledged in the formal process.

• Management has more confidence in their ability to analyze and decompose the problem
than to design and implement.

• Management insists on completing all analysis before the design phase begins.

• Goals in the analysis phase are not well defined.

• Planning or leadership lapses when moving past the analysis phase.

• Management is unwilling to make firm decisions about when parts of the domain are
sufficiently described.

• The project vision and focus on the goal/deliverable to customer is diffused. Analysis goes
beyond providing meaningful value.

Known Exceptions
There should never be any exceptions to the Analysis Paralysis AntiPattern.

Refactored Solution
Key to the success of object−oriented development is incremental development. Whereas a
waterfall process assumes a priori knowledge of the problem, incremental development
processes assume that details of the problem and its solution will be learned in the course of
the development process. In incremental development, all phases of the object−oriented
process occur with each iteration—analysis, design, coding, test, and validation. Initial
analysis comprises a high−level review of the system so that the goals and general
functionality of the system can be validated with the users. Each increment fully details a part
of the system.

There are two kinds of increments: internal and external. An internal increment builds
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software that is essential to the infrastructure of the implementation. For example, a third−tier
database and data−access layer would comprise an internal increment. Internal increments
build a common infrastructure that is utilized by multiple use cases. In general, internal
increments minimize rework. An external increment comprises user−visible functionality.
External increments are essential to winning political consensus for the project by showing
progress. External increments are also essential for user validation. They usually involve
some throwaway coding to simulate missing parts of the infrastructure and back−end tiers.
It’s the prerogative of the project manager to select the increments that balance the forces of
project survival, user validation, and minimal cost. See the Project Mismanagement
AntiPattern later in this chapter regarding scheduling of increments with regard to risk.

Frequently, when performing object−oriented analysis, it’s easier to continue the analysis
than to end it and move on to the design of the software. Since many of the analysis
techniques are also applied at some level to the design, it’s easy to use the analysis phase to
direct the specifics of the overall design. Sometimes, this also results from thinking that
minimal analysis is needed concurrently with design, and that design can be started then
gone back to. Typically, this results in a product that neither resembles a domain model a
user can understand nor a desirable design for an implemented system.

Analysis Paralysis is also applicable at the architectural level and takes on a similar form to
the AntiPattern at the developmental level. An architecture can certainly be specified far
beyond what is necessary for the developers to adhere to the architectural principles and
constructs. For example, specifying the known and allowable subclasses used by an
architectural construct designed to operate solely on the object’s base class interface is
overkill. Rather, it is preferable to specify the necessary constraints in the base class on
which the architectural component operates and trust (and perhaps also verify) the
developers to maintain the constraints in their subclasses.

At the managerial level, Analysis Paralysis is known as micromanagement and occurs when
managers overspecify assignments and oversupervise delegated assignments.

Mini−AntiPattern: Viewgraph Engineering

AntiPattern Problem

On some projects, developers become stuck preparing viewgraphs and documents
instead of developing software. Management never obtains the proper development
tools, and engineers have no alternative but to use office automation software to
produce psuedo−technical diagrams and papers. This situation is frustrating to the
engineers, it does not use their real talents, and allows their skills to obsolesce.

Refactored Solution

Many of the developers caught in viewgraph engineering roles should be redirected to
construct prototypes. Prototyping, underutilized by many organizations, has many roles
in a project beyond the creation of a sales tool. It is a key element of iterative,
incremental development processes. Prototypes can answer technical questions that
cannot be deduced through paper analyses, and can be used to reduce many types of
risks, including those related to technology and user acceptance. Prototyping helps to
shorten learning curves for new technologies.

Two principal kinds of prototypes are: mockups and engineering prototypes. A mockup
is a prototype that simulates user−interface appearance and behavior. When mockups
are coupled with system usability experiments (with actual end users), requirements
issues and user acceptance can be assessed. Engineering prototypes include some
operational functionality, such as application services, databases, and integration with
legacy systems. Prototyping a system in an alternative language (such as Smalltalk)
prior to production system development is a useful exercise. This prototype can help to
validate an architecture prior to implementation in a more efficient, but more costly and
less flexible technology.

Death By Planning

AntiPattern Name: Death by Planning

Also Known As: Glass Case Plan, Detailitis Plan
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Most Frequent Scale: Enterprise

Refactored Solution Name: Rational Planning

Refactored Solution Type: Process

Root Causes: Avarice, Ignorance, Haste

Unbalanced Forces: Management of Complexity

Anecdotal Evidence: “We can’t get started until we have a complete program plan.”
“The plan is the only thing that will ensure our success.” “As long as we follow the plan
and don’t diverge from it, we will be successful.” “We have a plan; we just need to
follow it!”

Background
In many organizational cultures, detailed planning is an assumed activity for any project. This
assumption is appropriate for manufacturing activities and many other types of projects, but
not necessarily for many software projects, which contain many unknowns and chaotic
activities by their very nature. Death by Planning occurs when detailed plans for software
projects are taken too seriously.

General Form
Many projects fail from over planning. Over planning often occurs as a result of cost tracking
and staff utilization monitoring. The two types of over planning are known as the Glass Case
Plan and Detailitis Plan. The Glass Case Plan is a subset of the Detailitis Plan in that (over)
planning ceases once the project starts. In the Detailitis Plan, over planning continues until
the project ceases to exist, for a variety of unfulfilling reasons.

Glass Case Plan

Often, a plan produced at the start of a project is always referenced as if it’s an accurate,
current view of the project even if it’s never updated. This practice gives management a
“comfortable view” of delivery before the project starts. However, when the plan is never
tracked against, nor updated, it becomes increasingly inaccurate as the project progresses.
This false view is often compounded by the absence of concrete information on progress,
which often is known only after a critical deliverable slips its schedule.

Figure 7.1 shows a project plan created prior to project launch. Management assumes that
the plan guarantees delivery automatically—exactly as specified with no intervention (or
management) necessary.

Figure 7.1 Glass Case Plan.

Detailitis Plan

Sometimes the solution to effective delivery is regarded as a high degree of control via a
continuous planning exercise that involves most of the senior developers, as well as the
managers. This approach often evolves into a hierarchical sequence of plans, which show
additional (and unecessary) levels of detail. The ability to define such a high level of detail
gives the perception that the project is fully under control (see Figure 7.2).
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Figure 7.2 Death by Planning involves thorough preplanning, regardless of
unknowns.

Symptoms And Consequences
The Glass Case Plan symptoms are the first noticed in both it and the Detailitis Plan.

Glass Case Plan

The symptoms usually include at least one of the following:

• Inability to plan at a pragmatic level.

• Focus on costs rather than delivery.

• Enough greed to commit to any detail as long as the project is funded.

The consequences are incremental:

• Ignorance of the status of the project’s development. The plan has no meaning, and
control of delivery lessens as time goes on. The project may be well ahead or behind the
intended deliverable state and no one would know.

• Failure to deliver a critical deliverable (the final consequence).

Consequences grow incrementally until finally the project overruns, with the usual options of:

• Further investment.

• Crisis project management.

• Cancellation.

• Possible loss of key staff.

“Art for Art’s Sake.”

—Howard Dietz

Detailitis Plan

The symptoms are a superset of the Glass Case Plan:

• Inability to plan at a pragmatic level.

• Focus on costs rather than delivery.

• Spending more time planning, detailing progress, and replanning than on delivering
software:

— Project manager plans the project’s activities.

— Team leaders plan the team’s activities and the developers’ activities.

• Project developers break down their activities into tasks.
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The consequences are intertwined and feed off each other:

• Each planner has to monitor and capture progress at the level shown by his or her plan,
and reestimate.

• Endless planning and replanning causes further planning and replanning.

• The objective shifts from delivery of software to delivery of a set of plans. Management
assumes that because effort and cost are tracked, progress must be equivalent. In fact,
there is no direct correlation.

• Continual delays to software delivery and eventual project failure.

Typical Causes
In both cases, Glass Case Plan and Detailitis Plan the primary cause is lack of a pragmatic,
common−sense approach to planning, schedules, and capture of progress.

Glass Case Plan

• No up−to−date project plan that shows the software component deliverables and their
dates.

• Ignorance of basic project−management principles.

• Overzealous initial planning to attempt to enforce absolute control of development.

• A sales aid for contract acquisition.

Detailitis Plan

• Overzealous continual planning to attempt to enforce absolute control of development.

• Planning as the primary project activity.

• Forced customer compliance.

• Forced executive management compliance.

Known Exceptions
There should never be any exceptions to the Death by Planning AntiPattern.

Refactored Solution
The solution is the same for both the Glass Case and Detailitis Plans. A project plan should
show primarily deliverables (regardless of how many teams are working on the project).
Deliverables should be identified at two levels:

1. Product(s). Those artifacts sold to a customer, which include the internal corporate lines
of business that use them.

2. Components (within products). Basic technology artifacts required to support a business
service.

Deliverables include such things as:

Business requirements statement

Technical description

Measurable acceptance criteria

Product usage scenarios

Component use cases

The plan should be supplemented with validation milestones for each component, as well as
the overall product, such as:

Conceptual design approval

Specification design approval
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Implementation design approval

Test plan approval

The deliverable plans should be updated weekly to ensure appropriate planning and controls
that reduce project risks. This allows issues, risks, slippages, and early deliveries of defined
deliverables to be dealt with by appropriate, timely responses.

Tracking is done on the estimated level of completeness, as shown in Figure 7.3. This
sometimes means regressing the completeness that was input to the plan in a previous time
period. Completeness should be gross measurements rather than fine measurements, for
example, tracking in 25 percent steps rather than 5 percent steps.

Figure 7.3 Proper planning involves tracking of actuals and replanning.

A Gantt chart can be used effectively to visually illustrate deliverables, associated dates, and
interdependencies. By tracking against a baseline plan, the following states of deliverables
will be immediately obvious:

• On schedule.

• Delivered.

• Early (with estimated new delivery date).

• Late (with estimated new delivery date).

It is essential to baseline early and rarely. Otherwise the ability to track changes is lost.
Furthermore activities/tasks/deliverables should have dependencies set between them where
they exist.

When estimating it is advisable to allow a contingency period for all those inevitable
“unknowns,” such as:

• Requirements increase (creep).

• Design dead ends.

• Third−party software workarounds.

• Defect identification (finding the problem in a set of integrated components).

• Defect correction (bug fixing).

It is also important to establish a minimum time frame in which to accomplish any activity.
This prevents such constraints as two days to code and test a “simple” program.

Variations
The Death by Planning variations are in levels of detail, and can go from identifying major
milestones, which are usually tied to funding/approval stages, to micro−deliverables within
the project delivery stages for each team (see Figure 7.4).
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Figure 7.4 Funding milestones establish decision points for project continuation.

These variations are equally applicable to both the Glass Case and Detailitis Plans:

• Funding variations (Figure 7.4)

• Micro−deliverables variation (Figure 7.5)

Figure 7.5 Micro−deliverables plan.

The Glass Case version of the micro−deliverables plan only varies from the Detailitis Plan in
that it is never updated. It shows very minor deliverables that cannot be fully understood prior
to starting the project. Therefore, any estimates must by definition be incorrect based upon
the lack of any real understanding of the software to be built. This type of plan is usually
produced by technically gifted amateurs. Although the tasks need to be clearly understood,
putting them in a plan results only in unnecessary planning and tracking (in the case of the
Detailitis Plan), as opposed to doing.

Example
The examples are based on our own experiences in learning “the hard way.”

Glass Case Plan

For this example, we’ll say a systems integrator decides to build a middleware component
not yet available from any of the major vendors, in spite of international standards issued
over a year ago. The systems integrator agrees to a detailed delivery plan in advance of
starting any project work in order to obtain a funding source. The plan is based upon
estimates from staff who have not yet delivered software “in anger.” The plan is highly
specific technically, and the estimates are very optimistic; and it is continually referenced by
the project manager, but never updated to reflect any actual effort. This leads to missed
delivery dates. There is a general lack of knowledge as to the real progress of the project; the
systems integrator is apprised of delivery date failure only after the dates have passed. The
plan shown in Figure 7.6 is an extract from such a development project.
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Figure 7.6 Glass Case Plan example.

Detailitis Plan

In an attempt to control development to ensure that full control is established, an end−user
company produces a plan that has three levels:

1. phases of development.

2. team tasks and effort.

3. team member tasks and effort.

The plan in Figure 7.7 indicates the complexity.

Figure 7.7 Detailitis Plan example.

Detailitis causes an inability to track against the plan without taking considerable focus away
from delivering the system. This results in significantly reduced staff productivity. Plan
management quickly becomes unrealistic due to complexity.

The solution is to replace the detailed plan with one that shows key deliverables against
dates, with dependencies and constraints. If the deliverable is missed, then something
important has occurred. The previous plan attempted to track progress by effort that was
unrealistic: Effort = staff x days elapsed. So what? E = MC2, but the formula does not create
nuclear power!

Related Solutions
The Analysis Paralysis AntiPattern can exacerbate the consequences of Death by Planning.
If the analysis phase runs over its allotted schedule, either a schedule must slip or
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inadequate analysis models are applied to downstream phases.

Applicability To Other Viewpoints And Scales
Death by Planning cannot match the chaotic (white−water) nature of software development,
because it creates a significant disparity between the management’s planning models and
actual development activities. Architects and developers often have to live double lives: On
one hand, they must visibly cooperate with management’s plan for the project; at the same
time, they have to confront the actual status of the software, which may not resemble the
management model. For example, the plan may be used to pressure developers into
declaring software modules complete before they are mature. This causes downstream
problems in integration and testing.

Mini−AntiPattern: Fear of Success

Anecdotal Evidence

Wayne & Garth: “We are not worthy!”

The Crazies: “It’s fear of success mate!”

AntiPattern Problem

An interesting phenomenon often occurs when people and projects are on the brink of
success. Some people begin to worry obsessively about the kinds of things that can go
wrong. Insecurities about professional competence come to the surface. When
discussed openly, these worries and insecurities can occupy the minds of the project
team members. Irrational decisions may be made and inappropriate actions may be
taken to address these concerns. For example, these discussions may generate
negative publicity outside the project team that affects how the deliverable is perceived,
and may ultimately have a destructive effect on the project outcome.

Fear of Success is related to termination issues. In general, group dynamics progress
through a number of phases, discernable for both one−week projects and efforts of
lengthier duration. The first phase addresses group acceptance issues. In the second
phase, as relationships are formed, individuals assume various roles in the group,
including both formal roles in the organization and informal self−determined roles. This
is an important factor in team building. After the roles are established, the work is
accomplished (third phase). Many personality issues may arise during this phase.
Because project completion may result in dissolution of the group, these issues often
emerge as project termination approaches (fourth phase). In the termination phase,
concerns about the outcome of the project, its future life cycle, and the group’s
subsequent activities are often expressed in indirect ways. In other words, people do
crazy things.

Refactored Solution

One important action that management can take near the end of a project is to declare
success. Statements by management that support the successful outcome of the
project are needed, even if the actual outcome is ambiguous. It is important to help the
project team to accept the significance of their achievements and lessons learned.
Declaring success also helps to mitigate termination issues, maintain the team’s
commitment to the organization, and pave the way for future project activities. An
award ceremony, complete with the issuance of certificates or plaques, is an
appropriate gesture for this purpose. Professional recognition is inexpensive and highly
valued by recipients.

Variations

Personal consultation and mentoring is an effective way to cope with the concerns of
individuals. Senior staff who have experience on several projects can help others to
cope with the stresses of termination issues. Exhibiting patience during the transition to
success is important behavior to demonstrate and emulate.

Corncob

AntiPattern Name: Corncob

126



Also Known As: Corporate Shark, Loose Cannon, Third−World Information Systems
Troubles (TWIT)

Most Frequent Scale: Enterprise

Refactored Solution Name: Corncob Removal Service

Refactored Solution Type: Role

Root Causes: Avarice, Pride, Narrow−Mindedness

Unbalanced Forces: Management of Resources, Technology Transfer

Anecdotal Evidence: “Why is Bill so difficult to work with?” “Management always
listens to whomever shouts longest and loudest.” “I own development and I have made
a decision that you will follow.” “We need to change the build process and accept that
we will delay delivery a month or two.”

Background
Corncobs are difficult people who can be prevalent in the software development business.
This attitude can be due to aspects of individual personality, but often, difficulties arise from
personal motivations for recognition or monetary incentives.

Due to rigorous schedules and budget pressure, software development can become
stressful. Corncobs exacerbate these problems and create unnecessary, additional stress, in
what may be an already overstressed environment.

“Corncob” is a slang term frequently used at Object Management Group, a software
consortium, to describe difficult people.

General Form
A difficult person (the Corncob) causes problems through destructive behaviors for a
software development team or, even worse, throughout an enterprise. This person may be a
member of the team or a member of external senior staff (such as a technical architect or
development manager) who adversely impacts the team through various means: technical,
political, and personal. When dealing with Corncobs, it’s important to remember that politics
is the exercise of power, and Corncobs focus much more on politics than technology. They
are usually experts at manipulating politics at personal and/or organizational levels.
Technology−focused people can become unwilling easy victims of the Corncob’s tactics.

Symptoms And Consequences
• A development team or project is unable to make progress because someone disagrees

with their key objectives or essential processes and continually tries to change them.

• One person continually raises objections, under the guise of concern, which are
intractable: performance, reliability, technology market share, and so on.

• The destructive behavior is well known to many people in the enterprise, but it’s tolerated
and supported (in some way) by management because they are unaware of, or unwilling
to address, the damage it causes.

• Political forces create an environment where it’s difficult to keep technical discussions on
track.

• Political forces result in frequent changes to the scope or requirements of the system. The
project becomes much more reactive than proactive, because everyone is responding to
the “endless improvements” from the Corncob.

• Often, the destructive person is a manager who is not under the direct authority of a
senior software development manager or project manager.

• The company has no defined decision−making process that enables it to resolve issues
and move on. This allows a manager to inappropriately interfere beyond his or her area of
accountability.

Typical Causes
•

127



Management supports the Corncob’s destructive behavior, by virtue of not acknowledging
the impact of the Corncob’s actions. Management’s view of the situation is often supplied
from the Corncob.

• The Corncob has a hidden agenda, which conflicts with the team’s goals.

• There is a fundamental disagreement between team members that no amount of
communication can resolve.

• Management doesn’t isolate the group from internal and external forces, and has
inappropriately allocated roles to staff, who abuse them for their own ends; even worse,
management has failed to allocate accountability at all.

Known Exceptions
The Corncob AntiPattern is acceptable when a company or product development manager is
willing to live with the actions of the Corncob. This is a subjective judgment of benefits and
disadvantages.

In projects that involve multiple organizations, it’s sometimes useful to have a designated
Corncob, whose role is to defend an existing architecture from inappropriate changes. When
there are many conflicting technical viewpoints, a dominant personality is often required to
enforce the reference architecture.

Refactored Solution
Solutions to the Corncob AntiPattern are applied at several levels of authority, including
strategic, operational, and tactical. In all cases, the key action lever is management support
for the destructive behaviors. By eliminating management support at the aforementioned
levels, the Corncob loses support, and the best interests of the software development team
can dominate.

Tactical Solutions

Tactical solutions are actions employed on the fly, such as in a meeting. They include the
following:

• Transfer the responsibility. Give the naysayer full responsibility for solving the problems
they identify within an agreed−on time period. In other words, turn the responsibility for
planning and resolution over to the person who raises the concerns.

• Isolate the issue. Often, the Corncob’s is an isolated opinion. Appealing to the group’s
interests is an effective way to defend against an individual’s behavior or isolated
concerns. If the Corncob is confrontational, remember to never take anything personally;
doing so is always a mistake. Facilitate the group to discuss and frame the key objections,
then try to gain consensus to overrule the objector. A straw poll is an effective technique
for revealing group feeling.

• Question the question. When the Corncob uses ambiguous or “loaded” words or phrases,
ask him or her to clarify their meaning. When he or she uses hearsay evidence to make
an assertion, ask him or her to substantiate the claims and to identify his or her personal
position.

Operational Solutions

Operational actions are taken offline, within a limited organizational scope. These include:

• Corrective interview. Management meets individually with the person causing the
problems, and explains the impact of his or her behavior. The purpose of the corrective
interview is to raise awareness and reach agreement on how to change the behavior.

• Friendly outplacement. Recommend a Corncob to employment headhunters to help him or
her to exit gracefully a difficult situation in an organization.

Strategic Solutions

Strategic actions are long term and have a wider enterprise scope, such as:

• Corncob support group. If there are several Corncobs in an organization, management
can transfer them into the same group. In this way, they have to contend with each other’s
personalities and behaviors. Often, each will approach management and ask why he or
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she has to work with such difficult people, giving the manager the opening to explain that
the person is him− or herself described as difficult by others. This can result in
self−awareness, and perhaps, improvement.

• Empty department. Managers who are themselves difficult can be transferred to
departments in which they are the only employee. These managers usually “get the
message” and retire or pursue careers in other companies.

• Reduction in force. Sometimes there is no other recourse than to eliminate difficult people
from the project team or environment.

Variations
Variations on the preceding solutions include:

• Sidelining. Sidelining entails reassigning the Corncob to minimal duties. That said, we
have found sidelining to be an ineffective practice, as it gives the Corncob more time to
think and lobby his or her (often hidden) agenda.

• Third−World Information System Troubles (TWIT). This term was introduced by Randall
Oakes, MD, to refer to naysayers who resist IT change, even though the majority of
people are experiencing negative consequences under current conditions. The TWIT
benefits in some way from the status quo. As Dr. Oakes points out, helping the person
manage his or her stress levels can lead to trust, friendship, and more open−mindedness.

• Corporate Shark. A Corporate Shark is an experienced manager whose career consists of
managing relationships rather than his or her technical expertise, which may, as a result,
be long neglected. Sharks survive by who they know not what they know. The Corporate
Shark knows how to “work the system,” and can easily create difficult political situations
for those focused on technical issues. In the working world, everybody needs a friend. The
best friend is the influential person in the company who defends you to the hilt when
confronted by attacks from Corporate Sharks. The best way to manage a relationship with
Corporate Sharks is to avoid them altogether, because the only likely outcomes are
negative.

• Bonus Monster. Someone stands to reap a short−term gain (such as an executive bonus)
by cutting corners in the software development process. Bonus monsters are particularly
destructive by encouraging internal competition between different departments within an
enterprise. The problem is remedied by restructuring or eliminating the bonus system. A
Bonus Monster is usually also a Corporate Shark, but a shark with strong motivation to
push for bonus−generating outcomes.

• Firebrand. A Firebrand is a person who deliberately creates a political emergency. For
example, the Firebrand might be responsible for the late delivery of a critical piece of
software by generating various misdirections and obstructions. His or her purpose is to
create an emergency so that later he or she can be recognized as a hero for saving the
organization. In order to achieve success, the firebrand extinguishes the fire; that is, he or
she removes all the obstructions and readjusts the focus of the developers, as needed, to
allow them to succeed.

• Egomaniac. An Egomaniac is obsessed with his or her image as a key influencer or
dominant figure. Egomaniacs are also called Prima Donnas. A remedy for senior
managers who are Egomaniacs is to transfer them to an empty department. In meetings,
Egomaniacs can be managed by publicly recognizing their expertise and importance.
However, this sometimes backfires by encouraging their narcissist tendencies.

• Loose Cannon. Certain people are consistently difficult to deal with due to their extrovert
behavior. Their actions can have destructive effects on the project’s image and morale; for
example, indiscrete disclosures of information and insensitivity to important organizational
relationships. Loose Cannons are easy to detect; during group situations, they quickly
make their presence known. The most effective way to deal with Loose Cannons is to alert
management, who should conduct a corrective interview.

• Technology Bigot. A Technology Bigot is a Loose Cannon who promulgates marketing
hype and refuses to consider other viewpoints; for example, people who insist that all
information technology will become Microsoft−based, or that CORBA is the only true way
to implement distributed objects.
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“It’s not enough to succeed. Others must fail.”

—Gore Vidal

• Territorial Corncob. Individuals who attempt to protect organizational or technical turf often
exhibit defensive behaviors. They need to defend their territory as a way of quieting
underlying insecurities about their competence. Territorial Corncobs often can be placated
with flattery and sensitivity to their weaknesses. Avoid appealing to their greed; Territorial
Corncobs are particularly difficult to discourage once they sense the potential for new
opportunities or power within the scope of their territory.

• Corncobs out of the Woodwork. When a particularly difficult or stressful situation arises
such as serious project problems or impending layoffs, some Corncobs amplify their
behavior. In the case of layoffs, if you are a competent person who can obtain another job,
consider volunteering for layoff so that others can retain their jobs and salaries that they
may desperately need.

• Saboteur. A Saboteur is someone about to exit the group who begins to manipulate the
work environment in favor of their next assignment. For example, Saboteurs often try to
make colleagues leave the project through active recruiting, rumors, and negative
behaviors. This is a particularly difficult situation to detect and remedy because the
Saboteur often conceals his or her intention to depart. One large computer manufacturer
gave frequent after−hours parties—complete with large quantities of liquor—at which it
encouraged its employees to discuss outside career plans. The Saboteur usually has one
or more confidants who know of their plans. Once a Saboteur is discovered, he or she
should be precluded from impacting the work environment.

• Careerist. This is a variation of the Saboteur, a person who influences a technical choice
that widens his or her personal expertise and job marketability. For example, a technical
architect may choose to use an object database for object persistence, even though an
RDBMS with an object API is a more appropriate technical solution.

• Anachronist. This is a Corncob who resists innovation simply because he or she doesn’t
understand it. The Anachronist may be quite knowledgeable about legacy technologies,
and resists new technologies arbitrarily. Education of the anachronist is often an effective
solution.

Examples
One of the Corporate Sharks that we encountered years ago was recently transferred to a
one−person department and then laid off because the consequences of his personality traits
outweighed his benefits to the corporation. In our experience, Corncobs eventually
self−destruct and leave the organization. The downside to this is that they sometimes come
back.

A friend of ours underwent a dramatic personality change (for the better) when he withdrew
from participation in a corporate bonus system. While under the bonus system, our friend
engaged in a number of confrontational interventions in various software processes due to
his desire for short−term outcomes (executive bonuses).

Territorial Corncobs can be the most abrasive variation. In particular, if a person or group of
people believe they “own” a particular buzzword, such as “architecture,” they may attempt to
vigorously suppress anyone who uses it. E−mail is a particularly effective weapon of the
Territorial Corncob because it produces tangible evidence. E−mail is also an easily
manipulated medium for engaging in emotional confrontations and flaming.

Related Solutions
The technology bigot variation of this AntiPattern is also a form of the Golden Hammer
AntiPattern. See the Golden Hammer AntiPattern for a related solution.

Applicability To Other Viewpoints And Scales
The impact of Corncobs on architecture and development is usually to slow down progress.
Confrontational issues raised by Corncobs tend to decrease the sophistication of the
discussion and to instead focus on specific forces. In some sense, Corncob behaviors
reverse the intended benefits of design patterns. Instead of making the software process
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more sophisticated and efficient, Corncobs make it less sophisticated and less efficient.
Instead of making the process more balanced, by taking into consideration all of the
significant forces, the Corncob tends to bias the discussion and decision making toward
selected forces, which may not be the most significant.

Mini−AntiPattern: Intellectual Violence

Background

The Lambda Calculus is a relatively straightforward theory about the mathematics of
functions and variable substitutions. It is one of the important theories underlying the
Lisp programming language and is taught at selected universities in undergraduate
computer science courses. People with this training often assume that everybody
knows about Lambda Calculus. This leads to misunderstandings that may be instances
of Intellectual Violence. A short chalk−talk (informal tutorial) could clear up any
misunderstandings.

AntiPattern Problem

Intellectual Violence occurs when someone who understands a theory, technology, or
buzzword uses this knowledge to intimidate others in a meeting situation. This may
happen inadvertently due to the normal reticence of technical people to expose their
ignorance. In short, Intellectual Violence is a breakdown of communication. When
some or most people on a project do not understand a new concept, progress may be
stalled indefinitely as they work through their feelings of inferiority or avoid the topic
altogether. When Intellectual Violence is pervasive, a defensive culture arises, which
inhibits productivity. People control and conceal information instead of sharing it.

Refactored Solution

An alternative organizational culture is based upon mentoring, where people
cross−train constantly. It is recognized that everybody has unique talents and
knowledge, regardless of their position in the organizational hierarchy. In a mentoring
culture, people are encouraged to share their knowledge to promote the overall
success of the organization. A mentoring culture is best facilitated through leadership
by example. If the principals in the organization actively engage in mentoring, it
becomes more socially acceptable at all levels to do so. Encouraging people to share
information is an effective way to utilize knowledge resources and limit reinvention.

Irrational Management

Antipattern Name: Irrational Management

Also Known As: Pathological Supervisor, Short−Term Thinking, Managing by
Reaction, Decision Phobia, Managers Playing with Technical Toys

Most Frequent Scale: Enterprise

Refactored Solution Name: Rational Decision Making

Refactored Solution Type: Role and Process

Root Causes: Responsibility (the universal cause)

Unbalanced Forces: Management of Resources

Anecdotal Evidence: “Who’s running this project?” “I wish he’d make up his bloody
mind!” “What do we do now?” “We better clear this with management before we get
started.” “Don’t bother asking; they’ll just say no.”

Background
Irrational Management covers a range of commonly occurring software project problems that
can be traced back to the personalities of the person(s) running the project. For example, the
manager may have obsessive interests in some aspect of the technology or personality
limitations that cause them to become ineffective or irrational managers. Irrational
management can be viewed as a skewed set of priorities where the manager’s personal
priorities, no matter how nonsensible, guide the software project in irrational directions.
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General Form
The manager (or management team) of one or more development projects cannot make
decisions. This may a personality defect or the result of an obsession with details. The details
may be personal interests or behaviors of the manager, such as technical “toys” or
micromanagement. When faced with a crisis, the manager’s decisions are knee−jerk
reactions rather than carefully thought−out strategies or tactical actions. These reactions
often cause further problems. The cycle of indecision and reaction can escalate in frequency
and severity of consequences.

The Irrational Management AntiPattern is significantly compounded by a manager’s inability
to direct development staff. This is also called a lack of good people−management skills,
characterized by the inability to:

• Recognize staff capabilities, both strengths and weaknesses.

• Provide clear objectives that are appropriate to staff skills.

• Communicate effectively with staff.

Symptoms And Consequences
The primary symptom of the Irrational Management AntiPattern is project thrashing, an
ongoing debate on a critical topic. A decision must be made to allow development staff to
progress. Thrashing has several consequences.

• Increased staff frustration.

• Incremental delays to delivery.

• Exploitation by Corncobs.

Typical Causes
The manager lacks the ability to manage:

• Development staff.

• Other managers.

• Development processes.

He or she also has no clear vision and strategy, and therefore:

• Cannot make decisions.

• Fears success (see the associated Mini−AntiPattern).

• Is ignorant of the true state of project activities and deliverables.

Known Exceptions
There should never be any exceptions to the Irrational Management AntiPattern. However, a
“golden child” who possesses guru−level skills that are completely unique in some manner
and provides a major technical advantage should be tolerated, while a better and
longer−term solution is planned.

Refactored Solution
Follow these guidelines to resolve the Irrational Management AntiPattern:

1. Admit you have a problem and get help. When managers suffer from one or more of the
typical causes, they must first recognize that they have a problem. Assuming that they
are unaware of their situation, the first step is to identify key indicators, the most common
of which is that of “finding out the hard way.” For example, rather than technical staff
addressing a growing problem and asking for help in dealing with it, the irrational
manager finds out only after a problem has reached crisis stage; no one is willing to
discuss problems, because doing so never helps. Managers must surround themselves
with talented staff (or consultants) who share the complex job of managing and are
willing to listen to them.
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2. Understand the development staff. Managers need to understand both the technical skills
and the personality traits of their staff members. Awareness of technical skills helps a
manager delegate work; awareness of personalities helps a manager designate working
relationships.

3. Provide clear, short−term goals. Easily achievable objectives should be specified for the
project. Long−term objectives are necessary, but do not as successfully motivate staff on
a daily basis. A manager must ensure that short−term, highly specific objectives are set
and that staff understands how they can be achieved.

4. Share a focus. Project staff must share the purpose of their project to ensure they are all
working toward the same goals. The manager must initiate and grow the focus.

5. Look for process improvement. Recognizing that every project is slightly different from
the previous one, a manager must monitor the development processes and improve
them where and when necessary. Although these are often small tweaks to make a
specific process more pragmatic, they can significantly improve productivity.

6. Facilitate communication. Whenever a “hot” topic fuels debate, deciding on the way to
move forward is best achieved in a facilitated session. To do so:

• Identify the key players.

• Collect evidence on the debate.

• Get clear agreement on the problem(s).

• Make sure everyone’s voice is heard.

• Confirm that the solution options are understood by all.

• Agree to the preferred option.

• Involve the concerned staff in implementing the solution where possible.

7. Manage communication mechanisms. E−mail and newsgroups in general are useful
communication mechanisms, but both can set people on a winding path of destruction.
E−mails can quickly get out of hand, and newsgroups can generate arrogant and
aggressive debates. The solution is to track e−mails and newsgroup postings daily and
identify any miscommunications. Talk directly to the involved parties and tell them to stop
the electronic debate. If it’s important to find a solution, then a facilitated meeting is
usually faster and far more effective.

8. Manage by exception. Extremes are always dangerous, and overmanagement is no
exception. Daily meetings and weekly reviews that require a manager’s involvement in all
threads of a project are examples of over− or micromanagement. Instead, manage by
exception; watch, but don’t interfere. Allow problems some time to be resolved by others.
Step in only when necessary.

9. Apply effective decision−making techniques. Two rational management techniques from
Kepner−Tregoe are particularly effective in software decision making. The first is called
situation analysis [Kepner 81]. This technique assists in the organization and
management of unstructured and chaotic environments. It can be used on an individual
or group basis. The second is called decision analysis [Kepner 81]. This technique is
essential for making decisions objectively. Subjective biases in decision−making
processes can have devastating consequences in software projects. We have often seen
these kind of biases result in software disasters. Biases can be generated by friendships,
the timing of the sales call, unnecessary platform constraints, and invisible infrastructure
constraints.

These two techniques are explained in some depth in the following subsections.

Situation Analysis

The purpose of situation analysis is to identify the highest−priority concerns in a complex
situation. A tailored version of this technique contains the following steps:

1. List all of the concerns. These may include known issues, action items, commitments,
technology gaps, and other items. In other words, the list may contain virtually anything
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that affects the project at hand.

2. Rate the concerns with respect to three criteria: seriousness, urgency, and growth
potential. Use three levels: high, medium, and low. For example, if the concern is critical
to project success, it is highly serious. If the concern must be resolved immediately for
the resolution to be effective, it is rated highly urgent. If the seriousness is expected to
increase dramatically in time, it is rated as having high growth potential.

3. Tabulate scores for each item based upon the ratings. Assign numbers to the rating
levels: high = 2, medium = 1, and low = 0. For example, a rating of high/medium/low
would score 3 points (2 + 1 + 0).

4. Prioritize the items in terms of the scores. For all of the concerns that score 6, choose the
most important, second important, and so forth. Continue the priority assignment with the
items scoring 5 and lower, until the entire list of concerns is assigned a priority number.

5. Assign the items that can be resolved to the appropriate staff. Some items on the list will
be controlled by external forces, and it would be unreasonable to expend energy
resolving them until the situation changes. Other items must be resolved before others
due to dependencies. For the properly qualified staff, the resolution of most items will be
straightforward: Program a necessary object, create an analysis model, reduce risk
through testing, and so forth. The manager must make the best match of staff resources
to the concerns that must be resolved.

6. Work on the top−priority items on the list. The situation analysis technique works on the
principle of addressing first things first and second things never. Using situation analysis,
the manager can effectively address the most important issues from among the
confusing list of concerns confronting software projects.

Decision Analysis

A tailored process for decision analysis contains these steps:

1. Define the scope of the decision to be addressed. In other words, the process must begin
with a written question to resolve.

2. Identify alternative solutions for resolving the decision. These can include specific
concrete alternatives, such as specific software products or categories of solutions that
can be evaluated.

3. Define the decision criteria. Situation analysis can be used to create this list.

4. Divide the criteria between the essentials and desirables. The essential criteria are
characteristics that must be part of the solution in order for it to be acceptable. If any
essential criteria are missing from an alternative, the alternative is disqualified. For this
reason, the essential criteria should be a carefully chosen, short list. All other criteria are
called desirables, and they must be prioritized. Use the priority assignment process from
situation analysis for this purpose, then assign the desirable alternatives a weight. For
example, if there are seven criteria, the most important has a weight of 7; the next most
important has a weight of 6, and so forth.

5. Determine whether the alternatives satisfy all the essential criteria. If not, eliminate the
unsatisfactory alternatives.

6. Perform any fact finding. Research to assess the satisfaction of the criteria by each of the
alternatives.

7. Set up a table that displays the alternatives in columns and the criteria in rows. In the
table, rank the alternatives for desirable criteria. For example, if there are five
alternatives, the best alternative gets a rank of 5; next best gets a rank of 4, and so forth.

8. Multiply the weights by the ranks to calculate a score for each position in the matrix. Add
up the scores in each column to calculate the score for each alternative. The highest
scoring alternative is the rational (or best) choice.

9. Be aware that the rational choice may not be the choice that managers or customers will
accept. An important bias or criteria that was not properly reflected in the decision
analysis may cause this, in which case, it is important to evaluate the decision criteria.
Experiment with the weights on the desirable criteria, and add new criteria until the
decision analysis selects the acceptable alternative. Confirm that the resulting criteria
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and weights match the subjective decision criteria that drive this solution. Perhaps the
decision−making authorities will change their criteria to more realistic assumptions when
confronted with the actual influence that their biases have on the decision.

Variations
Consultants can be an invaluable resource. They can bring missing knowledge and skills to
an organization, and can give advice that is independent of internal politics and detailitis; that
is, they can be objective in a charged situation. Consultants can play three key roles in a
software project. These categories are based on Block’s model for general consulting
practice [Block 81]:

1. Pair of Hands.

2. Technical Expert.

3. Management Peer.

Filling the Pair−of−Hands role, the consultant becomes another software developer, similar to
that of an ordinary employee. As a Technical−Expert, the consultant resolves problems in a
specific domain. As a Management−Peer, the consultant is an advisor to management,
providing a mentoring knowledge transfer from his or her related experience. Although it’s
professionally rewarding for the consultant to be in the latter two roles, we have seen
outstanding results from the Pair−of−Hands role, particularly in rapid prototyping situations
with new technologies.

Examples
A manager we worked with came into a project at the halfway point. He did not have an
understanding of the staff’s skills, nor a good background on the project to date. When
problems occurred, he reallocated staff. This created more serious problems. Staff members
were moved onto projects to which they had no previous exposure. This resulted in
diminished effectiveness. The situation was partially resolved when the manager left the
company. The new manager was a very strong “people−person” who made sure that
employees’ skills matched the necessary activities. Unfortunately, the delays already
experienced could not be made up for.

In another situation, a project architect (a Corncob) voiced his opinions on C++ coding
standards via e−mail to all project staff. The project had several guru−level C++ developers
who took exception to some of the architect’s statements. This resulted in a two−month
e−mail and newsgroup “war.” The eventual solution was that the project manager appointed
a “tiger team” to resolve the issue. This was a facilitated solution based upon the run−ahead
principle. Unfortunately, no precautions were taken to eliminate similar destructive
communications on a variety of other topics. The instance was dealt with rather than the
overriding problem.

In a third example, a system’s integrator project had an irrational management team. The
individual managers were owners of their part of the process. This created stovepipe
processes with neither coherence nor contiguity, as shown in Figure 7.8. This resulted in
various ownership wars. One war was based on the entrance criteria to move from one
phase of the development to the next. This caused a month of thrashing and disagreement,
which then diffused focus on emerging development problems. Corporate management had
to step in. And because the resolution was enforced from above, it was not sustainable.

Figure 7.8 Irrational management team.
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The final solution, after several wars between the owners, was the appointment of a process
facilitator whose job was to ensure that:

• A coherent and contiguous process was produced.

• The entrance criteria were agreed on for each phase of the development, which supported
iterative delivery.

• Process improvements were implemented across the relevant processes.

Mini−AntiPattern: Smoke and Mirrors

AntiPattern Problem

Demonstration systems are important sales tools, as they are often interpreted by end
users as representional of production−quality capabilities. A management team, eager
for new business, sometimes (inadvertently) encourage these misperceptions and
makes commitments beyond the capabilities of the organization to deliver operational
technology. This puts developers in a tough situation because they are then pressured
to deliver the capabilities promised. The ultimate loser is the end user, who does not
receive the expected capability at the promised cost and time; or when the system is
delivered, the end user often receives a hastily crafted Stovepipe System that
resembles the demonstration environment, but lacks maintainability.

A principal cause of this AntiPattern, also called Vaporware, concerns the management
of expections. The end user is led to believe that capabilities can be delivered when in
fact they cannot, at least not within the predetermined functionality, budget, and
schedule. When the development project fails to deliver, the project is considered
unsuccessful, and the development organization loses credibility.

Refactored Solution

The management of end−user expectations is important both for ethical reasons and
for continued credibility. A typical rule of software engineering is that a deliverable
system costs three times as much as an engineering prototype. A set of reusable
software costs up to three times as much as software for a deliverable system. Another
rule, supported by survey evidence, is that any software development will take about
twice as long and cost twice as much as expected [Johnson 95].

Managing expectations often means it is better to let people expect less than can be
delivered. When the expectations are exceeded, the recipients are pleasantly
surprised, and are likely to become repeat customers.

Variations

When the Smoke and Mirrors AntiPattern is a demonstration of a commercial product,
effective additional precautions can be taken. One strategy is to have competent
engineers attend the vendor’s training course. Usually, training courses are not part of
the marketing communications program, and convey unfiltered information about the
products. But competent engineers can determine the product’s true capabilities and
report back to the development team. A less costly solution is to request a copy of the
product’s technical documentation, and conduct a review of these materials by one or
more competent engineers. Also, carefully review the installation requirements and
software license agreement. The installation requirements may call for operating
system versions and product releases that are incompatible with the target
environment. Few software licenses guarantee merchantability. In other words, there
may be no legal assurance that the product will perform a useful function. Such a
guarantee can be added to the purchase agreement, along with extended product
support. Such guarantees are commonplace in industries such as telecommunications,
where product support is provided for up to 80 years (the full system life cycle).

Project Mismanagement

Antipattern Name: Project Mismanagement

Also Known As: Humpty Dumpty

Most Frequent Scale: Enterprise
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Refactored Solution Name: Risk Management

Refactored Solution Type: Process and Role

Root Causes: Responsibility (the universal cause)

Unbalanced Forces: Management of Risk (the universal force)

Anecdotal Evidence: “What went wrong? Everything was fine and then suddenly...
KABOOM!”

Background
This AntiPattern concerns the monitoring and controlling of software projects. The timeframe
for this occurs after planning activities, and during the actual analysis, design, construction,
and testing of the software system. Project mismanagement involves mistakes made in the
day to day running of a project, assuming planning errors (such as Death By Planning) have
not been made.

General Form
Running a project is as complex an activity as creating the project plan, and developing
software is as complex as building skyscrapers, involving as many steps and processes,
including checks and balances. Often, key activities are overlooked or minimized. These
include technical planning (architecture) and quality−control activities (inspection and test). In
particular, basic mistakes include: inadequate architecture definition, insufficient code review
(software inspection), and inadequate test coverage. Under the test umbrella, several phases
are needed, but often minimized: unit, integration, and system testing. Simple integration
testing comprises basic checking of unit−tested components for interoperability. Full
integration testing checks all known success paths and error states.

“All you need in this life is ignorance and confidence; then success is sure.”

—Mark Twain

Architecture establishes the detailed technology plan for the project, including the criteria for
inspection and testing. When an inadequate architecture is defined, there is insufficient basis
for checking the design during the inspection and testing phases. When testing is performed,
the software modules may be integrated according the architecture, but are not able to
interoperate according to the application’s needs.

Symptoms And Consequences
• The design is difficult to implement due to lack of an architectural strategy.

• Code reviews and inspections happen infrequently and add minimal value.

• The test design requires extra effort and guesswork because the behavioral guidelines for
the system are inadequately defined.

• In the integration and system testing phases, there is much project “thrashing” due to a
large number of defects that should have been eliminated in earlier phases such as
architecture, design, inspection, and unit testing.

• Defect reports escalate toward the end of the development and delivery/acceptance
phases.

Typical Causes
• An inadequate architecture does not define the technical criteria for inspection, testing,

integration, and interoperability.

• Code reviews and software inspections do not evaluate design defects, which then must
be addressed in more expensive phases such as acceptance testing.

• Insufficient test suites check basic integration needs, but do not address full
interoperability needs for the application.

• All of the preceding factors indicate ineffective risk management, which can be traced to
the professional practices of the architect, designers, and management.
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Known Exceptions
There should never be any exceptions to the Project Mismanagement AntiPattern.

Refactored Solution
Proper risk management is an effective means of resolving predictable symptoms and
consequences of the Project Mismanagement AntiPattern. Risks are categorized in several
useful ways: managerial, common project failure points [Moynihan 89], and quality. It’s
necessary to understand these categories in order to better qualify the risks.

Managerial

These risks are primarily caused and resolved by corporate management:

• Processes. An end−to−end definition of product development.

• Roles. The specific responsibilities for implementation of the processes.

Common Project Failure Points

These key project risks are based upon twenty−three risk drivers:

• Cost overruns.

• Premature termination of project.

• Development of the wrong product.

• Technical failure.

Quality

• Program and project management. The effectiveness of the planning and control process.

• Product identification. The accuracy of the problem definition.

• Architecture definition. The specification of a design and coding strategy.

• Solution design. The ability to deliver a consistent and optimized code specification that
fully supports the solution.

• Solution implementation (coding). The ability to produce an accurate code implementation
of the design, which functions in the expected manner.

• Solution validation (testing). The proof that the implemented solution fully meets the
problem requirements.

• Product support. The ongoing ability to maintain and enhance a released product.

Common Understanding

Often, a theme of risk management is the absence of a common understanding, resulting in
an inconsistent view of development, which leads to the risk of the solution not meeting the
scope of the problem requirements. A company must understand its software developments
across all sites and all projects. Every project must share common knowledge about its
development.

Ideally, all (or most) development staff on a project will have a reasonable, overall
comprehension of the problem requirements and the intended solution. Unfortunately, often
this is not the case, leading to one or more of these failings:

• Missed functionality. One or more component services were never built because there
was no shared view of how all of the components would interact on the delivery platform.

• Incorrect functionality. Some component does not perform the full functionality required
because its use was never shared by developers with users (other developers).

• Overfunctionality. The requirements were never clearly understood and “the devil in the
details” was never extricated. This leads to software development under “good intentions,”
without any requirement or need ever being clearly established.

•
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Code modules will interface but not fully interoperate. There was no definition of the
threads of control across system and module boundaries.

The refactored solution entails activities at the architectural and design stages of
development. At the architecture level, the dependencies between modules must be defined.
This includes the assignment of responsibilities that define the interdependence between
modules and the partitioning of the system’s functionality. At the design level, the threads of
control (use cases) across modules must be defined. This includes all of the successful use
cases as well as defined error states.

Variations
A formal risk management activity is one way to document and plan for risk mitigation.
Formal risk management entails the identification and documentation of project risks, usually
in a tabular format, which includes columns for risk severity, risk description, and risk
mitigation. Risk management plans are often produced with the formal documentation of
projects, but are rarely translated into funded project activities. It is important to prioritize the
project risks and budget research in risk−mitigation activities that represent critical points of
failure.

Another variation, a run−ahead team, is often employed to investigate the capabilities of new
products and the compatibility of technologies. The run−ahead team creates prototypes that
resemble the target architecture of the system, using the primary technologies or technical
backups. The run−ahead team also identifies any technology shortcomings and investigates
workaround strategies. The team then educates the rest of the project staff on the new
technology, thereby shortening learning curves. Finally, the run−ahead team must precede
the main development activity by one to three months. Otherwise, the main project may be
delayed waiting for the results of the run−ahead research.

Example
A software development does not manage it’s code delivery. The development teams are left
to their own devices as to how to get from design to delivery. This means that they each have
to deal with quality and process issues via self−derived mechanisms and manage their own
activities. The risk becomes unacceptable code through lack of adherence to:

• Coding standards (including traceability to the design)

• Code reviews

• Test planning

• Unit testing

• API testing

• Integration testing

• Feature testing

• Program documentation

The risk manifests itself as poorly documented code that has been largely untested and does
not integrate, nor fully meet the requirements.

The appointment of a new project manager results in quality/process improvements. The
improvements are incremental and are actively owned by the teams through a series of
facilitated “lookback” sessions to identify problems and issues, and then the creation of
emissary groups to address them via incremental process improvements.

Each emissary group consists of a facilitator from product support and a development team
owner (for each team) for that part of the process:

• Design

• Coding

• Testing

• Documentation
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Each emissary group team member is responsible for:

• Refining the specific process.

• Educating their team.

• Providing subjective assessment of the team’s implementation of the specific process and
the quality of it’s deliverables.

• Liaising with other emissaries to maintain a consistent standard of process implementation
and problem resolution.

Within six months each process had been incrementally refined several times and each team
had implemented each process at least once. The improvements were major reductions
(over 50%) in:

• Code defects

• Documentation defects

• Untested code

Related Solutions
A variation of the Smoke and Mirrors mini−AntiPattern describes the incorporation of
technical backups into the project plan and activities. This is an important complement to risk
management, and mitigates key strategic errors introduced by Project Mismanagement.

Brad Appleton presents an excellent design pattern language for improving software
development processes in his paper on process improvement [Appleton 97]. Implementing
process improvement is a key element in resolving project mismanagement.

Mini−AntiPattern: Throw It over the Wall

Anecdotal Evidence

The Code is finished (no testing, no documentation).

Background

Rarely is documentation entirely self−explanatory, yet understanding the vision and
insight of the authors is an essential part of understanding the documentation. This is
especially true of guideline documents, where there is an implicit assumption of
independent decision making. This assumption also implies an in−depth knowledge of
the authors’ intent.

By its nature, all human knowledge is personal. Even the most eminent scientists
possess a personal insight that drives their discovery and articulation of new
information. Understanding this personal insight is essential to understanding their
work.

AntiPattern Problem

Object−oriented methods, design patterns, and implementation plans intended as
flexible guidelines are too often taken literally by downstream managers and OO
developers. As guidelines progress through approval and publication processes, they
may be attributed with unfulfilled qualities of completeness, prescriptiveness, and
mandated implementation.

Such literal interpretation of flexible guidelines can lead to unintended results.
Decisions may be made based upon guidelines that were intended only to inspire
careful analysis and locally optimized decision making. For example, effort may be
wasted on useless analyses and documentation because it appears mandated,
although nobody on the development team understands its purpose. This phenomenon
happens in both large and small organizations and may be due to miscommunication
between development phases. Another important cause is the desire to satisfy the
apparent expectations of management instead of the needs of the system’s end users.

Refactored Solution

In order for technical documentation to be interpreted and implemented as intended,
the material must be communicated through several important techniques. One is to
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deliver the knowledge through a tutorial. Whenever new policies and guidelines are
established, there should be a corresponding transfer of information to promulgate the
information and communicate the motivations.

We have found that a one−day training session is usually sufficient for development
specifications of up to 100 pages. It may, however, be useful to conduct the session in
two parts: a management introduction and a technical briefing for developers, as these
two different audiences have substantially different needs. If you combine these
groups, the management discussion often extends into the time needed to cover the
technical details. Follow−up support, including telephone and electronic mail contacts,
is useful to ensure successful technology transfer.

Mini−AntiPattern: Fire Drill

AntiPattern Problem

A Fire Drill is a recurring scenario in many software development organizations. A
project is initiated, but the staff delays design and development activities for several
months while various technopolitical issues are resolved at a management level. (One
software developer described strategies for on−the−job software delivery as: “Wait until
management is desperate, and they will accept anything you give them.”) Management
prevents the development staff from making progress either by telling them to wait or
by giving uncertain and conflicting directions. Perhaps most destructive are the
externally generated changes in project direction that lead to rework and inhibit
progress.

A few months into the project schedule, it becomes clear to management that
development must progress immediately. Impending project cancellation is the usual
motivator. This situation is announced at an “all hands” Fire Drill launch meeting for
development staff, during which management makes ambitious (or unrealistic)
demands for software delivery. A typical example is a project that spends six months
performing requirements analysis and planning, and then endeavors to design,
implement, and demonstrate the software in less than four weeks.

Because the entire project is pressed for time, compromises are willingly made in
software quality and testing. In a perverse way, the emergency situation makes the job
easier for some software developers, as management will accept almost any software
(or documentation) product with few questions if it is behind schedule. However,
conscientious developers who deliver products before their deadlines are often
compelled by management to rework their solutions.

Refactored Solution

An effective solution that project management can implement is called sheltering.
Project management is responsible for delivering a software product, regardless of the
unresolved management−level issues. The work environment required for quality
software development differs significantly from the Fire Drill environment. In particular,
architecture−driven development requires lengthy time frames and long−term
commitments. Architecture−driven development is the most effective approach for
software success according to Booch (1996) and other authorities. In contrast, Fire Drill
environments preclude staff retention, an important issue for software managers today.

In the sheltering solution, management creates and maintains two alternative project
environments: internal and external. The majority of the software development staff
operate in the internal environment, where the focus is long term and encourages
continual progress toward software delivery. As much as 80 percent of software in
systems is not application−specific—the so−called internal model [Mowbray 97c]. The
internal project environment can proceed to construct the internal model independent
of changes in external technopolitical issues. Building internal increments is also the
most efficient use of software development resources in iterative−incremental projects
[Korson 97].

The external environment is also called the project’s “public image.” Its purpose is to
maintain relationships with outside entities: upper management, customers, and peer
projects (with which resource competition and reuse opportunities exist). The external
environment staff may need to generate repeated project crises to obtain essential
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resources. In a Fire Drill culture, emergency scenarios may be seen as the equivalent
of assertiveness, when projects compete for management attention and resources. A
small number of managers and development staff can maintain the external
environment. Their job is to address the changes in the external environment so that
the majority of the project staff are sheltered. Some examples of external environment
activities include: progress reports, status reviews, procurement, staffing, customer
presentations, and marketing demonstrations. Sheltering effectively isolates most staff
members from these activities.

Occasionally, however, emergencies are real, and heroic commitments of development
time and effort may be needed. Nevertheless, it is important to limit the frequency of
Fire Drills so that development staff members are available to handle the demands of
real emergencies.

Related Solutions

The Fire Drill mini−AntiPattern is related to several other key AntiPatterns, including:
Analysis Paralysis, Viewgraph Engineering, and Mushroom Management. In Analysis
Paralysis, the quest for perfection in analysis modeling leads to a protracted analysis
phase, which compresses the development schedule, thus creating a Fire Drill. In
Viewgraph Engineering, an organization never makes the transition from paper−based
analysis to software development; the work environment is very similar to the situation
preceding the Fire Drill launch−meeting. In Mushroom Management, the developers
are isolated unnecessarily from the real end users (not the end−user management).
Developers are unable to obtain clear requirements or feedback on user−interface
capabilities. The Mushroom Management solution favors constructive interchanges
between operational end users and developers, whereas the Fire Drill solution favors
destructive interchanges between developers and end−user management, when
changes in direction and uncertainties can derail the software process.

Mini−AntiPattern: The Feud

AntiPattern Problem

Also known as Dueling Corncobs, Territorial Managers, and Turf Wars, the Feud is
marked by personality conflicts between managers that can dramatically affect the
work environment. The employees reporting to these managers often suffer the
consequences of their disagreements, because animosity between managers is
generally reflected in the attitudes and actions of their employees, which always
become negative.

Consequently, software developers suffer from a lack of productive communications,
and a general lack of cooperation inhibits any form of useful technology transfer.
Thereafter, the corporate productivity and image can be negatively impacted.

When the conflict erupts into ballistic verbal exchanges, verbal assassinations are
carried out against staff to senior management. Such behavior can engage entire
corporate management organizations, wasting time and energy. E−mail confrontations
can greatly exacerbate the conflict (see the E−mail Is Dangerous mini−AntiPattern
sidebar). Management feuds can drag on for years, with chronic recurrences of open
hostilities, if not addressed promptly.

Refactored Solution

Dr. Randall Oakes, veteran of many information technology migrations, has said that
“there is no problem that a pizza party cannot solve” [Oakes 95]. He means that
organizational problems can often be resolved during a friendly office gathering.

We have used the pizza party technique on several occasions with positive outcomes.
These events are also useful as icebreakers to encourage team building, to facilitate
formation of friendships, and to foster cross−organizational communications.

A pizza party may have the most benefits for the financial sponsor. Following a pizza
party, coworkers may perceive this person in a new light: “He or she is not such an
ogre after all; he or she bought us pizza, and we had a good time.” Pizza party
sponsors can thus reform their image.
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Variations

A corporate intervention is a technique for resolving organizational differences.
Professional meeting facilitators and various psychologists practice these techniques
[GDSS 94]. Using electronic meeting tools, a two−day off−site intervention can achieve
significant results. These meetings help organizations to “reinvent the corporation” by
using the off−site group’s creativity to resolve their differences. The meeting facilitates
intransigent managers to communicate and form new relationships. Participants
generate innovative solutions to problems once thought to be intractable.

Mini−AntiPattern: E−mail Is Dangerous

Also Known As

Blame−Storming

AntiPattern Problem

E−mail is an important communication medium for software developers. Unfortunately,
it is an inappropriate medium for many topics and sensitive communications. For
example, e−mail is inappropriate for most confrontational discussions. Tempers flair
and feelings get hurt easily in e−mail debates. Worse, e−mail makes a public event out
of the disagreement. Productivity and morale of a software project can quickly
degenerate when other staff members get caught up in lengthy e−mail confrontations.

Also known as E−mail Flaming, this mini−AntiPattern can cause a variety of negative
outcomes, some of which are listed here, followed by recommended preventive
measures:

• A “confidential” message is likely to end up in the inbox of the person you least want
to read it. The best advice is to treat every e−mail as if it were going directly to your
worst enemies and toughest competitors.

• E−mail can be distributed to large numbers of people instantaneously; for example,
to entire departments, companies, customer mailing lists, and public Internet forums.
Treat every e−mail as if it will be printed on the front page of The Washington Post.

• An e−mail message can become a permanent written record. Treat every e−mail as if
it could be used as evidence in a court of law.

E−mail is an inefficient mode of communication for complex topics. Due to the
technology and other key characteristics of the medium, e−mail is subject to
misinterpretation, because often large e−mail exchanges reduce the discussion to the
lowest common denominator. Furthermore, e−mail discussion groups send dozens of
postings on all kinds of topics, including the trivial and nonessential. These lengthy
discussions are time−consuming and labor−intensive.

Refactored Solution

Use e−mail cautiously, as suggested. Avoid using e−mail for the following types of
messages: confrontations, criticisms, sensitive information, politically incorrect topics,
and legally actionable statements. Use other media if there is any doubt about the
appropriateness of e−mail. Although telephone conversations, fax transmissions, and
face−to−face discussions are also vulnerable to disclosure, their potential for damage
is much less imminent.

Part III: Conclusions and Resources

Appendix List
Appendix A: AntiPatterns Synopsis

Appendix B: AntiPatterns Terminology

Appendix C: Acronyms Used in AntiPatterns

Appendix D: Bibliography
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Appendix A: AntiPatterns Synopsis

Overview
The AntiPatterns are summarized in Table A.1. The mini−AntiPatterns are summarized in
Table A.2.

The chapter column (far right) indicates the chapter in which the AntiPattern was described.
The chapters each represent a different viewpoint, as follows:

• Chapter 5: software developer viewpoint

• Chapter 6: architecture viewpoint

• Chapter 7: manager viewpoint

Table A.1 AntiPatterns Summary

Name AntiPattern Solution Refactored Solution Ch.

Analysis Paralysis Striving for perfection
and completeness in the
analysis phase leads to
project gridlock.

Incremental, iterative
development processes defer
the detailed analysis until the
knowledge is available.

7 

Architecture System developed
without a documented
architecture, often due to
overconfidence based on
recent success.

Define architecture in terms of
by Implication multiple
viewpoints corresponding  to
system stakeholders.

6

The Blob Procedural−style design
results in one object with
numerous responsibilities
more uniformly and
responsibilities and most
other objects holding
only data.

Refactor the design to
distribute isolate the effect of
changes.

5

Corncob Difficult people obstruct
and divert the software
development process.

Address agendas of the
individual through various
tactical, operational, and
strategic organizational
actions.

7

Cut−and−Paste ProgrammingCode reused by
copying source
statements causes
significant
maintenance
problems.

Institute black−box reuse to
reduce maintenance issues
by having a common
source code, testing, and
documentation for multiple
reuses.

5

Death by
Planning

Excessive preplanning of
software projects leads
to postponement of
development work and
useless plans.

Pursue iterative software
development process, which
includes modest planning with
known facts and incremental
replanning

7

Design by
Committee

Committee designs are
overly complex and lack
a common architectural
vision.

Assign proper facilitation and
software development roles
for more effective
committee−based
 processes.

6

Functional Decom−positionNon−OO design Redesign using OO 5
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(possibly from legacy)
is coded in OO
language and notation.

principles; there is no
straightforward way to
refactor.

Golden Hammer A familiar technology or
concept is applied
obsessively to many
problems.

Expand the knowledge of
developers through education,
training, and book study
groups to expose  developers
to new solutions.

5

Irrational Management Habitual indecisiveness
and other habits result in
de facto decisions and
development
emergencies.

Utilize rational
decision−making
management techniques.

7

Lava Flow Dead code and forgotten
design information are
frozen in an
ever−changing design.

Install configuration control
processes to eliminate dead
code, and evolve/refactor
design toward increasing
quality.

5

Poltergeists Classes have very
limited roles and life
cycles, often starting
processes for other
objects.

Allocate the responsibility to
longer−lived objects, and
eliminate the poltergeists.

5

Project MismanagementInattention to the
management of
software development
process can cause
indirection and other
symptoms.

Monitor and control software
projects to conduct
successful development
activities.

7

Reinvent the
Wheel

Legacy systems with
overlapping functionality
don’t interoperate. Every
system is built in
isolation.

Use architecture mining and
“best of breed” generalization
to define a common interface;
then use object wrapping to
integrate.

6

Spaghetti Code An ad hoc software
structure makes it difficult
to extend and optimize
code.

Refactor code frequently to
improve software structure;
support software maintenance
and iterative development.

5

Stovepipe Enterprise Uncoordinated software
architectures lead to lack
of adaptability, reuse,
and interoperability.

Use enterprise architecture
planning to coordinate system
conventions, reuse, and
interoperability.

6

Stovepipe System Ad hoc integration
solutions and absence of
abstraction result in
brittle, unmaintainable
architectures.

Use of abstraction, subsystem
facades, and metadata to
generate adaptable systems.

6

Vendor Lock−In Proprietary, product−dependent
architectures do not manage
complexity and lead to
out−of−control architecture and
maintenance costs.

Install an isolation layer
between product−dependent
interfaces and the majority of
application software to
enable management of
complexity and architecture.

6

Table A.2 Mini−AntiPatterns Synopsis

Name AntiPattern Solution Refactored Solution Ch.
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Ambiguous Viewpoint Unclear modeling
viewpoint causes
problematic ambiguities
in object models.

Clarify which of the
three essential
viewpoints is modeled:
business, specification,
or implementation.

5

 Autogenerated Stovepipe Automatic generation of
interfaces for distributed,
large−scale systems
from fine−grain header
files.

Separate the
architecture−level
framework design from
the subsystem−specific
design  to manage
complexity.

6

Blowhard Jamboree Industry pundits
disseminate marketing
information that concerns
consumers.

Assign in−house
expertise to separate
the facts from the hype.

7

Boat Anchor A costly technology is
purchased by a systems
development project, but
goes unused.

Send competent
engineers to evaluate
the product before
buying it.

5

Continuous Obsolescence Internet−time technology
releases surpass the
ability to keep up and
synchronize other
technologies.

Depend upon stable
technologies and
interfaces that you
control. Open systems
standards provide
stability.

5

Cover Your Assets Document−driven software
processes often employ
authors who list
alternatives instead of
making decisions.

Establish clear
purposes and
guidelines for
documentation tasks;
inspect the results for
the value of
documented decisions.

6

Dead End Direct modification of
commercial software or
reusable software
creates significant
maintenance burdens for
a software system.

Avoid modification of
supported software.
Choose mainstream,
supported products and
platforms whenever
possible.

5

E−mail Is Dangerous E−mail is a useful, but
volatile, way to
communicate.

Avoid using e−mail for
sensitive, controversial,
or confrontational
messages.

7

Fear of Success People (software
developers included) do
crazy things when a
project is near successful
completion.

When project
completion is imminent,
make a clear declaration
of success.

7

The Feud Managers who engage in
protracted conflicts with
peers have serious
negative impacts on their
staffs.

Use professional
facilitation or informal
gatherings to resolve
differences.

7

Fire Drill Management waits until
the last possible moment
to allow developers to
proceed with design and

Engage in proactive
design and prototyping,
even if customers and
management staff are

7
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implementation; then
they want results almost
immediately.

not completely
on−board.

The Grand Old Duke
of York

Four out of five
developers cannot define
good abstractions; this
leads to excess
complexity.

Designate project team
architects who are
abstractionists—that is,
who possess the
architecture instinct.

6

Input Kludge Custom−programmed input
algorithms contain many
bugs that are apparent to
users and testers.

Utilize production−quality
input processing
techniques, including
lexical analysis, parser
generators, and features
matrices.

5

Intellectual Violence People use obscure
references to esoteric
papers, theories, and
standards for intimidation
or short−term gain.

Encourage education
and practice mentoring
throughout the
organization.

7

Jumble Interface designs are an
unfactored mixture of
horizontal and vertical
elements, which
necessitates frequent
interface changes and an
inability to reuse.

Partition architectural
designs with respect to
horizontal, vertical, and
metadata elements.

6

Mushroom Management Developers are kept in
the dark and fed fertilizer.
End−user interaction is
prohibited.

Solicit frequent user
interaction to maximize
usability and
acceptance.

5

Smoke and Mirrors End users mistakenly
assume that a brittle
demonstration is a
capability ready for
operational use.

Practice proper ethics to
manage expectations,
risk, liabilities, and
consequences in
computing sales and
marketing situations.

7

Swiss Army Knife Overdesign of interfaces
results in objects with
numerous methods that
attempt to anticipate
every possible need.
This leads to designs
that are difficult to
comprehend, utilize, and
debug, as well as
implementation
dependencies.

Define a clear purpose
for the component and
properly abstract the
interface to manage
complexity.

6

Throw It over the Wall Documents are produced
and disseminated without
any provision for
technology transfer.
Flexible guidelines are
mistakenly interpreted as
de facto policies or
formal processes.

Ensure the delivery and
dissemination of
information to the
planned implementation
of any new processes or
guidelines. Include
instructional
development, training
delivery, and technology
transfer kits.

7
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Viewgraph Engineering Organizations with
limited technical
capabilities for system
development are taken at
face value because they
produce substantive
 documents and
polished briefings.

Verify the development
capabilities of the
organization and key
project staff. Utilize
prototyping and
mock−ups as part of
any system
development process.

7

Walking through a
Mine Field

Software technology is
much less robust than
people imagine; bugs are
pervasive and potentially
catastrophic.

Invest in software
testing and inspection to
reduce the frequency
and density of software
defects.

5

Warm Bodies Large software project
teams make for
ineffective organizations
and overruns. Heroic
programmers are
essential.

Plan small projects (four
people in four months);
they are much more
likely to produce
software success.

6

Wolf Ticket A technology is assumed
to have positive qualities
due to its open systems
packaging or claimed
standards compliance.
Few standards have test
suites (less than6
percent), and few
products are actually
tested for conformance.

Discover the truth
behind the claims;
question authority;
assume nothing. Shift
the burden of proof to
the marketing
organization. Talk
directly to the technical
product experts and
developers.

6

Appendix B: AntiPatterns Terminology
Action Lever  The most effective mechanism for effecting change or problem solving. For
example, in performance optimization, an action lever is a small code segment causing a
performance bottleneck, discovered through measurement.

Also Known As  An AntiPattern template section, which includes additional common
names and phrases that are popularly used or descriptive of the AntiPattern.

Anecdotal Evidence  An AntiPattern template section. Any cliche phrases or comedic
material describing the AntiPattern appear here.

AntiPattern  A commonly occuring pattern or solution that generates decidedly negative
consequences. An AntiPattern may be a pattern in the wrong context. When properly
documented, an AntiPattern comprises a paired AntiPattern solution with a refactored
solution.

Applicability to Other Viewpoints and Scales  An AntiPattern template section that
defines how the AntiPattern impacts other viewpoints: managerial, architectural, or
developer. Optionally, this section includes interesting implications of the AntiPattern to other
scales of development.

Architectural Benefits  The positive outcomes that result from the design and utilization of
good architecture and associated software interfaces. Typical benefits include adaptability,
cost and risk reduction, and so forth.

Architectural Characteristics  Characteristics associated with a design artifact that affect
its usage and placement within architectural partitions; for example, maturity, domain
specificity, flexibility, constraint, implementation dependence, complexity, stability, and so
forth.

Architectural Partition  Architecture defines boundaries between categories of design
artifacts. These partitions separate categories of entities with different characteristics.
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Partitions help to delineate concerns, reducing the number of conflicting forces, and make
problem solving easier. Partitions also isolate entities that are likely to change independently,
for example, between a generic reusable object and one that is domain−specific.

Architectural Placement Criteria  Design patterns reside at a level where the problem
statement is most applicable and the boundaries of the solution are within the scope of the
level. This definition has two criteria, so problem applicability takes precedence over solution
scope. Certain design patterns could potentially be placed at more than one level. The
scalability section of the pattern template addresses the use of the pattern at alternative
levels.

Architecture  Multiple views of a whole system. An architecture comprises various views
from each of the potential stakeholders in the system, such as end users, developers,
software architects, specialists, and managers.

Background  An AntiPattern template section. Any additional comments about the
AntiPattern, divergent from the purpose of the other sections, appear here.

Bytecode  An intermediate representation between a high−level programming language,
such as Java, and machine code.

Component, or Software Component  A small−scale software module, at
application−level or smaller scales. In a component architecture, a component shares a
common interface and metadata with other components to support interoperability,
component substitution, and system extension.

Design Artifact  A particular instance of a design choice.

Design Pattern  A problem statement and solution that explains a predefined
common−sense approach to solving a design problem. Properly documented patterns are
described using a consistent template, which guarantees conciseness and comprehensive
coverage of the details, issues, and trade−offs.

Design Point  A specific trade−off within an allowable range of options within a design
pattern. The full range of design options for a given problem forms a continuum of alternative
choices. A design point is one of these choices, which resolves the forces and achieves the
right balance of benefits and consequences; for example, choosing a string data type as
opposed to an enumeration in an IDL parameter specification. Whereas the enumeration has
a fixed set of alternatives that is not extensible without change to the IDL, a string type could
support a wide range of uses and extensions.

Example  An AntiPattern template section, giving an example of the AntiPattern and its
refactored solution.

Forces  The contextual motivating factors that influence design choices. Forces are
identified in the applicability section of the design pattern template, and are resolved in the
solution section of the template. See also Horizontal Forces, Vertical Forces, and Primal
Forces.

General Form  An AntiPattern template section identifying the generic characteristics of the
AntiPattern. The refactored solution resolves the general AntiPattern posed by this section.

Horizontal Forces  Forces applicable across multiple domains or problems and that
influence design choices across several software modules or components. With horizontal
forces, design choices made elsewhere may have a direct or indirect impact on design
choices made locally.

Implementation  The code (or software) comprising the mechanism that provides services
conforming to an interface. Also called an object implementation.

Interface  A software boundary between the consumers of a service (the clients) and the
providers of a service (an implementation).

Java Virtual Machine  A run−time system used by the Java language to dynamically
interpret Java bytecode. It is also responsible for the management of other Java capabilities
such as garbage collection and object creation.

Mining  The study of preexisting solutions and legacy systems in order to rapidly gain a
robust understanding of the purposes of solving a new problem. Mining leads to potential
reuse of previous solutions, horizontal generalization of multiple solutions, or an
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understanding of the wrappering requirements for legacy systems.

Module, or Software Module  A generic term for a piece of software. Module is used to
refer to software at various scales. An application−level module is a subsystem; a
system−level module is an entire software system, and so forth. A module is separable from
other modules at the same scale.

Most Frequent Scale  An AntiPattern template section. From the Software Design−Level
Model (SDLM), the scale of software development at which the AntiPattern usually occurs.
The options include: Idiom, Micro−Architecture, Framework, Application, System, Enterprise,
or Global/Industry. The scale contrains the scope of the solution.

Name  An AntiPattern template section; a unique noun or noun phrase, intended to be
pejorative. Alternative names, if any, are identified in the Also Known As section.

PLoP  Pattern Languages of Programs. An annual conference on the creation and
documentation of patterns and pattern languages.

Primal Forces  A class of horizontal forces that are pervasive in software architecture and
development. Primal forces are present in most design situations, and should be considered
part of the contextual forces driving most solutions.

Refactored Solution  An AntiPattern template section, where the solution for the
AntiPattern is described. This section corresponds to the General Form section. The solution
is described without variations, and can be structured in step form.

Related Solutions  An AntiPattern template section identifying any citations or
cross−references that are appropriate to explain differences between the AntiPattern and
others.

Root Causes  An AntiPattern template section listing the general causes for the
AntiPattern. Derived from the architecture column, “Deadly Sins of Object−Oriented
Architecture” [Mowbray 97a], with Biblical relevance, the options include: Haste, Avarice,
Pride, Ignorance, Apathy, Narrow−Mindedness, and Sloth. Neglected responsibility is the
universal cause.

Solution Type  An AntiPattern template section based on the Software Design−Level
Model (SDLM) that identifies the type of action that results from the AntiPattern solution.
Choices are: Software, Technology, Process, or Role. The choice “Software” indicates that
new software is created by the solution. The choice “Technology” indicates that the solution
entails acquisition of a technology or product. The choice “Process” indicates that the
solution entails pursuing a process. The choice “Role” indicates that the solution entails
assigning responsibility to an individual or group.

Symptoms and Consequences  An AntiPattern template section listing symptoms and
consequences resulting from the AntiPattern.

Template  The outline used to define the explanatory sections of a design pattern or
AntiPattern. Each template section answers important questions about the pattern or
AntiPattern.

Typical Causes  An AntiPattern template section where the unique causes of the
AntiPattern are identified, along with its root causes.

Unbalanced Forces  An AntiPattern template section based on the Software Design−Level
Model (SDLM) that lists the general forces ignored, misused, or overused in the AntiPattern.
Choices are: Management of Functionality, Performance, Complexity, Change, IT
Resources, Technology Transfer. Management of Risk is the universal force.

Variations  An AntiPattern template section listing any known major variations of the
AntiPattern. Well−known alternative solutions are described here as well.

Vertical Forces  Situation−specific forces that exist within some particular domain or
problem context. Domain−specific forces are unique to a particular situation. Because
vertical forces are unique (or local) to one software situation, resolution of vertical forces
usually results in unique solutions for each software problem. Interfaces generated that are
based solely upon vertical forces are called vertical interfaces.

Appendix C: Acronyms Used in AntiPatterns
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ACID Atomic, Consistent, Isolated, Durable

ANSI American National Standards Institute

API Application Program Interface

CASE Computer−Aided Software Engineering

CD−ROM Compact Disc Read−Only Memory

CIO Chief Information Officer

CMU Carnegie Mellon University

COM Microsoft Component Object Model

CORBA Common Object Request Broker Architecture

COSE Common Open Software Environment

COTS Commercial off−the−shelf

DIN German National Standards Organization

ECMA European Computer Manufacturers Association

E−R Entity−Relationship Modeling

FIPS Federal Information Processing Standard

FGDC Federal Geographic Data Committee

FTP File Transfer Protocol

GOTS Government off−the−shelf

GPL Gamma Pattern Language

HVM Horizontal−Vertical−Metadata

IBM International Business Machines

ICD Interface Control Document

IDL ISO/CORBA Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

ISO International Standards Organization

IT Information Technology

MVC Model−View−Controller

O&M Operations and Maintenance

ODMG Object Database Management Group

ODP Open Distributed Processing

OLE Microsoft Object Linking and Embedding

OLTP Online Transaction Processing

OMG Object Management Group

ONC Open Network Computing

OO Object Oriented

OOA Object−Oriented Analysis

OOA&D Object−Oriented Analysis and Design

OOD Object−Oriented Design

OODBMS Object−Oriented Database Management System

OQL ODMG Object Query Language

OSE Open Systems Environment

OSF Open Software Foundation

OMA Object Management Architecture
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PLoP Pattern Languages of Programs Conference

RFC Request for Comment

RFP Request for Proposal

SEI Software Engineering Institute

SGML Standard General Markup Language

SPC Software Productivity Consortium

SQL Structured Query Language

SYSMAN X/Open Systems Management

TCP/IP Transmission Control Protocol/Internet Protocol

TWIT Third−World Information Systems Troubles

URL Universal Resource Locator

WAIS Wide Area Information Search
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